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Bethe's expressions for the stopping cross section and the straggling parameter of a penetrating
point charge have been evaluated for a spherica1 harmonic oscillator as a target. The results, which
are rigorous except for the neglect of relativistic corrections and higher-order Born terms, are given
in tabulated form as well as in the form of asymptotic shell-correction expansions to arbitrary order.
Existing general expressions for the stopping cross section and straggling are confirmed as far as
they go. The range of validity of various model theories of atomic stopping is tested. At velocities
down to about the stopping maximum, the agreement is very good for the kinetic theory, while a
Fermi gas with a properly chosen electron density yields a significantly different stopping max-
imum. The binary encounter theory underestimates the stopping power at all speeds. The dielectric
or local-density approach does not reproduce the correct scaling behavior. None of the model
theories reproduces the threshold behavior. For light projectiles, i.e., positrons and electrons, a
Franck-Hertz-type structure is observed in the velocity dependence of the stopping cross section
which is particularly pronounced near threshold. An equipartition rule is derived for contributions
to the stopping cross section from low excitations, i.e., distant collisions, and close encounters. A
straight extension of Bohr's oscillator model of atomic stopping is proposed which is shown to
reproduce leading shell corrections in both stopping power and straggling and which, when applied
to hydrogen, accurately describes the stopping power at velocities around and above the stopping
maximum.

I. INTRODUCTION

The stopping of a point charge penetrating through
matter at nonrelativistic speed is conventionally described
by Bethe's theory' which is based on two main assump-
tions: (i) The stopping is caused by Coulomb excitation
and ionization of the electrons of the stopping medium,
and (ii) the interaction is treated within the first Born ap-
proximation. On the basis of these two assumptions, one
obtains the following expression for the mean energy loss
per path length (stopping power)„'

one ie'
NZ2L, (1)

mu

where ei and u are the projectile charge and speed, —e
and m the electron charge and mass, N is the number of
target atoms or molecules per volume, Zq the number of
electrons per target atorl or molecule, and

L = g(E„—Eo) ~ 5(E„Eo qv+q /2m—i)—Ptl V d q 2
m'

x IF„.(q) I',

where m
&

is the projectile mass and E„ the energy of the
target state

I
n ), i.e.,

H being the Harniltonian describing one target atom or
molecule; q is the momentum transfer to a target electron
and

If the initial state
I
0) of the target is isotropic, (2) can be

written in the more familiar form

(5a)

with the integration limits

E„—Eo+ Q &2mu Q,
PFl l

(5b)

where ( ) indicates an angular average, and

Q=q /2m .

The most familiar form of Bethe's stopping formula,

2plfPl ) U

I.=ln
(m+mi)I

where I is the mean excitation energy, is based on Eq. (5)
and the following further assumption: (iii) The projectile
speed U is much greater than the orbital speeds of the tar-
get electrons.
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Deviations of Eq. (5) from Eq. ( /) are called shell

corrections. ' At nonrelativistic speeds they are al-

ways significant except for light target atoms. Therefore,
they need to be known if reliable values of I are to be ex-
tracted from experimental stopping data' in the velocity
range where Eq. (7) is approximately correct. At low pro-
jectile speed, Eq. (7) does not even qualitatively apply.

Shell corrections have been determined from Eq. (5a)
for hydrogenic wave functions. ' The results are most
appropriate for K electrons, but the procedure has also
been applied to I. and M electrons. ' Moreover, series
expansions of shell corrections in inverse powers of the
projectile spmd have been given, ' 'i and most recently,
an ambitious attempt has been made to evaluate Eq. (5a)
numerically on the basis of realistic atomic (or ionic) wave
functions. ' Shell corrections have also been evaluated for
a model of a free-electron gas' ' and applied ' to
atomic systems by means of the local-density approxima-
tion. ' Recently, shell corrections have been evaluated
on the basis of a kinetic theory with the underlying as-
sumption that the difference between Eqs. (5) and (7) is
essentially due to the kinematics of the target electrons in
their initial state.

Despite a substantial effort, considerable uncertainty
prevails about the magnitude and dependence on projectile
speed of shell corrections for all systems. This is most
pronounced for heavy targets where, quite apart from rel-
ativistic effects, shell corrections are so large that series
expansions do not even qualitatively apply. The accuracy
of shell corrections based on hydrogenic wave functions is
difficult to ascertain, as are those based on the electron-
gas picture or the kinetic theory, the latter two in view of
the lack of a realistic model of electronic binding forces.
Finally, the numerical calculations of Ref. 18, although
potentially correct, are still subject to doubt with regard to
artifacts caused by rounding errors and the like. 6

In view of this state of affairs, there is a strong motiva-
tion for a model calculation allowing a full investigation
of the analytical structure of the stopping power, viz. ,
shell corrections. The electron-gas model' * comes
closest to this requirement, yet the dielectric function de-
rived in Ref. 19, apart from describing only approximate-
ly the properties of an electron gas, exhibits considerable
analytic complexity and, moreover, describes electronic
binding forces only rather indirectly via the plasma fre-
quency.

We find it striking that the standard system for quantal
model calculations, the harmonic oscillator, apparently
never has been utilized to evaluate Eq. (5). This is even
more striking in view of the fact that Bohr's pioneering as
well as much subsequent work on stopping power relied
on the classical harmonic oscillator. Moreover, both the
classical '2 and quantal ' oscillator have served as
model systems for theoretical investigations of higher-
order ei effects, i.e., corrections to Eq. (5) from higher-
order terms in the perturbation expansion.

In the following, we evaluate the stopping power as well

as the related fluctuation (straggling) for an isotropic har-
monic oscillator as a target. It is known that the excita-
tion spectrum has Poisson form in suitable variables,
and it turns out that the stopping power and straggling

can be expressed in terms of series or integrals that are
simple enough to allow investigation of their analytical
structure as well as determination of accurate values. One
comes closest to an analytical expression in the case of a
heavy projectile, mi »m, and in all cases, the range of
validity of expansions valid at low and high speeds,
respectively, can be determined.

With reliable expressions at hand for the stopping cross
section and straggling parameter of an oscillator, we fur-
ther explore Bohr's oscillator model of atomic stop-
ping, 2 ~s i.e., the replacement of an atom by an ensem-
ble of harmonic oscillators. It will be shown that this pic-
ture describes the stopping behavior of an atom or mole-
cule even substantially below the range of validity of the
Bethe limit, Eq. (7).

II. STOPPING NUMBER FOR AN ISOTROPIC
HARMONIC OSCILLATOR

with v=n, =0, 1,2, . . . , and hence, (5a) reads

l "
1

J dkP-'e-&
2 „ i (v —I)! (9)

with g=Q/~ and &, —Eo=vtico. The limits of integia-
tion follow from Eq. (5b) which reads

(v+ m g/m i ) (g/e

with e=fjco/2mu
By comparison with Eq. (5a), we notice that the gen-

eralized oscillator strength'

f.o(Q) =[«. Eo)/Ql I +.o—(q) I

'
has Poisson form

(10)

1 Qfno(Q) =
( 1)i

with a maximum (Bethe ridge ) at Q =(n —1)fico Evi-.
dently, the momentum-transfer spectrum is very narrow
for close collisions (n »1) at high speed and broad for
dipole resonance excitation ( n = 1), in agreement with the
general picture. '

Consider first the case of a projectile much heavier than
an electron, where Eq. (10) reads

and hence, Eq. (9) yields

We wish to evaluate Eqs. (4) and (5) for the case where

H specifies a spherical harmonic oscillator with a reso-

nance frequency co. We note that, because of spherical
symmetry, the direction of q in (5a) is arbitrary; hence it
can be chosen to coincide with the z axis in a rectangular
coordinate system. Thus, with the states

~

n)—:~n ) ~nz) (n, ), where n„,nz, n, =0, 1,2, . . . ,

only the terms with n„=n~ =0 contribute to (5a), all oth-
er terms yielding zero matrix elements. By means of the
generating function of Hermite polynomials, 5 one easily
deflves ' Y

(
~

iqz/A
~
0) Q —Q/2Au&

v)
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TABLE I. Stopping parameters of a spherical harmonic oscillator for a heavy projectile (m ~ ~~m).
The first column shows the energy variable e '=2mU /fuu. The second and third columns show the
stopping number I., Eq. (l), and the shell correction —M, Eq. (43), respectively. The fourth column
shows the quantity eI. =Savu/8me ~e, S being the stopping cross section, and the last column shows M,
Eq. (32), representing the ratio between straggling and the Bohr value.
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0.12
0.14
0.16
0.18
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.50
3.00
3.50
4.00
4.50
5.00
6.00
7.00
8.00
9.00
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90.00

100.00
120.00
140.00
160.00
180.00
200.00
250.00
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0.00000
0.00001
0.00005
0.000 14
0.000 30
0.000 57
0.001 89
0.00429
0.007 84
0.01248
0.018 11
0.02462
0.039 80
0.057 31
0.07662
0.097 33
0.11916
0.165 32
0.213 76
0.263 62
0.31428
0.365 32
0.49272
0.61765
0.738 63
0.8S496
0.966 34
1.072 72
1.270 86
1.45075
1.614 12
1.762 77
1.898 36
2.13625
2.337 87
2.51093
2.661 34
2.793 58
3.065 39
3.27902
3.454 30
3.602 81
3.731 67
3.845 55
4.040 11
4.202 64
4.342 29
4.464 74
4.573 78
4.761 55
4.91953
5.055 90
5.175 88
5.282 99
5.509 25
5.693 64

—2.302 59
—2.12028
—1.966 16
—1.832 72
—1.71S 10
—1.61001
—1.388 18
—1,208 26
—1.0S7 66
—0.928 77
—0.81662
—0.71777
—0.55063
—0.413 99
—0.299 76
—0.202 69
—0.11916

0.01700
0, 12271
0.206 38
0.273 50
0.327 82
0.423 57
0.48096
0.514 13
0.531 33
0.537 74
0.53672
0.52090
0.495 16
0.465 32
0.43445
0.404 22
0.348 65
0.301 19
0.26166
0.22903
0.202 15
0.15348
0.122 18
0.10104
0.08607
0.074 99
0.06647
0.054 24
0.045 86
0.039 74
0.035 07
0.031 39
0.025 95
0.022 11
0.01927
0.01707
0.015 33
0.012 21
0.010 14

0.00002
0.000 11
0.000 35
0.000 85
0.001 67
0.002 87
0.007 56
0.014 29
0,022 39
0.031 20
0.04025
0.049 24
0,066 34
0.081 87
0.095 77
0.108 14
0.11916
0, 13776
0.152 69
0.16476
0.174 60
0.182 66
0.19709
0.205 88
0.21104
0.213 74
0.214 74
0.214 S4
0.211 81
0.207 25
0.201 77
0.195 86
0.189 84
0.17802
0.16699
0.15693
0.147 85
0.13968
0.122 62
0.109 30
0.098 69
0.09007
0.082 93
0.076 91
0.067 34
0.06004
0.054 28
0.049 61
0.045 74
0.039 68
0.035 14
0.031 60
0.028 75
0.02641
0.02204
0.01898

0.00004
0.00022
0.000 70
0.001 69
0.003 34
0.005 74
0.015 12
0.028 59
0.044 81
0.062 51
0.080 81
0.099 14
0.13481
0.168 51
0.200 16
0.229 89
0.257 89
0.309 32
0.355 58
0.397 57
0.435 95
0.471 24
0.548 45
0.61328
0.668 63
0.71645
0.75813
0.794 71
0.85564
0.903 87
0.942 50
0.973 70
0.99903
1.036 60
1.061 79
1.078 66
1.089 86
1.097 12
1.104 94
1.105 22
1.102 39
1.098 40
1.09408
1.089 83
1.082 03
1.07S 34
1.069 65
1.064 79
1.060 60
1.053 76
1.048 42
1.044 12
1.040 58
1.037 62
1.031 94
1.027 87
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TABLE I. ( Continued).

350.00
400.00
450.00
500.00
600.00
700.00
800.00
900.00

1000.00

S.849 26
5.983 88
6.102 52
6.208 56
6.391 89
6.546 77
6.680 84
6.79905
6.904 74

0.008 68
0.007 58
0.006 73
0.00605
0.005 04
0.004 31
0.003 77
0.00335
0.003 01

0.01671
0.01496
0.013 S6
0.012 42
0.01065
0.009 35
0.008 35
0.007 SS
0.00690

1.024 79
1.022 37
1.02042
1.018 80
1.01628
1.01440
1.012 94
1.011 77
1.01080

dL 1
" (v e)"

e
de 2 „, (v —I)!

(12)

This function has been plotted in Fig. 1. The function
L (e}, evaluated by numerical integration, has been tabu-
lated in Table I.

One may note that at low projectile speed, i.e., e&&1,
only the leading term v= 1 contributes to (12) or (9);
hence, dL /de- —e '!2e or

m
&
——m, i.e., when the projectile is a positron or an elec-

tron. The results, as shown in Table II, are more ap-
propriate for positrons than for electrons, in view of the
neglect of electron exchange in the case of the latter. In-
corporation of exchange into the present model appears
hard to do in a meaningful way in view of the lack of un-

bound states for a projectile electron.

L ——,
' Ei(e) for e ~&1, (13)

III. ASYMPTOTIC EXPANSION OF THE STOPPING
NUMBER FOR HEAVY PROJECTILES

where Ei is the exponential integral Ei(g)= f dt e 'It.
In particular, we have the obvious result that a/low speed,
only the lowest excitation level contributes to the stopping
cross section. That contribution is also included in Fig. 1

(dashed line).
At high speed, or e ~& 1, Eq. (12) receives a contribution

which approximately equals 0.5 from v= 1 and another
contribution from a range of v values of the order of e
with an essentially empty interval in between. By means
of Stirling's formula and approximation of the sum by an
integral, it is easily seen that the latter contribution also
approximately equals 0.5. This is a manifestation of the
well-known equipartition rule ' between dipole reso-
nance excitation (v=1) and close Coulomb encounters
(vftco=2mu ). A more quantitative formulation of that
theorem will be given in Sec. XIII.

Equations (9) and (10) have also been evaluated for

In this section we derive an expansion of the stopping
number of a harmonic oscillator for a heavy projectile,
Eqs. (9) and (11),

(9')

in powers of e or u

To find such an expansion is fairly straightforward for
distant collisions, i.e., small Q, while there are pitfalls
with regard to the high-Q portion. This confirms com-
mon experience. ' In fact, we have explored several sim-
ple procedures which all failed to correctly reproduce the
high-Q portion of the integral. The derivation given here
makes use of integration in the complex plane of a mero-
morphic (multivalued) function. The reader who is only
interested in the result may skip directly to Eq. (27).

We assume that L(e) has an asymptotic expansion of
the form

-E.—dL
dC

15- L(e)-a inc+6+ g eke"+R„(e)
k=1

for small e where R„(e)=0(e"+'). In order to find the
coefficients a, b, and c„, we consider the Mellin trans-
fol m

L(s) = f deL (e)e' (15)
0
0 Oo&

E

FIG. 1. Function —edI. /de for a heavy projectile, evaluated
from Eq. (12}. I. is the stopping number, and a=%co/2mu .
Dashed line: excitation of lowest level only, Eq. (13).

L(s) is an analytic function defined in the full half-plane
Res & 0, because L (e) decreases rapidly for e~ co, cf. Eq.
(13).

Thus, for Res~0
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g 5 " &k
L(s) = ——2+ —+ gs s k~) s+k

+ f deR„(e)e' '+ f deL(e)e'-' . (16)

The last integral is an entire function of s, and the esti-

TABLE II. Stopping number I. of a spherical harmonic os-
cillator for penetrating positrons (electrons).

2 Etio 2PlU

AN

mate R„(e)=0(e"+') shows that the integral involving
R„(e) is analytic for Res ~ (n—+1). Hence L has an
analytic continuation to Res & —(n+1) with a second-
order pole in s=0 and simple poles in —s = 1,2, . . . , n.
Since n is arbitrary, (14) implies that L (s) can be extended
to a meromorphic function in the full complex plane, with
a second-order pole in 0 and simple poles in
—s =1,2, 3, . . . . L(s) determines the coefficients a, b,
and c„, because the principal part of L(s) at 0 is
—a/s +b/s, and for n &1, c„ is the residue of L at
s = —n, i.e.,

c„=Res(L,—n) .

1

2
3

5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

0.00000
0.00000
0.00000
0.00000
0.356 12
0.492 76
0.593 21
0.67479
0.91890
1.034 89
1.12447
1.199 15
1.37940
1.47022
1.541 65
1.602 01
1.741 21
1.812 37
1.868 78
1.91683
2.028 18
2.08495
2.13008
2.168 74
2.26046
2.306 75
2.343 59
2.375 27
2.452 68
2.491 28
2.521 98
2.548 45
2.61516
2.64800
2.67409
2.69665
2.755 12
2.783 58
2.806 15
2.825 71
2.877 70
2.902 75
2.922 59
2.939 80
2.986 59
3.008 93
3.02660
3.041 96
3.08449
3.104 64

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

93

95
96
97
98
99

100

3.120 56
3.13441
3.17340
3.191 75
3.206 24
3.218 85
3.254 84
3.271 69
3.28498
3.296 57
3.329 99
3.345 57
3.357 85
3.368 56
3.399 77
3.414 25
3.425 67
3.435 63
3.46490
3.478 44
3.489 10
3.498 41
3.525 98
3.538 69
3.548 70
3.557 44
3.583 48
3.595 46
3.604 89
3.61313
3.637 82
3.649 15
3.65806
3.665 86
3.689 32
3.70007
3.708 52
3.715 92
3.738 28
3.748 50
3.756 54
3.763 57
3.784 93
3.794 67
3.802 34
3.809 05
3.829 48
3.838 80
3.846 12
3.852 53

Let L„(e) be the part of L„(e) coming from the vth term
in Eq. (9'). Then

L„(s)= f dec' ' f dt " e

tt" '
2(v —1)!

r(s+v —1) .
2s (v —1)!

Using the identity

CO

V dx e- x"-'
r(2s)

we get

L„(e)= r(s)
' —s 1)v—1 dx —vx 2s —1

I (2s+1)

(16')

CO

( 1)v—1
— —vx (1 —x)—s —x

V—
v=1

we have shown that for Res & 0
S

L(s)= g L„(s)= f dx
X

) o e"
dx

I (2s+1) —x

(19)

In the complex strip ~lmz
~

& upwith the nega. tive real line
excluded, we can choose the branch of the multivalued
function

(20)

e" x
lim F,(x+iy)=

y ~O+ 1 —e" (21)

corresponding to the choice of argument:

Z2—m ~arg ~m. .e'—l

Let C be the complex contour specified in Fig. 2. For
x ~0, we have
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e'(e' —1)"
R

(e'—l )p+'+(e"—1)p
zq+1 zq+]

and therefore

y(p+i)
q+].qf

FIG. 2. Path of integration in Eq. (18) in the complex x
plane.

(n+1}c„=——Q2"„+'i', n =1,2, . . . .
n

(24)

Hence, for Res & 0,

e" x
Fg z z= —2l sin %$ x

C 1 —e"

which shows that

L(s)= . . f dzF, (z), Res &0. (22)
I (s)

I' 2s + 1 2i sin mrs

However, the integral F,(z)dz is meaningful for all s
C .

and defines an entire function in complex s space. Thus,
(21) shows that L(s) has an analytic continuation to the
entire complex plane with poles in 0,—1,—2, —3, . . . .
The pole at s=0 is at most a second-order pole and the
poles at —1,—2, —3, . . . are all simple, because
I (s)/I'(2s + 1) has removable singularities at these
points.

Since

lim
I (s) ( —1)" ' X 2[(2n —1)!]

s —n I (2s+1) nf

it follows from (17) that

at s=0. Using I (s)=I (s +1)/s and I (s+1)
= 1 —ys +0 (s ), where y is Euler's constant, we have

I (s)P(s)
I (2s + 1)[(1/n.)sin(ms)]

1 1 —ys+O(s ) ()()(0)+(t)'(0)s+O(s )

1 —2ys+O(s ) s+O(s )

= —,(Q(0)+[(I()'(0)+y]s+O(s )) for s~0 .1

Therefore, a = —P(0) and b =(()'(0)+y.
Clearly, $(0)=Res(FO (z),0)= 1, i.e.,

a= —1.
Moreover, using

(25)

F,(z)
S

Z

=—ln
s=0 z

In order to determine the numbers a and b, we use that
—a/s +b/s is the principal part of L(s) at s=0. Let
P'(0) be the first derivative of

())(s)= . f dzF(z)1

Cn f dz (sF) . (23) we get

When s = n, the bra—nch point 0 for F,(z) is just an
nth-order pole, so the contour C can be deformed into a
circle around the origin.

Therefore,

(2n)!' Res(F „(z),0)
n n!

(2n)! e'(e' —1)"'
Res

n (n!) Z2n+1

Using the Taylor expansion

oo

(e*—1)P=p! g 8qP' , p, q &0—
0

where Sq~' are the Stirling numbers of the second kind.
This, combined with the recurrence formula

g (P+i)
( +1)g(P+1)+@(P)q+]

1 e Z z 2

(I)'(0)= . f dz—ln
Zm'i c z

How&ever,

1 e z
dz —ln

C z

because the integrated function has a removable singulari-
ty at z=0, so after subtraction of this integral, we find
that

1
Z

P'(0) = f dz—lnz .2' c z

The Euler integral for the I function

I (s)= dx e"x' ', Res &0
0

can, as in formulas (20) and (21), be transformed to an in-
tegral along the complex contour specified in Fig. 2:

1(s)= . . f dze'z'1

2i sin(n.s)

Hence
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((}'(0)= . J dz e'z'
2+i ds

1

ds I (1—s)

= I"(1)= —y,
which shows that

Hence, we have found the asymptotic expansion

L (e)-ln @(n+1}e
2n+1

n=1 n

25 2 350 3 6951 4—3E' — 6 — E'—
2 3 4

~ ~ ~

Strictly speaking, we have only derived the formula under
the assumption that L (e}has an asymptotic expansion of
the form (14). The proof of the existence will not be given
here. It involves the inversion formula for the Mellin
transformation

0'+ I te
L(e)= . I dse 'L(s), sr~0

2&l

together with estimates of the magnitude of L{cr+it) for
t~ao when o &0.

By differentiation of (27), we obtain

Z S ~ I ~~ I ~ 2&l
C

dz e'z' '=2i sin(ms)l (s)=
I (1—s)

By uniqueness of analytic continuation, the formula holds
for all s. We have now

Fig. 1, plotted in a linear scale, and the dashed lines la-
beled 0,1,2,3, represent the series (27'), truncated after the
term e,e',e,e, respectively. It is evident that with a re-
quired accuracy of l%%uo in edL/de, the asymptotic (Bethe)
expression 0, cf. Eq. (7), is adequate for e &0.003; addition
of the leading shell correction is adequate for e(0.015,
two shell corrections for @&0.025, and three for e &0.05.
Evidently, the shell-correction expansion is useful only in
the limit of high speed where shell corrcx:tions are small.
This result confirms common experience.

IV. STOPPING NUMBER FOR LIGHT PROJECTILES
(POSITRONS AND ELECTRONS)

I (s}
I'(2s + 1)

X2

1+0!x—8

S

for Res&0. From this we obtain

I (s)L (s) = . . J dz F, (z),

The asymptotic expansion of the stopping number
given in Sec. III can be modified to cover the case where
the mass ratio a =m /m t is nonvanishing. Again, the
reader interested only in the result may skip directly to
Eq. (29).

From (9) and (10) we find the Mellin transform of the
vth term

L„(s)= dt t" +'(v+at) 'e1

2s (v —1)!

The identity (18) yields

1(s+v—1) "d x '
I (2s+1)[(v—1)!] o (1+ax)'+"—'

The summation over v can now be carried out as in Sec.
III and yields

—1+3m+ 25&2+ 350e3+ (27')
where

This expansion can be compared with Fig. 1. The result
is shown in Fig. 3. The solid line is the exact result from

e' Z2+ (z)=- e' —1+as

dL
dK

1.2

((}.(s)= I dzF, (z).

Assume now that L (e) has an asymptotic expansion of
the form (14). Then, as in Sec. III, one gets

a(~)= —p.(0), b(a)=y.'(0)+}

(2~)! R
e' e*—1+az

n (n!) z z2

oe, i & & t I t t I I t & i

0.10 Clearly,

n =1,2, . . . .

FIG. 3. Asymptotic behavior of —edl. /de, cf. Fig. 1, at high
speed, i.e., small e. Solid line: exact result (Fig. 1). Dashed
lines labeled 0,1,2,3 indicate the standard Bethe expression, Eq.
(7), and extensions by j shell corrections (j= 1,2,3), respectively.

Z

$~(0)=Res —,0 =1
z
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2 '—1p'(0)=()'(0)+ J dz—ln e' —1+az

1= —y+ln 1+0.

because ()! '(0)= —y (cf. Sec. III) and because
ln[(e' —1)/(e' —I+az)] has a removable singularity at
z=0, and the limit of the function for z ~0 is
in[1/(1+ a )].

This shows that
0.10

(2 (a) = —1, b (a)= —ln(1+a) .

Similar to Sec. III we find 0.05

c„(a)=—,' g . Res
(2n)!
n(n!) . 0 .J .

ez(ez 1)n —J
QJ

Z
2n —j+1

(2n)!
n(n!) .

272 ~ (n+1-j) j~2n+1 —J+

The first few terms of the asymptotic expansion are there-
fore

&0 20

FIG. 4. Stopping of light projectiles, i.e., positrons and
(neglecting exchange effects) electrons. Stopping number and
stopping cross section vs relative kinetic energy, mv /2%co.

L (e}-In ——ln(1+a) —(3+2a)e1

25+28a+ 6a
2

L (e}-In 1

2E
59 2—5e——e—
2

For a=O it reduces to Eq. {27),and for a= 1 we get

(29)

(30)

For a target system that is well characterized by a har-
monic oscillator, mainly the weak oscillatory structure for
e & 10 will be of interest, while at low projectile ener-
gies, there may be little interest in characterizing the rath-
er discrete energy-loss spectrum by its mean value.

Note, however, that the structure shown in Fig. 4 is
very characteristic for the excitation spectrum of a har-
monic oscillator and that, unlike many other results of the
present work, generalization to atoms and molecules
should be done with great caution.

In the case a+0 it is not so obvious that L(e) has an
asymptotic expansion of (18) because L is not a smooth
function of e. When I/e increases through 4av, i.e.,
ni i U /2 passes through vs(zainother excitation channel is
opened. This causes square-root singularities of L(e)
near the points I/e=4av, v=1,2, . . . (cf. Fig. 4), and
creates oscillations with amplitudes roughly of the size

1 1
Eeexp 1 ———lna

a 4o,e

V. STRAGGLING

Before discussing the above findings, we briefly report
the corresponding results for the related problem of
energy-loss fluctuation {straggling). According to elemen-
tary stopping theory, ' '6'i the variance of energy loss per
path length, dQ /dx, reads

4me)e N

(Appendix). For a&1, this amplitude decreases more rap-
idly than any power of e for e~O, so the oscillation does
not affect the asymptotic expansion of L. However, in
the most interesting case a = 1, the amplitude of the oscil-
lation is of order e, and the asymptotic expansion breaks
down. In the case a= 1, one should instead look for an
asymptotic expansion of the form

C

dQ =4ne)e NM(e)
dx

(32)

in analogy to Eqs. (1) and (5a) or, for a harmonic oscilla-
tor,

L (e) -ln 1

2E'
—g g„(1/e)&,

n=1
J

M(e)=e g f dip ze

, (v—1)!
(33)

where gi,gz, . . . are periodic functions of period 4. We
refer to the Appendix for further discussion.

Figure 5 shows the function M versus e '. It has the
qualitative behavior found in previous investigations. '
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free target electrons, the following expression has been de-
rived2 for the stopping cross section S(u):

S(u) = I duzuzf (u2)

dU U —U2+U SP U (38)

0
01

2 IVlV

FIG. 5. Ratio M between straggling function of harmonic os-

cillator and Bohr's asymptotic (high-speed) result, for m& ~~m,
from Eqs. (32) and (33). Dashed line: only first excitation level

included, Eq. (34).

At low velocities, only the first excitation level contri-
butes, and hence

M(e)-eE((e) for e»1 .

This relation has also been included in Fig. 5.
Asymptotic expansion of M(e) in powers of e proceeds

in complete analogy with the calculation presented in the
foregoing sections and yields

4KB )8 2PygU
22 2ln, 2mu &fico

S (u}= mu'

0, 2mu &fm.
(39)

Evidently, Eq. (39) represents the Bethe formula Eq. (7),
valid at high speed, cf. assumption (iii) in the Introduc-
tion. Specifically, for a spherical harmonic oscillator, we
insert

f(u2)=
3/2

—rnu 2/Ace2

e

for m, »m, where f (u2) is the (isotropic) velocity spec-
trum of target electrons, normalized according to

f

�00
4mv2dvtf(ut)=1, and So(u) the stopping cross sec-

tion in the hmit of u »ut, i.e., high projectile speed com-
pared with the speed of target electrons.

The kinetic theory provides an (approximate) estimate
of S(u) on the basis of the following choice of So.

M(e)= 1 +2e —in@—ln( 1+a )1+a

3+4a + g c„(a)e",
2(1+a)

i.e., the velocity distribution for the ground state, which is

easily found by Fourier transformation of the wave func-
tion.

Also, a shell-correction expansion has been derived in
Ref. 25,

where

(35a)
L (u) =ln

(u')
2 Zv4

(41)

n

c„(a}=——gn 1=0

2n
«n+&) j2n+2a ~

i.e., for a=0 or heavy projectiles,

(35b)

L(v}=l en' —3e——", e— (42)

which, after evaluation of the moments (uz" ) by means
of Eq. (40), reads

M -1+ ln
mu'

and, for a= 1 or mi ——m,
r

M- —+ ln
1 Ace mv

PfU

3 7
~ ~

PFlv

7 9
~ ~ ~

2 mv2

(36)

(37)

- hL

0.5

I I I I I I I
I

*

Fermi Ggs

As in case of the L function, the term ——,'(fico/mu ) in
(37) should be interpreted as the mean value of a term
which has periodic oscillations in 1/e.

VI. COMPARISON %'ITH KINETIC THEORY

The kinetic theory of stopping is based on the as-
sumption that shell corrections originate predominately in
the kinematics of target electrons in their initial state,
rather than the effect of their binding to the nuclei or
each other on the collision dynamics. On the basis of
binary collisions between the projectile and individual,

I i I I I

~QC

Pmv /5w2

FIG. 6. Shell correction for spherical harmonic oscillator,
heavy projectile, ryg 1 g& m. —M. =1n(2mU /fm) —L. Solid
line: Born approximation, from Table I. Dashed line: kinetic
theory, from Eqs. (38)—(40). Dotted line: Fermi gas, for densi-

ty parameter+ =e /MUF ——0.12.
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(kinetic). This can be compared to the exact result (27).
Evidently, the leading terms in the shell-correction ex-

pansions agree, while the deviation in the second shell

correction indicates that the kinetic theory underestimates

the magnitude of the total shell correction slightly in the

asymptotic limit.
Figure 6 shows the shell correction

hu
8TI e,'e'

010-

2&i
L L ln

2™~ (43)

evaluated by numerical integration of Eq. (38) after in-

sertion of Eqs. (39) and (40), compared with the exact re-

sult from Table I. It is evident that despite the different

analytic structure, there is very good agreement over the

range of 2mu &fico. Note that the slight underestimate

of the shell correction at high spo:d, mentioned above,

turns into a slight overestimate for 2 & e ' & 8.
Figure 7 shows a comparison between the correspond-

ing stopping cross sections. It is evident that the differ-

ence is less than 1.5%%uo for e '&10 and &4%%uo near the

maximum. At low speed, e '
& 1, the difference becomes

substantial. Indeed, the kinetic scheme yields S~ U at low

speed (Fig. 8), while the Born approximation yields a
thresholcl type of result, with an effective threshold at
~-'"=a.5.

For straggling, the expression corresponding to Eq. (41)
from the kinetic theory reads

M =1+
2

—ln
(vp ) —1 +O(U ) (36')

or, after insertion of (Uq ) =3fico/2m,

M = 1+2e ln ———+0 ( e ),1 3

E 2
(36")

in complete agreement with the exact result, Eq. (36).
This is an important finding: Up until now, the validi-

ty of the kinetic theory was tested mainly for the stopping
power, while for straggling, considerable uncertainty pre-
vailed because it did not strictly reproduce the straggling
parameter of a free-electron gas. ' ' ' The present result
demonstrates that at least the leading correction to the

05—

l
/

0
-1/2 ~ 2 )j2

ZfA V

hQ

FIG. 8. Same as Fig. 7 with different abscissa scale. Dot-
dashed line: straight-line extrapolation of solid curve.

Bohr straggling parameter is rigorously described by the
kinetic scheme for the oscillator, i.e., a system character-
ized by the presence of a genuine binding force.

The kinetic theory is distinctly different from the so-
called binary-encounter theories; in the latter, the classi-
cal Coulomb cross section is integrated from some thresh-
old for excitation or ionization. This scheme is known to
yield only half the Bethe stopping power in the high-speed
limit, but it has occasionally been claimed that it de-
scribes the stopping power well in the region around and
below the maximum. Figure 9 shows that the binary-
encounter scheme, when applied to the harmonic oscilla-

0.10 .

0.0t .-
I

02-
0.00

0
5 f I I ~ I V }

).0

0
Ol

2' V
2

FIG. 7. Stopping cross section for spherical harmonic oscilla-
tor. Solid line: Born approximation, from Table I. Dashed
line: kinetic theory (Ref. 39), from Eqs. (38)—(40). Dotted line:
Fermi gas, for density parameter g =0.12.

l0

2fYlU /hM

FIG. 9. Stopping number of a heavy projectile, m»&m,
evaluated (Ref. 45) in binary-encounter model (Ref. 44) for har-

monic oscillator with velocity spectrum Eq. (40) and minimum

transferred energy Res. The exact result from Table I has been

included for comparison (Born approximation).



tor, underestimates the stopping power at all speeds. The
discrepancy is largest below the stopping maximum and

approaches a factor of 2 at high speed. Near the max-
imum (e '-5), a -30% difference is found.

A detailed analysis of the energy-loss spectrum ' indi-

cates that in the high-speed limit, the discrepancy between

the binary-encounter model and the first Born approxima-
tion is due only to distant collisions, i.e, resonant excita-
tions. This weakness is eliminated in the kinetic theory by
basing the calculation on the asymptotic Bethe expression,
cf. Eq. (39). The close-collision portion is known to be

well described by the binary-encounter scheme. '

1 1 1 (
'I 1111 1 1 I 1 I I 11)

F00

2%V
2

h~

1000

VII. COMPARISON %KITH FREE-ELECTRON GAS

FIG. 10. Stopping number I. for Fermi gas (dotted line); den-

sity parameter +2=0.12. Interpolated from Ref. 20. Compared
with harmonic-oscillator result from Table I (solid line) and
Bethe logarithm Eq. (26) (dashed line).

3 LOp
UF =

5 2 m
(44)

01

i.e., X =e /ekup ——0.12 in Lindhard's notation. ' ' The
curve of L(2mu /%cop), interpolated from Ref. 20 for
that particular Fermi speed, is shown in Fig. 10 together
with the result for the harmonic oscillator in the Born ap-
proximation. Substantial deviations occur for e ' ~ 10.
Note, however, that this comparison involves two dif-
ferent physical systems; in particular, despite Eq. (44), the
velocity spectra are not identical.

A similar comparison can be performed in the case of
straggling. In Ref. 40, The following asymptotic expres-
sion was derived for M on the basis of Ref. 19:

The free-electron gas is a relevant issue in the present
context to the extent that the stopping power of an elec-
tron gas is the basic tool in the dielectric theory of stop-
ping. ' ' In order to make a meaningful comparison
with the present results we may follow two essentially dif-
ferent routes. In the first approach, we try to find a.
homogeneous electron gas with an appropriate density to
match both the mean excitation energy and the velocity
spectrum of target electrons as close as possible to that of
a harmonic oscillator. In the second approach, we apply
the local-density approximation to the electron-density
distribution of a spherical harmonic oscillator.

We note that asymptotically, at high speed, the stop-
ping number of an electron gas approaches'
L-1n(2mU /ficop) for a heavy Projectile, cop being the
plasma frequency. Thus, the free-electron gas models a
harmonic oscillator with eigenfrequency cop. The mean-
square velocity of a degenerate Fermi gas is ( U2 ) =3up/5,
Up being the Fermi speed, and for a harmonic oscillator in
the ground state, we have (Uz) =3AcU/2m. Hence, the
appropriate condition to be imposed on the density of the
electron gas reads

2 2

M=1+ 2+ 3
ln

~p 4mu

5U 2mU p

Up 1K'
, +, +O(U ).4

4O v' 2mv2
(46)

At the electron density quoted above, this yields
r

27tl UM =1+— — ln
™
ACOp

—1.119 +O(U ),

which differs from the oscillator result Eq. (36) only in
the constant term in the square brackets.

The second approach, based on the local-density ap-
proximation, ' ' ' expresses the stopping number L of a
system by a weighted average

L = J d r p(r)L(p(r), U), (47)

the integral going over all space. Here, L (p, U) is the stop-
ping number of a homogeneous Fermi gas of density p,
and p(r) is the electron density corresponding to a har-
rnonic oscillator in its ground state,

—3/2P3e P2r2—
(4S)

with p=(mrU/R)'~
According to Refs. 19 and 20,

u/ v+ QO 1I. = — du u dzzIm —I
mX 0 e(u, z)

(49)

where e(u, z), the dielectric function, reads

X2
e(u, z)=1+ f(u, z),

Z2
(50)

and f(u, z) is a well-specified function of the integration
variables u and z but independent of the density of the
electron gas, all density dependence being contained in

=e /fPAUF.
Inserting (49) and (50) into (47), and interchanging the

order of integrations, we find
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L =4.310Im u u x

1+—e 0 03326
2 e /ao

Z2 Ac@

1/2 (51)

where x =Pp and

xp ——max O, —, ln 6.093u
Ace

2PPU
(52)

L (p, u}-ln 21'U

Ls p

into Eq. (47). Here, XLs is a numerical constant intro-
duced in Ref. 12 in order to qualitatively account for the
lack of inclusion of binding forces in the dielectric theory.

Evaluation of (47}by means of the electron density (48)
yields

2mv
ll

—1.699
3 +O((fico/2mu ) ),

2Ptl U

This demonstrates that in the local-density approxima-
tion, the stopping number depends (through xp) on the di-
mensionless quantity 2mu /%co as it should, but also on
the dimensionless parameter (e /ap)/fico which is absent
in the corro:t solution. The success of the dielectric
theory in the quantitative prediction of stopping powers
of atomsz'iz suggests that this artifact is of minor signifi-
cance as long as fico & e /ap.

While a detailed evaluation of (51) is outside the scope
of the present paper, we may get instructive inforination
from the high-speed limit, inserting the expansion'3 ip

2

~ ~ ~
3 UF

(53)2

expect that the static Thomas-Fermi model would not be
suited to describe a harmonic oscillator.

The discrepancy becomes more pronounced in the
dielectric theory of straggling. ' " Starting from the
asymptotic expression for the stragghng parameter of an
electron gas, Eq. (46), we may integrate M over the den-
sity distribution of a harmonic oscillator in analogy with
(47), but without including a parameter corresponding to
XLs in Eq. (53). The result is

M(u)=1+ 0.5663+ '
eln

0.8177 ir Po

—5.3974e—0.4089 +O(ei)

with Pp= [fico/(e /ap)]' and e= fico/2mu, which can
be compared with (36). As in the case of the stopping
power, this expression does not have the correct scaling
behavior because of the occurrence of the factor Po. In or-
der to produce the correct logarithmic behavior one would
have to choose Po ——0.5703. This choice would then gen-
erate a factor of 6.665 in front on the term proportional to
e, i.e., more than twice the exact value of 3.0.

The findings of this section will be discussed in Sec.
XII.

where
T

e/ao
i/42 7183/4

' 1/4

+LS ' (55)

Equation (55) yields the correct value I'=I =fico if the
constant XLs is chosen to be

' 1/4

XLs——1.409
e3/ao

(56)

%e note that the constant 1.409 is very close to the value
2'/ adopted in Ref. 12, yet the dimensionless factor
[fico/(e /ap)]' confirms the lack of proper scaling in-
herent in the dielectric model, as mentioned above.

With regard to the leading term in the shell-correction
expansion, Eq. (54) underestimates the correct expression
—3(fico/2mu ), Eq. (43), by almost a factor of 2. We note
that in the local-density approximation, the first shell
correction reads

, I d'r p(r) '
, uF'(p(r))-

by means of Eq. (47). Here, the integral represents the
local-density expression for the mean-square velocity of
an atom. Thus, a sizable discrepancy in the first shell
correction is equivalent with a discrepancy of the same
magnitude in the mean-square velocity. This leads one to

VIII. EQUIPARTITION RULE

It was mentioned in Sec. II that in the limit of high
projectile speed, the sum (12) receives equal contributions
from v= 1, i.e., dipole excitations, and a group of excita-
tions around v-e ', i.e., close encounters. The present
section serves to quantify this relationship. We consider
the case of heavy projectiles only, i.e., m i »m or a =0.

Consider again the Mellin transform L(s), Eq. (15).
According to Eq. (27), its principal part at s=O is 1/s .
On the other hand, according to Eq. (16'), the term v= 1

in the sum (9') has the principal part 1/2s —y/2s at
s=O, y being Euler's constant. Hence, the sum of the
terms v& 2 must have the principal part 1/2si+y/2s at
s=O, although no single term in the infinite sum (v& 2)
contributes to the principal part. Translated to L (e) this
reads

1 1L, (e}=—ln ——++0 (e),
2 E 2

oo
1 1g L„(e)=—ln —+ ++0 (e),
2 E 2

i.e., there is equipartition for the logarithmic term but not
for the constant. A similar equipartition rule holds for all
terms proportional to e" ( n & 1) in the asymptotic expan-
sion of L(e). To see this, observe that the residues of



L„(s) at —n vanish for v&n +1, while

n+1
g Res[L„(s), n—]

n+1 Pn
Res[I (s),v —n —1]2n, (v—1)!

n+1

2n(n!) „g ( —1)"
Pf

Pll

U»ng („"i)+("„)=("„+'),and the formula foi the Stjrhng
numbers, 37

E2 ——m Uz+
1(hr fi e

p(0) +correlation terms,
3 m

(6lb)

where mean values refer to the initial state, p(0) is the
electron density at the center of the atom, and correlation
terms are absent when only one-electron systems are under
consideration. We wish to demonstrate that (60) is con-
sistent with Eq. (27).

We note first that according to (40),

3 fico 4 15 fico
(62)

I

we get

m

( 1)m —k m kn
k (58)

Moreover, the second term in (6lb) reads, in more general
form,

10m fie
(0)

10m fi e
&0~5( ) ~0)

3 m 3 m

g Res[L„(s), n]=——
v=]

[(n + I ) P (n +1)+@(n)] —'" ~'*
o ', v*vo)

4me
(63)

@(n+I)
2 2n+1 (59)

Hence, the coefficient to e" in the asymptotic expansion of
g„"+,'L„(e) is exactly one-half the coefficient to e" in the
expansion of L(e) [cf. Eq. (24)]. Thus, we find the im-
portant result that both the Bethe logarithm and all orders
of the shell-correction expansion receive equal contribu-
tions from low-lying excitations and from close en-
counters, while the constant term —y/2 in L i(e') is can-
celed by a corresponding term + y/2 arising from close
encounters.

The present eguipartition rule differs quantitatively
from the one found for the Fermi gas o in the fact that
the distant-collision contribution is made up by low exci-
tation levels, such that the n +1 lowest excitation levels
contribute to the nth term in the shell-correction expan-
sion. Evidently, some overlap must eventually occur at
lower projectile speeds between the two contributions.
Conversely, for the Fermi gas, plasma-resonance excita-
tion and single-particle excitation are strictly separated in
the co —q plane, i.e., the spectrum of energy versus
momentum transfer.

It is readily seen that as in the case of the electron
gas, ' the partition of the stragghng parameter does
not follow the simple rules found for the stopping power.

by means of Poisson's equation for a point charge e,
where Vis the potential energy.

Now, for a harmonic oscillator, V=(m/2)co r, and
hence, (63) has to be replaced by

10 2 2 2

p(0) - — &0
~

V' (m/2)co r
~

0)
3 m 6 m

= —', (fico)

After collecting Eqs. (61)—(64) and inserting them into
(60) we find

AI. = —3 2' U

25 fico

2' 0
(65)

lnI )
——

g «.—Eo)f.
(67)

in complete agreement with Eq. (27).
For the case of straggling, the following result was

given in Ref. 2,

2 &uz& 2mu'M-1+— In
3 U2 I)

for a one-electron system in the nonrelativistic limit, with

g (E„—zo)f„ln(E„—Eo)

IX. EQUIVALENCE WITH ATOMIC CALCULATIONS For a harmonic oscillator, we find I
&

——Ace, and hence,

For an arbitrary atomic system, the following expres-
sion for the two first terms in the shell-correction expan-
sion has been derived: '

t Ei E2
, + i~ +O(u ')

2mu (2mu )

with

M 1
f

I
2mU+ (68)

X. OSCILLATOR MODEL OF ATOMIC STOPPING

i.e., the logarithmic correction agrees with the exact re-
sult, Eq. (36), but the nonlogarithmic correction term

3fico/2rnu has bee—n omitted in Ref. 2. This has been
pointed out previously.

K] ——mv 2+correlation terms (61a)
According to Bethe, ' the stopping number of an atom

(or molecule) is given by
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L.t = gf.oin
n 0

in the high-speed limit, where E„, n =0, 1,2, . . . , are the
electronic energy levels and f„o the dipole oscillator
strengths,

in the notation of Eq. (60), in complete agreement with
the general result Eq. (61a). Note that we do not have to
restrict our attention to one-electron targets.

For the second shell correction, we need the sum rule

g f„o(E„—Eo) = 0 gp„), V, gp„l.

f.o= (Zn —Eo) 0 gxj &
1 2m 2

Z2
(70)

4m tie
p(0) +correlation terms,

3 Pl
It is tempting to generalize Eq. (69) to

L„=g f„oL(2mu /(E„Eo)}—,
(75)

(71)
cf. Eq. (63). Hence, in the notation of Eq. (60), we find

ZmUL„=gf„o ln
n 0

—3
2mU

where L (2mu /fuu) is the stopping number of a harmonic
oscillator (Table I). Equation (71) expresses the well-

known fact that an atom to a certain extent may be re-

garded as an assembly of harmonic oscillators. 27 i4

To test the range of vahdity of Eq. (71},let us insert the
shell-correction expansion (27) for L, i.e.,

r

25m fi e
K2 —— p(0) +correlation terms,

3 ppl
(76)

p(0) =
2

U2
——5

ma0 PlQ0
(77)

i.e., a result formally different from (61b).
However, for a hydrogen atom in the ground state, we

have

25 «.—~o)'

(2mu }
(72)

Inserting this into either (6lb) or (76), we obtain
T

25 82=
3

3 m U 2 +correlation terms (73)

The leading term is evidently in agreement with (69), i.e.,
Eq. (71) is a correct expression for L in the limit of high
projectile speed. For the first correction term, we utilize
the sum rule

yy„,~z„—z, )= 0 'g~„' o)Z2 Pl

in both cases.
Thus, the ansatz (71), which is exact for the harmonic

oscillator (where f„o——5„&),yields rigorously the first shell
correction for any atomic or molecular target and even
the second shell correction at least for a hydrogen atom in
the ground state.

Now, we try the same ansatz for straggling. Similar to
(71), set

which follows readily from (70). Hence, the first shell
correction reads

n n 0
(71')

K
&

——mU2+ correlation terms (74) Inserting Eq. (36) for M yields

I

E.—Eo 2mU'
~at=gfno 1+

Pal U n 0

3 7 E.—Eo

PlU
(79)

or, after insertion of Eqs. (73) and (75),

2, 2mU'

14m A e p(0)
2 2

+correlation terms
(mu~)~

(80)

up to terms of order U, where I i is defined by Eq. (67).
Equation (80) agrees with the result of Ref. 2 as far as the
latter goes, i.e., up to the logarithmic correction term.
The constant —(uz }/v is in agreement with the result
given in Ref. 48. The U term has not been evaluated
previously to our knowledge. For a hydrogen atom, it
reads

14 (Uz }
15 U4

(81)

L (x)= g f„L(x l(1 —1/n ) )

+ I Ch f(t)L(x/(1+i)), (82)

by means of Eq. (77).
While (71) is by no means an exact relationship, it is

tempting to investigate its range of validity in the case of
a known system. The hydrogen atom is an obvious
choice. With the known oscillator strengths, ' we may
evaluate the stopping number for atomic hydrogen in the
form
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where x =2mu /R and R is the Rydberg energy, n is the
principal quantum number, and t =E/R —1 with E the
excitation energy in the continuum. Moreover,

l 5-

f (28/3)n s(n 1 )2(ll —z)(n + 1 )
—2(m+2) (83a)

f (r) (27/3)(1+i) —4(1 2~—t
)
—I -2g(tIt

with

05- Hydrogen

100 1000

g(&) = arctan[2t ' /(1 —r)], r & 1

ar—ctan[2r'"/(r —1)], t &1.
(83c)

2rnv /R

FIG. 12. Straggling for atomic hydrogen (Ref. 49). Extended

Bohr oscillator model, Eq. (71').

An analogous expression has been evaluated for strag-
gling. The results are shown in Figs. 11 and 12. Figure
11 shows that the stopping number evaluated from Eq.
(66) agrees very well with that evaluated directly from the
Born approximation, Eq. (5a), down to 2rnu /I-4,
I= 15.0 eV being the mean excitation energy. An increas-
ing discrepancy is observed at lower velocities. In that re-

gime, higher-order Born terms are expected to be exceed-
ingly important; hence, the uncertainty of either expres-
sion is not known. Also included in Fig. 11 is the stop-
ping number of a harmonic oscillator with a resonance
frequency ra =I/A. This curve has the correct asymptotic
behavior in the Bethe asymptotic limit but does not repro-
duce the correct shell corrections. However, Fig. 11 indi-

cates that the overall behavior of that curve is about as
good in agro:ment with the Born-approximation result as
is the one found from Eq. (66).

Figure 13 shows the excitation spectrum for atomic hy-

drogen along with the model spectrum employed in Eqs.
(71) and (71'). To the left, discrete excitations A Dand-
excitations into the continuum E,F have been indicated.
Note that now, as in Eq. (82), n =1,2, . . . is the principle
quantum number. On the right, each column indicates
one harmonic oscillator component, weighted in accor-
dance with the appropriate dipole oscillator strength.
Discrete transitions A' —D' are equivalent to A —D on the
left-hand side. Also, transitions into the continuum E',F'
occur which are equivalent to E and F. However, spuri-
ous effects occur due to higher transitions in the harmonic

oscillators, such as O'. Such transitions have a vanishing
dipole oscillator strength and therefore do not falsify the
stopping cross section at high projectile speed where
Eq. (69) is valid. At low speed, however, such transitions
enter implicitly through the stopping number L{2mu /
(E, Eo)) of—the harmonic oscillator. It is evident from
Fig. 13 that pronounced distortions of the excitation spec-
trum are to be expected mostly in the lower part of the
continuum.

Note that at projectile speeds low enough for higher ex-
citation levels to be insignificant (cf. dashed lines in Figs.
1 and 5), the oscillator model properly describes the exci-

n=5
n =4
A =3

r (+ = lych)

2rnv l1
FIG. 11. Stopping number of atomic hydrogen. Solid line:

Born approximation, Eq. (5a), Ref. 50. Dashed line: extended
Bohr oscillator model, Eq. (66), Ref. 49. Dotted line: harmonic
oscillator with frequency co =I/A.

ASCO 6 F' A'6' 8' 0' E' F'

FIG. 13. Excitation spectrum for atomic hydrogen and a set
of spectra from the harmonic-oscillator model. See text.
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tation spectrum. However, there is no reason to expect
the dipole oscillator strengths to provide the proper sta-
tistical weight.

XI. DISCUSSION

We have explored two aspects of the stopping proper-
ties of a spherical harmonic oscillator. First, the harmon-
ic oscillator may serve as a reference standard for testing
model theories of atomic stopping. The benefits are par-
ticularly simple scaling properties, an accurate tabulation
of stopping cross section and straggling, and shell-
correction expansions given to arbitrary order. Second,
the results may be useful in predicing stopping cross sec-
tions and straggling parameters of atoms and molecules

by means of an extension of Bohr's oscillator model of
atomic stopping.

A. Model theories of atomic stopping

It is evident from Figs. 6—8 that the kinetic theory, '
despite a difference in the shell-correction expansion from
the second correction term on, yields accurate values for
the stopping cross section down to velocities slightly
below the stopping maximum, but increasing discrepan-
cies at lower speed, in particular near and below the effec-
tive threshold, 2mui (fico/4 for rn, » rn This.

strengthens the validity of existing numerical evaluations
of the kinetic schemei ' ' as far as the medium and

upper velocity range is concerned, but weakens the quanti-
tative content of predictions made for the low-velocity
range. i The qualitative content of the latter prediction is
unaffected. "

Most useful is the observation that the kinetic theory
rigorously predicts the first shell correction in the strag-
gling parameter, Previous comparisons involving the
Fermi gas as a reference standard did not reveal a
straight equivalence. In fact, it was concluded ' that of
all moments over the energy-loss spectrum, the second
was the only one where the validity of the kinetic scheme
was questionable. This reservation can now be relaxed,
except for the low-velocity region where the kinetic theory
predicts M to be velocity proportional while the Born
approximation reveals a threshold (Fig. 14) similar to the
one found for the stopping cross section (Fig. 8).

The homogeneous Fermi gas has been included in the
comparison only brause it is a frequently used standard
of reference. There is no reason to expect a close agree-
ment with results for a harmonic oscillator. However, at
a suitably chosen density, cf. Eq. (44), a meaningful com-
parison is possible, and characteristic differences become
apparent (Fig. 10).

Inspection of Figs. 10 and 11 indicates, not surprising-
ly, that the harmonic oscillator is a more suitable system
to model the stopping behavior of an atom than the Fermi
gas, in particular in the velocity range around the stop-
ping maximum.

The stopping properties of the Fermi gas have been uti-
lized extensively in the local-density theory of stopping.
The approach was initiated in Ref. 12 at a time when
quantitative information on stopping power at moderate
or low speed was essentially nonexistent, not to mention
straggling. The model was utilized in the original spirit,
in conjunction with statistical electron distributions, in
Ref. 21, and the conclusion was that shell corrections can
be evaluated reliably while evaluated mean ionization en-
ergies are more questionable. Major computational ef-
forts, following the line of Ref. 22, were invested subse-
quently, without adequate improvement of the theoretical
basis. Recently, the underlying oscillator strength spectra
have been analyzed, and the conclusion was that due to
cancellation of errors, the stopping cross section can be
evaluated in a feasible way from the dielectric scheme
while higher moments would show increasingly pro-
nounced discrepancies.

Evidently, the dielectric scheme has not been designed
to describe the stopping properties of a one-electron sys-
tem, nor is it particularly suitable for a system showing as
pronounced a density gradient as a harmonic-oscillator
electron distribution. Therefore, it appears justified to
pay little attention to numerical discrepancies, such as a
factor of 2 in the first shell correction. of the straggling
parameter, and consider those as "worst possible cases."
More serious, however, are deviations from the rigorous
scaling behavior, i.e., the occurrence of the factor
[Rco/(e /ao)]' in pertinent quantities. It indicates
discrepancies for electron shells with fico»e /ao. The
power —,

'
prevents the discrepancies from becoming exces-

sive, but we do find the occurrence of this parameter to be
a rather disturbing feature.

Our calculations do not lend support to the binary-
encounter model of atomic stopping at any velocity (Fig.
9).

0
0

FIG. 14. Same as Fig. 5 ~ith different abscissa scale.

B. Oscillator model of atomic stopping

The harmonic-oscillator model of atomic stopping was
outlined by Bohr, well before the advent of quantum
mechanics, i i ~ and was confirmed and quantified by
Bethe. ' The present form, Eq. (71), is an attempt to
evaluate stopping cross sections on the basis of dipole os-
cillator strengths and transition energies only, down to ve-
locities well below the limit of the Bethe asymptote Eq.
(69). Thus, the input information does not go beyond
what is needed to evaluate mean excitation energies.
Moreover, we also propose the same oscillator model to
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apply to straggling, cf. Eq. (71').
In order to justify this approach, we have evaluated

those terms in the shell-correction expansion for which
generally valid expressions exist in the literature. In the
case of the stopping cross section, the first shell corrix;tion
turns out to be reproduced in full generality. The second
shell correction comes out to be formally different from
Fano's result, but quantitatively in agreement in the case
of hydrogen. In view of some reservations on the general
validity of the close-encounter contribution to the second
shell correction„2 it is not evident whether Fano's or our
expression has more general validity. Finally, the first
shell correction to the straggling parameter agrees with
Fano's, provided that account is taken of a term that obvi-
ously was omitted in Ref. 2.

It is not meaningful to carry out this comparison to
higher shell corrections because of the occurrence of
divergencies in the individual terms. Those show up in
terms such as g„f„(E„—Eo)i as singularities near the
origin in configuration space and in terms such as (U i ) at
large target velocities. However, the agreement of the
leading terms in the shell-correction expansion supplies
some confidence to the approximate expressions for L and
M, which evidently must be at least as accurate as the
corresponding truncated shell-correction expansions. This
has been tested on atomic hydrogen, where an adequate
standard for comparison is available, with a satisfactory
result, cf. Fig. 11.

C. Implications for stopping measurements

In view of Figs. 6—8, the present results are not expect-
ed to influence dramatically the predicted behavior of the
stopping power down to about the maximum, as com-
pared with predictions based upon the kinetic theory.
With regard to lower velocities, some caution is indicated
with regard to the magnitude of higher-order Born correc-
tions as well as charge-changing collisions. Moreover, a
lower limit of validity for the oscillator model, Eq. (69),
has not been determined yet. On the other hand, for
atoms heavier than hydrogen, the oscillator strength tends
to be increasingly concentrated in mainly one excitation
level plus the continuum. Thus, near threshold where
the continuum ceases to contribute, the oscillator
model —with only the first excitation level being active—
should give a reasonable description at least qualitatively.
Figure 8 predicts an approximate straight-line behavior of
the stopping power versus speed with an effective thresh-
old near 2mu =%co/4, eau being the lowest excitation lev-
el.

This finding differs from the predictions of the dielec-
tric theory, as well as those of the kinetic theory.
For proton bombardment, and a minimum excitation level
of a few eV, the effective threshold lies at a few 100-eV
proton energy, i.e., in an energy range where moving pro-
tons are predominantly neutral and where stopping mea-
surements are difficult to carry out, even in gases.

An experimental finding which may be related to our
result has been reported for low-speed heavy ions
penetrating gold foils and crystals. A straight-line
behavior consistent with Fig. 8 was observed with an ex-

trapolated threshold in the range (2—4) && 10 cm/s,
dependent on the bombarding ion. This would be
equivalent with an excitation level of irico=100—300 eV,
corresponding to the X and 0 shells which contain 32 and
18 electrons, respectively, i.e., all those electrons that may
contribute to stopping in that velocity range except the
conduction electrons which account for the velocity-
proportional contribution to the stopping power.

XII. SUMMARY

(1) The Bethe stopping cross section for a penetrating
fixed point charge has been evaluated for a spherical har-
monic oscillator as a target; relativistic effects were disre-
garded. The stopping number approaches the well-known
logarithmic dependence at high speed and shows an effec-
tive threshold at 2mu -fico/4, co being the resonance fre-
quency. The stopping power has its maximum at
2mv =4.&co.

(2) The straggling parameter has been evaluated similar-
ly. It approaches Bohr's value at high speed and shows a
very weak Bethe-Livingston maximum at 2mu =25fico.

(3) Shell-correction expansions have been derived to ar-
bitrary order in powers of %co/2mu for both stopping
cross section and straggling. Existing general expressions
for first- and second-order shell corrections agree with our
results, when specified to the harmonic oscillator.

(4) For light projectiles, i.e., positrons and electrons, the
stopping cross section shows an oscillatory structure with
discontinuities at integral values of mu /2fico. The ampli-
tude of the oscillations decreases as U . Therefore, a
shell-correction expansion has little meaning beyond the
first term in the case of light projectiles.

(5} The shell-correction expansion is utilized to derive
an equipartition rule for the stopping cross section in the
case of heavy projectiles. It turns out that low-lying exci-
tations contribute exactly one-half of the Bethe logarithm
and of all nonvanishing orders of the shell-correction ex-
pansion, the other half being due to close encounters.
Constant terms occur in both contributions which have
opposite sign and equal magnitude and therefore cancel.

(6) The results can be compared with the predictions
for a homogeneous Fermi gas, with the density chosen to
match resonance frequency and mean-square velocity.
Not unexpectedly, systematic differences show up at low
and moderate projectile speeds.

(7} The kinetic theory of stopping, when applied to the
oscillator, reproduces correctly the leading term in the
shell corrections of both the stopping cross six;tion and
the straggling parameter. Total shell corrections agree
very well with exact results for 2mv & flu, while a drastic
difference is observed at lower speed. The kinetic theory
predicts a velocity-proportional stopping power at low
speed while the first Born approximation leads to an ef-
fective threshold at 2mu =fico/4.

(8) The local-density approximation has been applied to
the density profile of a harmonic oscillator. Discrepancies
must be expected when a statistical theory is applied to a
one-electron system. It turns out that in addition to the
occurrence of numerical differences, the scaling properties
of both the stopping cross section and the straggling pa-
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rameter are not reproduced.
(9) Following Bohr's oscillator model of atomic stop-

ping, we tentatively express the stopping cross section of
an atom or molecule as a weighted sum of harmonic-
oscillator stopping cross sections with resonant frequen-
cies corresponding to atomic transitions and dipole oscil-
lator strengths as weight factors. This is in accordance
with the Bethe asymptote, and it is demonstrated that this
ansatz correctly describes the leading shell correction.
The second shell correction is in agreement with the exist-
ing result (the generality of which is somewhat uncertain)
in the case of atomic hydrogen.

(10) With this ansatz, the stopping number of atomic
hydrogen has been evaluated and compared to the Born-
approximation result. The agreement is very good down
to about 2mu -4I; substantial discrepancies are found at
lower speed.

(11) The oscillator model has also been utilized as an
ansatz for straggling. Also in this case, it turns out that
the leading (logarithmic) shell correction is described
correctly. A nonlogarithmic term, which has been omit-
ted in the standard reference, is shown to occur and is
consistent with a previous result.

(12) With some caution, the oscillator model is applied
to low-velocity stopping, i.e., a velocity range where it has
not been tested until now and where charge-changing col-
lisions become crucial. A tentative explanation is given
for an observed effective threshold for electronic stopping
of heavy ions in gold, as reported by Moak et al. '
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The stopping number can now be written:

1/4am
1

t+
L(e)= —g f dtr" e

2 „ i (v —1)!

Let v be a fixed positive integer. When

1—=4o.v+h, 0&A g&1
E'

the vth term in L reads approximately

2v —1!
- 1/Z

[1—1/e~ve, v))12' v
(A7)

by Stirling's formula, while L„(e)=0 for 1/e & 4av.
Since all the other terms of L(e) are smooth around
1/e=4av, the factor h'~ indicates that L(e) has square-
root singularities at 1/e=4av, v=1,2, 3, . . . . According
to (A7), these singularities give rise to oscillations in L (e)
with an amplitude roughly proportional to

—V
(1—1/a)ve

V v= 1/4am

(A8)

L (e) =ln 1

2E'
—hagi(E ')+0(e'), (A9)

gi(e ')= + g f dtt ' e ' (A10)
h/2+/

and

i.e., proportional to eexp[(1 —1/a —lna)/4am]. But for
a&l, 1 —1/a —ina &0, so the amplitude of the oscilla-
tions decreases more rapidly than any power of e for
a~0.

However, for a = 1 the amplitude of the oscillations is
proportional to e. %e shall not go through the details but
quote the final formula,

APPENDIX: OSCILLATIONS OF THE STOPPING
NUMBER OF LIGHT PROJECTILES

According to Eqs. (9) and (10), the stopping number is
L (e)= g„",L„(e),where

1—=4v+ h (A 1 1)

L„(e)= dtt e
2( v —1 )! (v+ati2& t le

(Al)

and a =m /m i. If 4ave & 1, then (v+tzt) & t/e for all t,
and if 4ave & 1, the equation has two roots:

1 —2vae+ v 1 —4vae
2/x 6

Note that the geometric mean is

(,+, )in-
Cf.

Therefore,

t ~ —gtV

(A3)

FIG. 15. Stopping of light projectiles (positrons and elec-
trons). Asymptotic behavior of oscillatory structure in shell
correction for n ««1000, with n being the number of excitable
levels at a given energy.
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L {e)=ln 1

2E'
—g e"g„(I/e),

n=«
{A12)

where each g; is a periodic function of period 4. It can be
shown that only the mean values

4
g„= 4 tg„ t (A13)

with v integer and 0&h &4. The function g&{e ') is
shown in Fig. 15. It oscillates between 4.69 and 5.60
around the mean value 5.

The formula (A9) suggests that L (e) has an asymptotic
expansion of the form

contribute to the residues of the Mellin transform L(s)
Therefore,

2lf
gg (n+ « —j)

gn ~ ~2n+« —jn,~, (A14)

In particular, g& ——5 and g2 ——29.5. The functions g„are
hard to compute explicitly for n )2. By some rough nu-
merical computations, we found that g2 oscillates between
29 and 30. Therefore, it is probably quite safe to put
g„=g„ for n )2.
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