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Simple correlated wave functions for accurate electron densities: An application to neon
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Departamento de Qgimiea, Universidad Autonoma Metropolitana, Apartado Postal 55-534,

Iztapalapa, 09340 Mexico Distrito Federa1, Mexico
(Received 5 August 1985)

We carry out a systematic study of the stability of the electron density in the ground state of neon

upon adding well-defined improvements in the corresponding configuration-interaction (CI) wave

functions. %e describe a precise manner of obtaining a CI wave function which yields the electron

density with an error no larger than 0.5% for a wide range of values of r. An accurate analytical
density is obtained thereby, and a comparison with the Hartree-Pock density is made. Contrary to
common belief, we find rather large discrepancies at r & 2 bohrs between our accurate density and

those obtained from two other CI wave functions, which account for more than 85% of the correla-
tion energy.

I. INTRODUCTION

It is generally accepted that Hartree-Fock (HF) wave
functions provide electron densities which are accurate to
about 1—5%,' as estimated from comparisons between
HF electron densities and those obtained from x-ray
scattering intensities or calculated from more sophisticat-
ed wave functions. " '2 It has been assumed that, for
atoms of atomic number 10 or less, a wave function which
includes over 8Q% of the correlation energy should prob-
ably be reliable to Q.1% in the density. ' However, the ob-
taining of configuration-interaction (CI) wave functions
which account for over 80% of the correlation energy is
not trivial, and, at the same time, this requirement may be
neither sufficient nor necessary.

Since the experimental accuracy in electron densities
from electron and x-ray scattering is better than 0.1%,' it
is important to obtain theoretical results to match this
precision. Also, density functional theory requires accu-
rate theoretical densities to construct accurate numerical
exchange-correlation potentials' and to assess the accura-
cy of densities obtained from local-density approxima-
tions. Finally, because so many physical interpretations
of the properties of atoms, molecules, and solids are based
on densities obtained from HF wave functions, it is desir-
able to have definite estimates of thy errors in the HF den-
sities for the various regions of space.

Several ways of analyzing the effect of correlation on
the electron density have been proposed. ' All of them
are directed toward a ctmiparison of results for density-
dependent properties calculated with HF and with corre-
lated wave functions, assuming that highly correlated
wave functions yield essentially correct results. Thus,
Peixoto, Bunge, and Bonham, who were mainly interest-
ed in obtaining elastic- and inelastic-scattering factors for
Ne using a wave function accounting for 86% of the
correlation energy, found that the HF results were 1.5%
too low for elastic scattering [which depends on the one-
electron density p(r)]. Benesch and Smith used a
density-matrix formalism to obtain values of the
coherent, incoherent, and total scattered x-ray intensities

for the ground state of Be calculated from three different
wave functions: a 55-term CI expansion, a two-term CI
wave function, and an analytical HF function. They plot-
ted differences between the intensities calculated from the
various wave functions to examine the effects of electron
correlation, observing an appreciable L-shell contraction
of the one-electron density when correlation effects are in-
cluded. In particular, they pointed out that the total in-
tensity of scattered x-ray radiation from the Be ground
state obtained by Gavin and Bartell using a wave func-
tion accounting for 52% of the correlation energy was
worse than the corresponding HF results. The above
statement, however, was made under the implicit assump-
tion that their 55-tenn CI wave function yielded the exact
result.

Smith et al. ' have also studied the effect of electron
correlation on several other density-related properties.
More recently, Beck'2 has calculated the electron density
difference dy(r) =p~ (r}—pHi (r) for Ne, using a 150-
term CI wave function.

The only systematic study of the stability of the elec-
tron density as a function of the structure of the corre-
sponding CI wave function was carried out by Bunge. '

He calculated a sequence of increasingly accurate CI wave
functions for Be tending toward his best 4 (which ac-
counts for 99.55% of the correlation energy), in order to
assess the quality of several atomic properties and, in par-
ticular, the occupation-number spectrum of the natural
orbitals. He obtained for the occupation numbers a stabil-
ity better than 0.0001, except for the 2s and 2p orbitals
which had occupation numbers still oscillating within
0.001 when his best 4 was used.

Rather than studying the stability of the occupation
numbers, we propose to study the stability of the density
itself as a function of increasingly accurate CI wave func-
tions until the density becomes stable within predefined
limits of accuracy and within a certain range of values of
r Some of the. specific questions we shall answer are (i}
what are the types of configurations that are important
for the density, (ii) are triple- and quadruple-excited con-
figurations necessary at all, (iii) how large should the
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primitive basis of one-electron functions be, (iv) would
only s, p, and a few d Slater-type orbitals in the K and L
shells be sufficient? We shall also define a systematic way
of constructing density optimum wave functions, i.e.,
compact wave functions which yield electron densities
within predefined limits of accuracy in a given range of
values of r. As a test case we use the ground state of the
Ne atom because the densities for two accurate wave func-
tions ' are available for comparison.
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Details of the method have been given elsewhere' and ap-
plied to several systems. The program DcI84 allows for a
rather efficient optimization of STO parameters, and it
permits the introduction of any type of configuration with
one-electron harmonics up to I =7.

The one-electron reduced density matrix is calculated
according to

y(l, I ) = g y,"(I)y,(I )y,,
&,J

For a 'S state, the blocks of the density matrix are divided
according to 1 values, since the block for a spin is identi-
cal to the block for P spin and all blocks for different mi
values are equal to each other. In terms of the natural ra-
dial orbitals X;~(r), the density for a 'S state may be writ-
ten as

p(~) =2 g (2I + I )~.iXu~(r»

X;i(r)= g S~~(r)cj, ,
J

(8)

and the n;~'s are the eigenvajues or occupation numbers of
y( I, I').

Nonrelativistic CI wave functions are calculated using
an atomic CI program, DcI84, which is running on a Bur-
roughs 7800 computer. The wave functions are expressed
as

e= QCg'a~, , (I)
E,p

where the 4 p 's are successively orthonormalized I.~- and
2S -symmetric projections of ten-electron Slater deter-

minants Dx~ made up of orthonormal spin orbitals

Ng

4g =O(L,S ) g Dx b~~' .
a=p

The spin orbitals are linear combinations of Slater-type
orbitals (STO's) times a spherical harmonic, times a spin
function:
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III. ELECTRON DENSITY CALCULATIONS

Our aim is to obtain a wave function 4 such that the
electron density calculated from it does not vary appreci-
ably upon further improvements in K The method of
configuration interaction is especially suitable for this en-

deavor since one can always extend the basis set and check
the stability of the density upon each addition of a new
basis function.

As is well known, ' for a given orbital symmetry and
electron-correlation region (E shell or L shell in the case
of Ne), successively energy-optimized STOs participate
with decreasing energy contributions which moreover fol-
low a defimte pattern. ' In this work we have observed
that concomitant to an energy pattern of convergence
there is a pattern of convergence for the electron density:
successively energy optimized STO's expanding any of the
major electron correlation regions yield smoothly decreas-
ing contributions to the electron density. Thus the calcu-
lation of a density-optimized wave function follows the
same steps as the calculation of an energy-optimized wave
function, although the structures of the resulting STO sets
are markedly different from each other.

We start from the self-consistent-field (SCF) orbitals of
Clementi and Roetti, 's supplemented by further orbitals
which are obtained by successive orthogonalization within
their 6s, 4p STO basis. Next, we consider E-shell CI
wave functions, i.e., CI expansions which include the
reference configuration lsi2sz2p6 and all lsd excitations.
As a consequence of using K-shell CI expansions, the cor-
responding energy optimized STO's have mean values of r
lying in the E shell region:

0«, ) =(;+-,')yZ, , &0.3 boh. .

New STO's are added in this way until the electron densi-

ty changes no more than 0.1% for r & 6 bohrs. Then, L-
shell CI wave functions are considered, i.e., CI expansions
which include the reference configuration and all 2s, 2p,
2s, 2p, and 2s 2p excitations. The resulting energy op-
timized STO's have ( r ) values between 0.5 and 1.7 bohrs.

We find that no extra STO of any I symmetry is useful
to represent the density of a K-shell wave function better:
percentual differences between densities calculated with
and without any extra STO differ by less than 0.01% for
all r. In the L shell, however, we need to include p5, p6,
p7 d„di, dz, f&, f'i, and gi energy optimized STO's.
Among these, the largest individual contribution corre-
sponds to di (over 3% at 3 bohrs, and as large as 6% at
6 bohrs). The effect of the successive addition of d-type
STO's to L-shell wave functions is shown in Table I.

It is interesting to emphasize that, although we optim-
ize STO s according to an energy criterion, there is no re-
lationship between their energy contribution and their im-
portance in describing the electron density. For example,
p7 only contributes about 10 a.u. to the energy, yet its
cantribution to the electron density is almost 0.5% be-
tween 3 and 4 bohrs. On the other hand, additional s, p,
or d orbitals in the E shell, or new d and f orbitals in the
L shell, may contribute 50 times more to the energy and
yet not be necessary for p.

A general idea af the convergence of the density can be
obtained from Table II, where total densities at various
stages of the calculation are given. These electron densi-
ties are obtained from wave functions which include all
single and double excitations of the EC shell, L shell, and
intershell (1s 2s and 1s 2p excitations) into the virtual orbi-
tais. Such wave functions are denoted [a,b, c, . . .] where
a,b, c, . . . are equal to the number of s,p, d, STO's.

Our final STO set consisting of 6s, 7p, 3d, 2f, and lg
STO's is given in Table III. The corresponding [6,7,3,2,1]
wave function is a 484-term CI expansion which should
yield an electron density accurate to about 0.2% for r & 6
bohrs. [The total energy of our 484-terin CI is
—128.&8&004 a.u. (Ne), slightly below the Bunge and
Peixoto result on account of our 4 having a g arbital
(which they did not have) and in spite of the fact that aur
energy-optimized STO set was built with an electron-
density-stability criterion rather than to obtain the lowest
possible energy. ]

Since our present computer code cannot handle the cal-

TABLE II. Convergence of the density as selected sets of energy optimized basis functions are added.

r (bohrs)

0.
0.1

0.2
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
5.0
6.0

Pca

7792.988
1088.765
181.440
28.771

5.7969
1.0168
0.1937
0.04004
0.008 900
0.002 106
0.000 524 1

0.000035 65
0.000002 552

p [6,7]

7796.635
1088.987
181.919
28.747

5.7044
1.0209
0.2035
0.044 63
0.01052
0.002618
0.000 675 9
0.000047 92
0.000003 488

7794.426
1088.726
181.918
28.798

5.7228
1.0189
0.2007
0.043 34
0.01007
0.002474
0.000 633 3
0.000044 52
0.000003 233

p [6,7,3,2]

7793.884
1089.001
181.876
28.780

5.7291
1.0192
0.2004
0.043 07
0.009 949
0.002 484
0.000 621 5

0.000043 65
0.000003 172

p [6,7,3,2,1]

7793.625
1088.916
181.842
28.790

5.7323
1.0187
0.1999
0.043 00
0.009 954
0.002439
0.000 623 1

0.000043 68
0.000003 167

'Density obtained from the SCF wave function of Clementi and Roetti (Ref. 19).
Density obtained from a CI wave function containing all single and double excitations of the E, I., and intershell within the basis of

6s and 7p orbitals.
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culation of the electron density for the 484-term CI, we
had to resort to various truncations of it. We considered
three wave functions corresponding to the following trun-
cations in the CI coefficients ax~ of Eq. (1):

I &xp I
~0000»

I &xp I
~00004. and

I &xp I
~00007*

yielding 330-, 300-, and 250-term CI expansions, respet:-
tively. The electron densities and density errors for these
three wave functions are given in Table IV for certain

o.oo
(yielding a 150-term CI) gives percentual density errors
with respect to the best 330-term CI that do not exceed
2.1% for r up to 6 bohrs.

The importance of triple and quadruple excitations was
investigated. It was found that these excitations could be
discarded altogether in the calculation of the electron den-
sity of Ne, as their effect is less than 0.01% for all values
of r considered.

Our analytical electron density, which has an error of
about 0.1% up to 3 bohrs and about 0.5% between 3 and
6 bohrs, may be reproduced from Eqs. (7) and (8) using
the occupation numbers and natural orbital expansion
coefficients given in Table V.

The cusp condition for the electron density at the nu-
cleus gives —(dp/dh), 0/2p(0)=10. 05, which differs
from the exact value of Z (= 10) by 0.5 %.

IV. COMPARISON %'ITH THE HARTREE-FGCK
DENSITY

1

3
4

6
7

].$

1$
2$
2$
2$
2$

9.484 86
15.5659
1.961 84
2.86423
4.825 30
7.79242

2p
2p
2p
2p
3p
3p
4p

1.45208
2.381 68
4.484 89
9,13464
2.82
7.45
9.49

3.625
4.10
3.90

4.46
4.90

5.75

TABLE m. STO set for pb

Type

X (SCF}'
E {SCF)
L (SCF}
L (SCF)
L (SCF)
EL {SCF)

L (SCF}
L (SCF)
L (SCF}
L (SCF)

A t:ompsrison bet&veen our best density pb „ the
Hartree-Fock density, and two densities obtained from
SCF wave functions is given in Table VI. We take pHp
from Beck.' Since pHF is given as a numerical function
in the radial mesh of Froese-Fischer ~ we have obtained
the other two densities in the same mesh for purpeses of
con pRxlson.

The energies of the three independent-particle model
wave functions'2' ' are practically equal among them-
selves, therefore, it is not surprising that the HF and the
two SCF densities agree well with each other except for
large values of r

Our results show that between 0.6 and 1 4 bohrs the HF

' Localized mainly in the shell as indicated.
STG's of analytical self-consistent field orbitals (Ref. 19).

density is too high, in fair agreement with Beck. ' In all
other regions the HF density is too small, i.e., electron
correlation produces a significant shift in the electron
cloud from the r =0.6—1.4 bohrs region, which corre-
sponds to the inner and middle L-shell region, toward the
E shell and the outer I. shell regions.

r {bohrs)
hp (330—250)

(%)pb, (330 CI}

TABLE IV. Analysis of errors introduced in the density upon different truncations of the final wave function.

bp (330—300}
p (300 CI) (%) p (250 CI)

0.
0.1

0.2
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
5.0
6.0

7793.625
1088.916
181.842
28.790

5.732 3
1.028 7
0.1998
0.043 00
0.009 954
0.002 439
0.000 623 1

0.000043 68
0.000003 167

7794.257
1088.981
181.871
28.783
5.731 3
1.018 8
0.200 1

0.04299
0.009 930
0.002430
0.000 6204
0.000043 56
O.MO003 166

—0.0082
—0.0065
—0.016

0.024
0.018

—0.011
—0.10

0.012
0.23
0.39
0.43
0.26
0.04

7793.817
1088.989
181.871
28.782
5.731 1

1.0190
0.200 1

0.042 98
0.009 920
0.002 425
0.000 6189
0.000043 43
0.000003156

—0.0025
—0.0067
—0.016

0.028
0.021

—0.030
—0.15

0.0046
0.34
0.57
0.67
0.57
0.35
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TABLE V. Orbital expansion coefficients cj; of Eq. (8) and occupation numbers n; of Eq. (7) for the natural orbitals. The electron
density is readily computed from this data through Eqs. (7) and (g).

J
1

2
3
4
5

6

0.936 189 82
0.048 980 82
0.000 856 74
0.002 123 12
0.006 925 10
0.019412 39
0.999649 26

pi

0.236 691 42
0.654 195 32
0.27732685
Q.024 505 61

—0.109687 92
0.005 242 71
0.007 01706
0.990966 72

—0.234 832 23
—0.006 514 83

0.201 938 36
0.645 91938
0.320 90948

—0.141 283 24
0.995 231 86

0.728 461 68
—0.980200 23
—1.003 081 88

0.051 456 91
1.128 375 87
0.204 625 01

—0.002 686 01
0.005 182 67

d-type orbitals

0.14062401
0.096 843 86
1.174030 51
0.184 147 00

—2.018481 73
0.747 584 46
0.003 365 38

—1.637 375 31
23.977 507 16

—9.441 676 02
0.321 978 01

—16.47469746
1.523 506 29

—0.19400926
0.000 294 85

d3

s-type orbitals

$4

1.134028 76
—0.103 855 94
—2.905 243 92

4.440 559 55
—1.562 134 34
—1.267 946 54

0.000 178 95
p-type orbitals

p4

—1.880490 52
25.748 899 70

—12.947 726 67
2.935 320 07

—16.636 328 24
0.443 294 73
1.432 41622
0.000 061 67

—0.747 975 83
—0.522 385 23
—3.526 517 58

7.366041 24
—7.702 81698

4.810528 56
0.000045 26

—2.925 941 85
42.39064000

—32.152 379 88
1.043 026 88

—26.285 282 24
20.638 10208

—4.402 491 77
0.00001499

f-type orbitals

fl

—12.600 854 40
7.865 990 83

—2.608 951 67
6.522 478 94

—9.843 279 46
11.726 039 36
0.000 003 09

1.59025115
—203.35S 1068

104.522 706 7
—6.487 285 25
148.805 240 5

—48.768 404 8

14.674 028 62
0.000003 32

—0.840 308 08
123.304 127 5

—4S.580025 82
10.574 428 37

—91.458 677 35
—43.542 059 54

42.346 548 05
0.000 000 73

g-type orbital

J g&

1

2
3

3.507 456 01 —23,992 600 30 —199.418 735 1

—1.68347872 17,49724738 125.7348707
—0.877 779 10 7.014254 52 78.073 983 99

0.00186935 0.000187S2 0.00002322

1.333 273 54
—0.337 744 13

0.00017900

—6.996388 82
7.114281 68
0.000023 45

1 1.00000000
n i 0.000014 86

r (bohrs)' pscF

TABLE VI. Comparison between pb „pHF, and the densities from two SCF wave functions.

pbest 100+/p pscF 100dy/p 100hp/p

0.001 832
0.1

0.211 700
0.507 842
Q.738 906
1.009 964
1.296 820
1.564263
1.772 542
2.008 554
2.579034
3.110909
3.994486
5.129021
6.186781

7512.823
1088.916
152.079
28.2092
14.0994
5.5352
2.0347
0.821S
0.4140
0.1945
0.033 97
0.007 255
0.000 632 4
0.000031 11
0.000001 940

7510.026
1088.708
151,658
28.1987
14.2205
5.6015
2.0458
0.8160
0.4066
0.1884
0.031 69
0.006469
0.000 509 1

0.000021 48
0.000001 184

0.037
0.019
0.28
0.037

—0.86
—1.20
—0.55

0.67
1.79
3.14
6.71

10.8

30.9
39.0

7512.277
1088.765
151.667
28.2018
14.2228
5.5973
2.0464
0.8175
0.4073
0.1884
0.03143
0.006432
0.000 532 0
0.000025 33
0.000001 561

0.0073
0.014
0.27
0.026

—0.87
—1.12
—0.58

0.48
1.62
3.14
7.48

11.3
15.9
18.6
19.5

7514.529
1088.776
151.655
28.1994
14.2211
5.6013
2.0460
0.8161
0.4066
0.1884
0.031 70
0.006477
0.000 500 8

0.000019 15
0.000000 881

—0.023
0.013
0.28
0.035

—0.86
—1.19
—0.56

0.48
1.79
3.14
6.68

10.7
20.8
38.4
54.6

'These are points from the mesh of Froese-Fischer (Ref. 20).
'This work.
'Reference 12.
Calculated from the SCF wave function in Ref. 19.

'Calculated from the SCF wave function in Ref. 21.
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TABLE VII. Comparison between densities obtained from different correlated wave functions.

r {bohr)'

0.001 832
0.1

0.211 700
0.507 842
1.009964
1.564 263
2.008 554
2.579034
3.110909
3.994486
5.129021
6.186781

7512.823
1088.916

152.079
28.2092
5.5352
0.8215
0.1945
0.03397
0.007 255
0.000 632 4
0.000031 11
0.00001940

7510.980
1088.787

152.146
28.208

5.5292
0.8235
0.1970
0.03408
0.006 842
0.000467 7
0.00001376
0.000000475

0.024
0.012

—0.044
0.0035
0.11

—0.24
—1.29
—0.32

5.69
26.0
55.8
76.4

7509.185
1088.830

152.127
28.194

5.5576
0.8235
0.1927
0.032 71
0.006701
0.000 528 4
0.000 022 31
0.000001 23

0.048
0.0079

—0.0032
0.053

—0.40
—0.24

0.92
3.70
7.64

16.4
28.3
36.6

'These are points from the mesh of Froese-Fischer {Ref.20).
This work.

'Obtained from the wave function of Bunge and Peixoto (Ref. 22).
dReference 12.

Near the nucleus, pHF and pb, agree to within the un-

certainty in the latter. Only at about 0.2 bohr there is a
significant discrepancy of 0.3 % which, in principle,
should be experimentally detectable. The relative drop in

electron density at the onset of the L shell should also be
amenable to experimental verification.

At large distances, we find that the HF density differs
form pb, much more than predicted by Beck.'2 While at
3 bohrs there is already a 10% difference, the difference
between p, and pHF continues to increase steadily to al-

most 40% at 6 bohrs.

convergence of the density, thereby obtaining an electron
density in complete agreement with pb „ in spite of the
fact that the two starting SCF densities differ markedly
for r &2.5 bohrs. A comparison between the number of
radial and angular one-electron functions needed to make
up the energy optimum basis set of Bunge and Peixoto
and the corresponding density optimum basis set, is given
in Table VIII.

V. COMPARISON VfITH CORRELATED
NEON DENSITIES

Two other correlated neon densities were available to
us: the one obtained from the wave function of Bunge
and Peixoto (pap) and the one given by Beck' (pa k).
Both of them were obtained from wave functions which,
like ours, account for about 85% of the correlation ener-

gy. All three densities are displayed in Table VII together
with percentual differences between pb„, and pap and be-

tween pb, and pa i,. As in the preceding section, the
electron densities are given in the radial mesh of Froese-
Fischer.

Contrary to common belief, the differences between

these densities are not smaller than the differences be-

tween pb, and pHF for the important region extending

beyond 1.5 bohrs. As expected, there is good agreement
between the three correlated densities in the j' shell re-

gion.
In principle, pq~q and p~p should be amenable to im-

provement. However, since ps k is obtained from a wave

function for which details, such as basis set, are not given,
we cannot try and ameliorate it. Fortunatdy, the Bunge
and Peixoto wave function is readily available to modifi-
cations. Using the techmque developed in Sec. III we

started, as Bunge and Peixoto did, from the nominal SCF
basis of Bagus ' and added new STO's as needed for the

Shell
localization

Number of STO's of jt symmetry in

energy optimum density optimum
basis set' basis setb

K
L

4 (SCF) 4 (SCF)

3 (SCF)

1

3 (SCF)

4

0c
2c

'Reference 22.
'This work.
'STO's added up in this work to those of Ref. 22.

TABLE VIII. Comparison of the number of radial and angu-
lar one-electron functions between the energy optimum basis set
of Bunge and Peixoto and a density optimum basis set, both ob-

tained by starting from the Bagus SCF STO basis.
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VI. CONCLUSIONS

We have found a quick and reliable way to obtain CI
wave functions for the accurate calculation of the electron

density of atomic systems over a wide range of values of
the radial coordinate. By analyzing the stability of the

density under well-defined improvements in the wave

function, one can obtain a fair estimate of the error in the

corresponding density at all r values. For the neon

ground state, a CI wave function consisting of all single

and double excitations formed in an orbital basis consist-

ing of the SCF orbitals of Clementi and Roetti plus three

p-, three d-, two f-, and one g-type energy-optimized
STO's in the L shell, and with CI coefficients larger than
0.0005, yields a density which is stable within 0.5% up to
6 bohrs.

In sum, the following points are to be noted from our
results.

1. A stable electron density can be obtained by develop-

ing a density optimum basis set starting from a good SCF
STO basis (for example, the widely available ones of
Clementi and Roetti' ) and adding energy optimized
STO's with respect to well-defined wave functions span-
ning the physically relevant regions of space (K shell and
I. shell regions in the present example).

2. For Ne, HF, and good SCF wave functions yield
densities showing good agreement among themselves
while the electron density is noticeable, i.e., up to about 2
bohrs. The starting SCF STO basis does not appear to be
critical to the stability of the final p, as supported by the
fact that calculations starting from two different SCF
STO sets yield p's differing by less than 0.2% even for
large values of r, where the corresponding SCF densities
differ by up to 30%.

3. Most importantly, densities obtained froin fairly
correlated energy optimum wave functions (accounting
for more than 80% of the correlation energy) may be con-
siderably in error: in the examples examined, significant
errors ill pBp and pa k al'e observed for values of r greater
than 2 bohrs.

The procedure developed here is being applied to all
ground states of atoms from Li through F.
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