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The moleculelike normal modes formed by a pair of correlated electrons are examined through
analysis of their wave functions in a body frame of the atom. The quantum numbers used by Lin
for the classification of doubly excited states are reinterpreted from the body-frame viewpoint, and
their connections with the rovibrator model of Herrick and Kellman are identified. This analysis
also sheds light on the limitations of the rovibrator model of two correlated electrons. Because elec-
trons are light and are not localized like atoms in a molecule, departure from the rovibrator picture
grows rapidly as the rovibrational energy rises. Other limitations of the rovibrator model of doubly
excited states stem from the following facts: (1) the dominant contribution to the rotational constant
comes from the bielectronic repulsion instead of the kinetic energy; (2) the rotational contraction and
T doubling result from atomic shell structure. We also include a brief discussion of the correspon-
dence between the molecular stretching modes and the radial correlations of two electrons. The sys-
tematics of autoionization widths with respect to the correlation quantum numbers are also con-
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sidered.

I. INTRODUCTION

The discovery of moleculelike normal modes'~* of a
pair of electrons in doubly excited states has furnished a
new perspective to the study of electron-pair correlations.
Under the influence of strong correlation, a pair of elec-
trons perform motion akin to that of a floppy XYX mole-
cule where each X represents an electron and Y the nu-
cleus. This molecular picture was first applied to charac-
terize the angular correlation of intrashell states, namely,
states in which the two electrons are roughly at an equal
distance from the nucleus. Indeed, the level structure of
doubly excited states was found to fit into patterns called
supermultiplets"? which regroup intrashell states accord-
ing to the degree of moleculelike rotational and vibration-
al excitations. The relative level spacing of intrashell
states thus reveals systematic features easily parame-
trized by a few constants analogous to molecular con-
stants.

The rovibrator energy-level structure was first inter-
preted in a group-theoretical framework. However, the
involved algebra somehow overshadowed the relevance of
the model. A more direct “verification” came from the
visualization of that portion of the wave function** which
was considered responsible for the moleculelike behavior.
In one such model to describe angular correlations the two
electrons were assumed to be rigidly placed on concentric
spherical surfaces similar to the rigid-bender model.®
Despite the fictitious constraints, the angular wave func-
tions have the desired behavior, thus providing a first ver-
ification of the rovibrator model of doubly excited states.

Along a different line, an extensive investigation of
doubly excited states was being carried out by Lin.” Re-
lief plots of wave functions in hyperspherical coordinates
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are used to reveal the nature of different electron correla-
tions. In addition to the angular correlations examined in
the rigid-bender model, the importance of radial correla-
tion was emphasized in Lin’s classification scheme. La-
bels A=+, — and 0 were introduced for classifying radi-
al correlation patterns.”® Here the + and — label the
antisymmetric stretching modes, used by quantum chem-
ists for describing triatomic molecules (see Sec. IIID).
Doubly excited states labeled by 4= + exhibit in-phase
radial oscillation, i.e., the two electrons tend to approach
or to move away from the nucleus in phase. Doubly ex-
cited states labeled by 4= — exhibit out-of-phase radial
motion such that when one electron approaches the nu-
cleus, the other tends to move away from it. States with
A =0 exhibit little radial correlation; they resemble singly
excited states since one of the electrons tends to stay far
away from the nucleus while the other stays close in,
showing no obvious phase relationship. Since the two
electrons in the system achieve stability by optimizing ra-
dial and angular correlations, the analysis in hyperspheri-
cal coordinates provides a complete description of the
correlations of doubly excited states.

The hyperspherical viewpoint’~!! describes electron
correlations in terms of the nodal structure of the two-
electron wave functions, revealing the relative radial and
angular motion of the electron pair. The analysis of
correlations is based on the approximate solution of the
Schrodinger equation in hyperspherical coordinates.
What is the relevance of the rovibrator model of doubly
excited states to this approach? One purpose of this paper
is to answer this question. Meanwhile, the analysis also
explores to what extent the rovibrator model is valid for
describing the correlations of doubly excited states.

There are at least two conceptual merits of merging two
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different models and viewpoints. First, the hyperspherical
method was conceived from the viewpoint of “channels”
whereas the group-theoretical consideration stemmed
from configuration interaction. The intrashell state, for
example, derives from the configuration-interaction
viewpoint whereas the hyperspherical method regards it as
the lowest resonant state of a channel which possesses in-
phase radial correlation (4 =+) pattern. In the hyper-
spherical approach, intershell states belonging to the same
channel reflect the same correlation pattern. This concep-
tual continuity is useful if we wish to extend the rovibra-
tor model to deal with dynamical processes involving con-
tinua such as photoionization'! or electron-impact ioniza-
tion. Another merit of the hyperspherical method in
comparison with the more restricted rigid-bender model is
that the former incorporates the radial degree of freedom.
Thus, for example, the centrifugal distortion'®"* comes
out with the correct sign as in the fitting to the molecule-
like term formula showing that doubly excited states actu-
ally contract as the total angular momentum increases
whereas the more restricted rigid-bender model leads to
the opposite conclusion (Sec. IVC). The phenomenon of
the T doubling similarly comes out with the correct sign
owing to the inclusion of the radial degree of freedom
(Sec. IVD).

Although there is little doubt about the relevance of as-
sociating two-electron normal modes with those of a flop-
py XYX molecule, some questions remain open at a more
quantitative level. For example, what is the nature of the
internal axis about which the two electrons rotate? This is
a fairly meaningful question in view of the wave nature of
electrons. The atom is more like a gas than a solid or a
liquid drop so that the concept of a well-defined axis at
first sight contradicts the high mobility of electrons.
Another question pertains to the rovibrational quantum
numbers. The molecular energy term formula presumes
that the bending vibrational quantum numbers be well
respected in zero order; otherwise higher-order corrections
make little sense. How well are these quantum numbers
respected?

In this paper we attempt to give certain perspectives to
these questions from the hyperspherical viewpoint. It
should be emphasized that the character of approximate
quantum numbers depends on the particular theoretical
framework employed for analysis because of the lack of
exact separability of the two-electron problem. Major
features of the system, of course, should not differ greatly
from one scheme to another if they portray the same reali-
ty. The advantage of one scheme over the other thus is its
generality and its greater applicability.

Our major objective is to synthesize and extend previ-
ous studies by analyzing two-electron wave functions in
the body frame of the atom. Our body frame is attached
to the axis parallel to the interelectronic axis T, passing
through the center of mass. It does not necessarily coin-
cide with that attached to the instantaneous principal axes
of inertia. The correspondence of this choice of the
body-frame axes with the O(4) theory is described in Sec.
ITA.

The rest of the paper consists of three sections. Section
IT presents the procedure of analysis. In Sec. II A, we dis-

cuss the meaning of the internal axis of rotation. The
correspondence of our body-frame axis to the vector
B=b,—b, exploited in the O(4) theory'>! is also dis-
cussed. In Sec. IIB we consider the operator L-T,, and
introduce a scheme for decomposing an arbitrary wave
function into the eigenstates of L‘T,. It is shown that
each rotational component possesses well-defined symme-
try properties under electron exchange. After a brief re-
view of the hyperspherical method and of the labeling
scheme in terms of correlation quantum numbers K, T,
and A4 [Refs. 3 and 7(d)] (Sec. III A), we examine the
decomposition of hyperspherical wave functions into rota-
tional components in Sec. IIIB. It is shown that the
quantum number T used in the labeling of doubly excited
states in Ref. 7(d) is identical to the dominant rotational
component of the wave function. Whenever the identifi-
cation of the dominant rotational component is possible,
the label A can be assigned uniquely, its value, + or —,
depending on T, total spin, and parity of the state [Eq.
(14)]. Thus the radial correlation quantum number A4 is
unambiguous only when the dominant rotational com-
ponent is also unambiguous. States which have nearly
equal amplitude in each rotational component do not
show clear radial correlation patterns. Accordingly these
states are labeled as 4 =0.”'? In order to relate the K, T,
and 4 quantum numbers to the moleculelike modes of
doubly excited states, we demonstrate in Secs. III C and
IIID that the label K relates to the bending vibrational
mode, and A4 to the antisymmetric stretching mode of a
triatomic molecule. Section IV is devoted to studying
specific features of moleculelike modes and the limita-
tions of associating doubly excited states with these
modes. In Sec. IV A the rotational and vibrational con-
stants obtained from the calculated energies are used to
test the scaling laws down the isoelectronic sequence.
These constants are shown to originate dominantly from
the electron-electron interaction rather than from the ki-
netic energy of the rigid rotor (a reason why the
correspondence is no more than analogy). In Sec. IVB we
discuss the rotational contraction of doubly excited states
by providing qualitative evidence from the analysis of hy-
perspherical channel functions. We comment on the in-
formation about the T doubling provided by the hyper-
spherical channel functions in Sec. IVC. A brief discus-
sion on the systematics of autoionization widths based on
the nature of correlations is given in Sec. V. We conclude
in Sec. VL.

II. THE BODY-FRAME ANALYSIS

A. The choice of the axes

In dealing with a highly nonrigid system such as a
two-electron atom, the meaning of the body frame at first
appears obscure. This obscurity is merely deceptive be-
cause the positions of two electrons considered in quan-
tum mechanics are statistical in nature and correspond to
the time-averaged effective positions in classical mechan-
ics. In other words, a position vector here represents a
point in space through which a bundle of classical trajec-
tories pass but it does not represent the instantaneous po-
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sition of the electron moving on a particular trajectory.
Let us take a simple example of an electron in the
Coulomb field. In this case, time averaging is accom-
plished by Pauli’s substitution

r— 2 Zb N (1)
where b is the Lenz vector. When the effect of the mutu-
al interaction of the electrons is included, the time average
of r departs from Eq. (1), and varies slowly so long as the
perturbation is weak. Since we study the eigenfunctions
of the two-electron system explicitly, the body frame we
consider here is attached to such effective position vectors
of the two electrons rather than to their instantaneous po-
sitions and evolves slowly under the influence of the in-
terelectronic interaction.

There are many different ways of choosing body-frame
axes. In this work, we take the interelectronic axis

’f‘,z=(r1—r2)/|r1—r2! (2)

as the internal axis of rotation with the axis passing
through the nucleus. There are three reasons for this
choice. First, the vector rj;=r;—r, serves as a measure
of the relative orientation and closeness of the electrons’
orbits. This choice of the rotational axis separates the de-
gree of freedom in the bending motion from the rotation
of the body. Second, this axis is democratic with respect
to the exchange of the two electrons. A number of power-
ful symmetry properties thus follow (Sec. IIB). Third,
the general behavior of this axis is similar to that of the
vector B=b;—b, exploited in the O4) theory of doubly
excited states.'>!* In fact, the substitution of Eq. (1) gives
Z, 2z

1 nj

193 (3)

Let us consider the behavior of B in two limiting cases of
interest. One is the intrashell state in which the two elec-
trons have similar average distances, and experience simi-
lar degree of screening (i.e., ny=~n,=n, Z,~2,=2);
there B=~(2Z /3n)r;,. In the other, one electron is far
away so that r; >>r, (or n%/Zl >>n§/22); B is again
proportional to r;, if we ignore terms of order n,/n;.
Certainly one can choose the more abstract B as the axis
of internal rotation, but this choice requires us to know
the effective charges Z, and Z, as well as the principal
quantum numbers n; and n,. Since there are no a priori
values of these parameters when the Kepler orbitals of the
electrons are strongly perturbed, the choice of B is not
practical for our purposes. The use of T}, is thus intended
to remove this limitation of B.

The unit vector T, permits us to separate the body’s ro-
tational degree of freedom from the rest. Unfortunately,
in doing this, the information on bending vibration con-
veyed by the length of the vector r;, also becomes re-
moved. As a result, other quantum numbers require
separate considerations. We discuss this point later in
Secs. IVC and IV D.

Before leaving this section, a few remarks about other
choices of body-frame axes are pertinent. For example, if
our purpose was oriented toward calculating the body-

frame wave functions, we could employ the Eckart
frame.'* In this frame, the coupling between the bending
vibration and the Coriolis force is minimized near the
equilibrium configuration. If the system were a quasi-
rigid rovibrator, we could use the principal axes of inertia
as the rotational axes. However, the manifestation of the
moleculelike modes in doubly excited states is somewhat
more abstract much as the rotor and vibrator structure in
the excitation spectrum of the hydrogen atom in a strong
magnetic field."> It is the electrons’ orbit which exhibits
such modes. Similarly, the moleculelike modes in doubly
excited states arise presumably from the mutual polariza-
tion of the orbits of the two electrons. The exchange sym-
metry enhances the moleculelike modes by imposing strict
constraints on the possible geometry the two-electron or-
bitals can attain. For these reasons, we have chosen a set
of axes adapted to the representation of mutual polariza-
tion as well as the exchange symmetry of the electron
pair, namely, T, and a pair of vectors orthogonal to 2.

B. Decomposition into rotational components

Here we consider the decomposition of an arbitrary
two-electron wave function into rotational components
and study the symmetry properties of each component
under electron exchange. Our body frame is defined by
three unit vectors, %, t=(%,X%,)/|TXT,|, and
3=TX1%}, such that the set (8,%,7;,) forms a right-handed
system (see Fig. 1). This frame is singular whenever the
triangle formed by r,, r,, and the origin becomes degen-
erate. Fortunately, such a singular configuration has
measure zero so that it causes no practical difficulty.

Let us denote the Euler angled by Q=(®,0,¥). The
transformation from the laboratory frame to the body
frame satisfies the following relationship:

Y1 L @ut) =3 ¥ 1,10 1,25)DG(Q) (@)
Q

where (%,,T,) are defined in the laboratory frame and
(t1,%5) in the body frame, and ngl} is the rotation ma-
trix. By definition,

(L'?ll)@/lllzLQ(?ll’?&)=Q@I‘12LQ(?'1’?"2) . (5)

According to Fig. 2, the polar coordinates of T and )
are given by

T1=(X,0),

T5=(X+6,,0), (6)
where

tanX =sin6,,/(r, /r, —cosb;) . (7

Because X depends on the ratio of the arm lengths r; and
r, and on the relative angular separation 6,,, it is con-
venient to introduce the hyperspherical coordinates at this
stage. We replace the independent-particle radial vari-
ables r; and r, by the size parameter R and the pseudoan-
gle a defined by

r1=R cosa ,

r,=R sina . (8)
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FIG. 1. The two-electron body frame. The set (3,%,F;,) forms
a right-handed system. The two electrons are on the §—T,
plane.

Hence
tan[X(a,G,z)]=sin012/(cota-—c05612) . 9)

We next demonstrate the decomposition of a wave func-
tion into partial components assuming that it is explicitly
known in the laboratory coordinates. Suppose

Yrur)= 3 ¥ (rur) k) - (10)
(A
Substituting Eq. (4) into (10) we get
¥(r,r)=3 ¥5(R,a,0,)DG (D), (11)
Q
where

¥g(R,a,017)= 3, 1/4“]12(R cosa, R sina)

L,

X@/IllzLQ(?’l’?’Z) (12)

and —L<Q<L.

Let us consider the symmetry under particle exchange
(see Appendix A). In the body frame, particle exchange is
equivalent to the replacement a—w/2—a from which

FIG. 2. Geometrical meaning of X(a,6,).

X—m—(X+86;,). Using a property of the associated
Legendre function, we get

Yo(R,m/2—a,0,)=m(—1)S+%Y5(R,a,01,) ,  (13)

where S is the total spin, and the symbol 7 on the right is
+ 1 and —1 for even and odd parity states, respectively.
We shall use a shorthand notation for this phase factor:

A=m(—1)5+T (14)

where T=|Q|. The index A [Ref. 7(d)] determines the
reflection symmetry of the radial wave function with
respect to the a=m/4 axis. Thus A serves as an index of
radial correlation. In the body frame, we also have

@IIIZL—Q(?i’f'2)=77( _I)Q@I‘IZLQ(?’I”I},Z) (15)
with n=m(—1)f. Therefore we define for Q540

5‘,%.}(6):\—}_E[D‘,Lg’w(ﬁ)m(—1)TD‘£’,Q|M(ﬁ>] ,

(16)

which is equivalent to the usual molecular rotor function.
Equations (15) and (16) are familiar in molecular physics
and serve as a geometrical interpretation of Eqgs.
(3.16)—(3.17) of Herrick, Kellman, and Poliok? (to be re-
ferred to as HKP hereafter).

Another symmetry property which proves useful later
is the replacement of 6,,— 27 —6,, that is, the reflection
symmetry with respect to the 6,,=m axis. This replace-
ment is equivalent to X— —XX+6,,—27— (X +6,,).
Thus, it follows readily that

¥g(R,a,2m—01,)=(—1)TYg5(R,a,6;,) , 1

which provides the relation between the parity of the
bending vibration and the rotational quantum number 7.

III. HYPERSPHERICAL CHANNEL FUNCTIONS
IN THE BODY FRAME

We examine the details of radial and angular correla-
tions by exploiting our decomposition procedure. This
procedure applies to wave functions calculated in any
scheme such as the configuration-interaction method,
close-coupling method etc. Here some hyperspherical
channel functions of He below the Het (N =3) limit are
analyzed. First in Sec. III A we review the essentials of
the hyperspherical method. The hyperspherical wave
functions are then decomposed into rotational com-
ponents. In Sec. III B the purity of each rotational state is
examined as it serves as a measure of the effectiveness of
Lin’s classification scheme. In Sec. IIIC we discuss the
bending vibrational mode and associated quantum num-
bers. Finally, the analogy between the radial correlation
quantum number A and the stretching modes of triatomic
molecules is discussed in Sec. III D.

A. The hyperspherical method (Refs. 7—10)

In the hyperspherical method, the character of doubly
excited states is unraveled by examining the two-electron
wave functions in hyperspherical coordinates. Using a
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quasiseparable approximation, the two-electron wave
functions are expressed as

Yu(R,Q)=F,(R)$,(R;Q), (18)

where ¢, is the hyperspherical channel function and
FL(R) is the ith hyperradial wave function in channel u.
We use {) to denote collectively the hyperangle a and the
spherical angles of the two electrons. The channel func-
tion is obtained by solving the two-electron Schrodinger
equation under the constraint that the electrons move on
the hyperspherical shell defined by

R=(r?+r$)"2=const , (19)
i.e., by requiring that it satisfies the eigenvalue equation
Hp =const¢p = U;l (R )d’u . (20)

The eigenvalues U,(R) play a role analogous to that of
molecular potential curves and can be used for approxi-
mate determination of resonance positions.”~°
Throughout our work, channels are labeled in accor-
dance with Lin’s prescription,m’ namely, by
(K,T)A#2*IL™ The index K originates from the two-
electron Stark basis introduced by Herrick'® and is related
to the bending-vibrational quantum number. We shall re-
turn to this discussion shortly. T and A are defined by
Eq. (14); N is the principal quantum number of the elec-
tron in He™; the rest are well-known quantum numbers.
We supplement this label by introducing an index
n=m(—1"L in front of T, that is, when 1 <0 we write
(K,—T)A3S+1L7 as done by others.® Since the possible

i

90 %

i

i
“’I"'tf‘:“k
{ (\ {y

|
I

)

atomic configurations with a given L depend on the pari-
ty, this separates two groups of atomic configurations.
This labeling makes sense only if the quantum numbers K
and T as well as the atomic shell N are unambiguously
defined.

In the present work, we determined the channel func-
tions variationally using the analytic basis functions of
Lin’ complemented by hyperspherical harmonics. A typi-
cal channel function has the form

¢“(R;a,?1,'f'2)= 2 g[’i,z(R;a)@mzLM(’fl,?z) . (21)

I,
Radial functions {gf; (R;a)} are used as the input to
¥f 1, (21,%,) of Eq. (12).

B. Purity of rotational states

The symbol A, as defined in (14), has a close connection
with the value of T. According to the decomposition (11),
if there is only one single rotational component T, then
the radial correlation quantum number A4 will be either
+ or —. Thus the purity of radial correlation quantum
number A is related to the purity of rotational states. To
examine the purity of quantum numbers T and A in the
labeling of channels, we display the density plots of rota-
tional components for hyperspherical channel functions.

As an illustration of the purity of rotational states, we
display in Fig. 3 the density plots of the (1,1); 3P° and
(1,1)F 'P° channel functions of He at the values of R
where their respective potential curves bottom out. The

\
| ,

Weiin. |
"m:m,,,{l

[T
2zl

R=23

(1,1); 'P°
R=16

FIG. 3. Density plots of the (1,1); !P° and (1,1); 3P° channels. Percentage represents the contribution to the normalization from
each T component. The axes for all the plots are identical. Their labels are shown in the middle figure of the second row.
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percentage indicated represents the contribution to the
normalization constant from each T component, the par-
tial normalization constant being defined by

NT(R)—— [ dad(costyy) | ¥r|? (22)

Each channel function is normalized so that the normali-
zation coefficients from all the rotational components
adds up to unity. For *P°, the T =1 component has 91%
of the integrated density. According to (14), 4= — for
this component and the function must vanish along
a=1/4. The density plot for the T =1 component clear-
ly exhibits this property. This channel also has a 9% con-
tribution from the T=0 component. The density plot for
the T=0 component has an antinode at 6;,=m and at

38.5% 538 %

A
N \\\ n‘ .u\i\

8.| %

i
i W U '\\\\“\\\“_

2. 7 °/o
FIG. 4. Density plots of the He (N =3,'D). Channels are at the position of their potential minima. {7T') is the average value of
T. The axes for all the plots are identical to the ones shown at the right lower corner.

a=m/4, is consistent with Eqs. (14) and (17). The fact
that the dominant component of this channel is labeled by
T =1, A= — is in fact consistent with Lin’s label, (1,1),
for this channel. Similarly, for !P° the T=1 component
represents a 90% contribution and the 7=0 a 10% con-
tribution at R=16. In this case, the T=1 component has
A=+ and a node at 0;,=m, while the T=0 component
has A=— and an antinode at 6;,=7. The fact that
T=1 is the dominant component is consistent with the
designation of T=1 and 4 = + for this channel.

Within a given N manifold, the purity of rotational
states decreases for the more highly excited channels. To
illustrate this, we show in Fig. 4 the density plots of the
five 'D® (N =3) channels of He at their respective poten-
tial minima. Notice that the normalization constants for

IDe

(2,0)" R=20
<T>=0.15

(0,0) R=20
<T>=0.34

(-2,0) R=40
<T>=0.27

| r ||“
u"‘ 4'|l\ Bt
o) m -.\\'ﬂ‘"

(1)’ R=26
<T>=0.9I

(-1,1)° R=40
<T>:=069

(0,2)' R=20
<T>=186

m

892°% a ° 62
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different rotational components become more smoothly
distributed for the higher channels. The quantum num-
bers T and A for these channels are less well defined. We
also note that the relation between the dominant 7 com-
ponent and A is indeed consistent with Eq. (14) for the
lower channels for which A =+ or — but not 0.

The purity of rotational states optimizes roughly in the
range where the potentials bottom out. This is the region
that the lowest resonant state of each channel occupies in
each well. To illustrate how the purity of the rotational
state depends on R for each channel, we show in Fig. 5
the contribution to normalization from each T=1 com-
ponent of the five 'P° (¥ =3) channels and from each
T=0 and T=1 component of the six 'D¢ (N =3) chan-
nels of He. The dashed lines represent the interpolated re-
gion where the potential curves exhibit rather sharply
avoided crossings. We note that the low-lying channels
show greater purity of rotational states while the higher
channels tend to violate the purity of T more severely.
Moreover, we notice that the rotational quantum number
T is ill respected at large values of R. This aspect is un-
derstood by examining the large- R limit of Hg _conses

w (a) He (N=3, 'P*)

100 e

asymptotic  limits

100

R (in reduced a.u.)

FIG. 5. Normalization coefficients Nr(R), Eq. (22), as a
function of R for the He (N =3,'P°'D® channels of Figs. 3 and
4; (a) shows N, of the 'P° channels, (b) and (c) show N, and N,
of the 'D¢ channels, respectively. The asymptotic limits of Ny
corresponding to R — o for each channel are indicated on the
right.

14> B z]| z-1
Hpcopu~ | — =25 42 £ |_£-1
R =const ) dr%+2r§ r R
B+28%
LRl LY S8 (23)
2R

and r;~R >>r,. (Minor subleties due to the difference
between R and r; are ignored here. The reader who seeks
rigor should refer to the Appendix of Ref. 8.) The terms
in the large parentheses represent the Coulomb Hamil-
tonian, and the rest the perturbation by the outer electron
which acts as the source of an external electric field. The
field direction is along ®; which in this limit coincides
with %, to order r,/r;. The term 13/2R? describes the
angular motion of the outer electron, indicating that the
electric field is not along a fixed direction. The effect of
this term is to dilute the purity of rotational states as seen
above.

C. Vibrational quantum numbers

Zero-order vibrational states do not emerge automati-
cally in our body-frame analysis since they belong to the
internal vibration of the pair’s orbits. Earlier numerical
studies by Lin’® indicate that the expectation value of the
angle 6, is fairly constant over a wide range of R for
each adiabatic channel, that is, the angle of relative orien-
tation is quantized and is an approximate adiabatic invari-
ant. We exploit this fact in order to see the approximate
quantization of the vibrational mode and to associate it
with the vibrational energy.

If we neglect the angular motion of the outer electron
in Eq. (23), the problem becomes identical to the Stark
problem of the hydrogenlike atom where the electric field
is along the r; axis. Diagonalization of the Hamiltonian
(23) can be readily accomplished to first order using an
0O(4) X O(4) reduction scheme of Herrick for each value of
the total angular momentum L. This leads to the eigen-
values

z* zZ-1

HR =const== -

2N? R

3NK 1

~ 2Z R?

+[B/2R*+0(1/R%)], R>>r, (24)

where K takes integral values N—1—-T>K>—N
+1+ T. This number K relates to the number of nodes n
in 9 12 by

n=N-1-K (25)

in the present limit and approximation. In effect, the
quantum number K is a measure of the polarizability. We
now consider the adiabatic continuation of this quantum
number K all the way into the strongly correlated region,
where R is of the order of N2/Z. Te this end, we defined
the effective measure of the dipole polarizability K.g(R)
as K(R)=(2Z /3N)R?*V;, where Vy, is the dipole in-
teraction term
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L2 R sgta cosfy;, O<a<m/4
Ve (R.a.61) R* cos‘a
di ya&,U012)=
i _—17 R-C(z)sa cosf;, m/A<a<w/2.
R sin‘a

(26)

The near constancy of the expectation value of 0,, sug-
gests the near constancy of K.(R). Some examples are
shown in Fig. 6 for the He (N =3, 'P°'D®) channels. We
notice that K(R) is slowly dependent on R and is close
to the integer K used to label the channels. This feature is
particularly well respected by + and — type channels
but not so well by 0 channels. In some cases, however,
noticeable departures from the nearest integer take place.
At moderate values of R, higher multipole terms become
increasingly important as they represent the nonuniformi-
ty of the electric field one electron exerts on the other.
Nevertheless, the nodal structure of the wave function
does not differ drastically from that at large R due to the
quasi-invariance of 6, or of K (R).

The observed trend suggests an empirical formula for
the local spring constant

3N
2ZR?
The potential curves for channels with the same L, T, and
A are then displaced by an amount proportional to »(R)

at each R. For resonant states with equal effective size
R ., the vibrational energy spacing should be given by

v(R)=

(27)

i (2,00 ’
| / L (1, 4
R-(R) 0:\_____/%__4
. 1L,1)°
-1 %}‘m—————“ ( =
(-2,0)
-2} (a) 'P° (N = 3) :
(2,0)°
T (1)
R(R) of___ o (0,2)"
— === ol
=1 -\/N“%?—
-2,0
-2 (b) 'D* (N=3) =
20 30 40 50
R (reduced au.)

FIG. 6. R dependence of K(R)=(2Z /3N)R?V, for each
channel of (a) the !P° (N =3) manifold and (b) the !D* (N =3)
manifold of He. Dashed lines are used to indicate the region
where diabatic crossing has been imposed.

=V(Reff)AK . (28)

In molecular physics, it is customary to use the vibra-
tional quantum number v which is related to the vibra-
tional energy spacing V(R .¢) by

E,=v(Rg)v+1), (29)

where the number 1 stems from the sum of the zero-point
energies of two identical vibrators. An alternative label-
ing of the channel by v is possible by interpreting K as

K=N—-v-1, (30)

thereby v ranges over non-negative integers starting from
T. The number of nodes n in 6,, provides a measure of
the angular degree of excitation. The relation between n
and v is

77/2, (31

where n takes integral values (n coincides with one of the
Stark quantum numbers of the hydrogenlike atom in the
limit of large R). Though there are other quantum num-
bers equivalent to K, v, or n, we shall not delve into them
because we use only these in this present paper.

n=(v—

D. Radial correlation and molecular stretching modes

In Sec. IIIB we demonstrated through specific exam-
ples how the nodal structure of a channel function near
a=m/4 is related to the rotational quantum number T.
The label A is thus nothing but the parity of the channel
function under the reflection with respect to the line given
by a=m/4. It is worthwhile to make a connection with
the molecular stretching modes.

Near a=/4, we may use §=m/4—a to represent the
displacement along a. We recognize the correspondence

s=r;+r,~V2R ,
u=r; —rzz\/iR_E ,

where s stands for the symmetric stretch and u for the an-
tisymmetric stretch. Near a =0, however,

(32)

rl".‘_:R ’
r,~Ra . (33

In molecular physics,!”~!® 7, and r, are referred to as the

local stretch mode; r, in particular describes the harmon-
ic oscillation of a pair of atoms in the Morse-type poten-
tial. Their roles are interchanged near a=w/2. This
smooth evolution of R and a from the region of molecu-
lar complex to that of decoupled local modes is extremely
useful because the general motion of particles involves a
coupling of molecular modes and local modes.

The +, —, classification scheme utilizes the degree of
excitation in the antisymmetric stretch mode u, Eq. (32).
Successive levels in the same + potential curves are all
even states in the ¥ mode whereas levels in the — curves
are odd states. Levels in each potential well are disting-
ished by the number of nodes in R which changes it prin-
cipal character from the symmetric stretching mode to
the local stretching mode as the system’s size increases.
The intrashell states thus exhibit the molecule modes most
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strongly owing to their large concentration in the region
near a=m/4 where the complementary nature of @ and R
becomes notable.

We would like to direct the reader’s attention to the re-
duced probability densities displayed in Figs. 1(b), 2(a),
and 3 of Ref. 7(a) and Figs. 6 or Ref. 19(a) in order to
substantiate the present discussion. The comparison is
useful for seeing the connection between formally dif-
ferent problems. The former represent a series of doubly
excited states of He whereas the latter represent a series of
resonances in coupled harmonic oscillators which model
eigenstates of a triatomic molecule. The symmetric
stretch mode in both examples is seen to form astride the
potential ridge where the local kinetic energy has a
minimum or a saddle point.?® The reader can find the
display of an even-odd doublet in Figs. 1(e) and 1(f) of
Ref. 19(a) which is analogous to our Fig. 3 demonstrating
a + and — doublet. The coupling of the symmetric
stretch with the local modes and the antisymmetric
stretch are important for understanding the excitation
probability, decay rate,”!%2%2! etc. However, this subject
is beyond the scope of the present paper.

Before closing this section it is appropriate to comment
on channels which do not exhibit radial stretching modes,
namely the channels labeled 4 =0. In these channels the
overlap between the inner and outer electrons is hardly
substantial for forming moleculelike normal modes since
the electrons are localized in potential valleys near a=0
or wm/2 or to put it differently, the dynamical
tunneling'®® from one valley to another is extremely
weak. Instead they have been shown to exhibit behavior
anticipated by the independent-particle model.

IV. A UNIFIED VIEW OF MOLECULELIKE MODES

We have seen thus far how the qualitative moleculelike
picture of two-electron correlations fits into the frame-
work of the hyperspherical method. Accordingly, it is
adequate to classify radial correlation by the even or odd
parity of the antisymmetric stretch indicated by 4, angu-
lar excitation labeled by K and T, and exploit supermul-
tiplet schemes to discern the systematics of relative energy
levels. The classification scheme thus relies on the fact
that clear-cut manifestation of the moleculelike modes
respect the hierarchical order in the magnitude of correla-
tion energies, namely, U, > U, > U, where U,,... are
the separation of the + and — doublet curves and the lo-
cal vibrational and rotational energies, respectively. The
higher angular excitation leads to the less clear-cut order
in correlation energies and to the sometimes noticeable ad-
mixture of other modes.

When the molecular picture applies, the radial correla-
tion divides moleculelike modes into A=+ and 4= —
groups. In each group, states are classified by their
angular-correlation patterns. There are two well-defined
schemes. One is the d-supermultiplet scheme which uti-
lizes the number of nodes in 6,,, namely, n discussed in
Sec. IIIC to regroup energies. An example is shown in
Fig. 7 for the lowest n =0 states: (a) for 4 =+ subgroup
and (b) for the 4 = — subgroup for doubly excited states
of He (N =3). The vertical axis corresponds to L and the

. n=0
4 (a) ) A=+
4 -
3 1 :Fe 3 Fo -Fa
(3107) (3325) (.3039)
L 2 1 ,Da ADO IU ‘D.
(3I51) (3288) (3441) (3261) (3145)
(4 -Pe .Po -Po
(3366) (3512) (3350)
gt
oT (3539)
1 1 1l il i
1 T T 1 T
-2 -1 0 *| +2
T
IG( n =
44 (b) = A=-
3 1 'Fe nF-n sFo
(2684) (2779) (2673)
L 2 1 |Do !Du !DE bDQ ID!
(2684) (2754) (2830) (2746) (2696)
‘ € 'Pl GPQ on
(2789) (2859) (2787)
0 S
(2872)
i 1 1 } }
T T 1 T T
-2 | 0 + | v 2
T
FIG. 7. (@) N=3 intrashell levels of He in the d-

supermultiplet scheme, (b) the lowest state in each channel of
He (N =3) in the d-supermultiplet scheme. Levels are given in
parentheses in atomic units. Data from Ref. 22.

horizontal axis is labeled by (K,+T). Since n is fixed, K
and T are constrained by Eq. (25). The numbers in brack-
ets are energy levels in a.u. Note that there is an unambi-
guous correspondence between the + type and — type
supermultiplets, namely, the interchange of the spin labels
1«+3. This is simply because the antisymmetry of the ra-
dial wave function induced by the radial excitation must
be compensated for by the change in symmetry of the spin
function [see Eq. (14)]. The 7 parity is unaffected by this
operation and retains the usual convention of the super-
multiplet scheme. Another scheme is known as the I su-
permultiplets which puts more emphasis on the rotational
degree of freedom. A new label I=L —T (0<I <2N—2)
is introduced to classify angular modes. Since the com-
ponent of the total angular momentum orthogonal to
(L®5)%), is N=L—(L®,,)?;; and N?=L?>—T? (as in
molecules), we have in the classical limit
N*=(L +T)L —T). So the number I pertains, loosely
speaking, to the rotational degree of freedom orthogonal
to that represented by 7. With K as the vertical axis and
+ T as the horizontal axis, a diamond similar to Fig. 7 can
be constructed for each I?
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The moleculelike normal modes motivated HKP to fit
intrashell energy levels to the molecular-term formula.
Three aspects peculiar to atoms were addressed. First is
that the rotational constant evaluated using the probable
gyro radius (=hyperradius R), namely,

B=1R?, (34)

implied that the probable hyperradius would be unrealisti-
cally bigger than the size of the atom. Second, the prob-
able hyperradius appears to shrink as the system increases
rotational energy, that is, the centrifugal distortion corre-
sponds to the contraction of the atom. Third, the
quasidegenerate T doublets showed a tendency for the
states with 7=+ to be somewhat higher than those with
n=—. For the latter two, there are already heuristic ar-
guments explaining the tendencies. There is nevertheless
a question. For example, do they also hold for the — type
supermultiplets. We examine these phenomena in the rest
of this section.

As a preliminary, we give here a result of fitting the
calculated energy levels of Lipsky et al.?> to the
molecular-term formula'®

E=Ey+vv+1)+X(w+1)
+GT*+[B—alv+ 1][L(L+1)—T7?]
—D[L(L+1)-T?]. (35)

Their calculated energy levels are given in parentheses in
Fig. 7. Applying Eq. (4.12) of HKP, we arrive at Table L.
The values of R calculated from Eq. (34) are R =28 and
39 a.u. for the + and — supermultiplets, respectively.
These are indeed gross overestimates in view of the He po-
tential curves for N=3. (Note that the hyperradius R
shown in Fig. 8 is given in reduced units, i.e., ordinary
atomic units multiplied by Z.) The negativity of D im-
plies the contraction of the system with increasing L. We
see D is also negative for the — multiplets. The compar-
ison of T doublets show that with the exception of 'D°
and *D°® the =+ states are higher than the correspond-
ing 7= — states. (This exception may be merely due to
numerical inaccuracy in the calculation of Ref. 22.)

A. The origin of the rotational constant B

We must begin this section with a word of warning.
The molecular-term formula (35) attempts to attribute the
higher-order corrections to the anharmonicity of the
bending vibration potential, centrifugal distortion, etc. In
atoms, the impurity of the (K,T) states is an equally im-
portant contributor to the departure from the lowest-order
formula,

E(L,w,T)=Ey+v(v+1)+B[L(L+1)—T?]+GT*.
(36)

To avoid overweighing high-lying states, let us employ a
few lowest states to fit Eq. (36). Thus, in particular,

AE=E(L',v,T)—E(L,v,T)
=(L'+L+1XL'—L)B . (37

TABLE 1. Molecular term constants obtained by fitting the
lowest + and — states of He** (N =3) to the molecular-term
formula, Eq. (35). Data taken from Ref. 22. Numbers in
square brackets represent powers of ten, e.g., [ —2]=1Xx10"2

+ J—

E 0.3695 0.2943

v 1.45[ —2] 6.57[—3]
X 1.17[ —3] 4.90[ —4]
G —1.05[-3] —521[—4]
B 6.46[ —4] 3.23[—4]
a —5.97[—4] —321[—4]
D —6.49[ —5] —1.04[ 5]

Applying this to (2,0)5 'S¢, 3P°,'D* we obtain Table II(a).
The estimate of R is still larger than the average value of
R expected from Fig. 8. The contraction of the system is
undeniable, however. A similar trend holds with the —
counterparts (2,0); >S¢, 'P°3D® as in Table II(b), though
the trend is weaker.

The departure of R from the expected value of R in
Fig. 8 is not surprising in view of the following fact. In
atoms, the rotational constant does not simply arise from
kinematics. Here we are concerned with the effective ro-
tation of the electrons’ orbits. We must thus identify the
inertia of the orbits, namely that part of the two-electron
Hamiltonian which contributes dominantly to the rotor
energy. To do so we first consider the limit of high Z in
which case the bielectronic interaction is perturbative.
One of the SO(4) bases | PQLM ) [Eq. (3.15) of HKP] is a
good one for perturbation calculation where P=2N
—1—(v+1). An approximate result has been obtained by
HKP exploiting the series expansion in r,'r,/R? to the
leading order,!® and is given by

-0.10

-0.12
-0.14

-0.12

-0.14

POTENTIAL CURVES

-0.16 |-

-0.18

-0.20
oo b L L Ll ]

10 16 2228344046 16 2228344046 16 22 28 34 4046
R(o.u.)

FIG. 8. Reproduction of He (N =3) potential curves from
Ref. 7(d). R in reduced a.u., U, in reduced Ry.
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TABLE II. Estimate of B and R [see Eq. (34)] from the
lower members of the rotational series for a given v and T. [See
Eq. (37).] (a) A=+, (b) A=—. Numbers in square brackets
represent powers of ten, e.g., I[—2]=1Xx10"2

L-L' S—-P S—-D P—-D
(a)
B 1.37[—-3] 1.63[—3] 1.76[—3]
R 19 18 17
(b)
B 6.60[—4] 7.11[—4] 7.30[—4]
R 27.5 26.5 26.2
<PQLM 1 PQLM)
T

~(4Z /N)(24N2 424+ 14B%4212)" 12

s [1+ 6L =T —T*4 28N W+ 1)
—7(u+1)2+7]+o<1/1v3)} . (38)
We identify then
Bzﬁ% . (39)

The rotational constants obtained by Eq. (39) for the
N =3 rotor series of He, Li*, Be’* and B3t are about a
factor of 2 smaller than the values deduced from Ref. 22.
Since the radial correlation which tends to contract the
system by mutual screening and other effects are not in-
cluded, one should not take this discrepancy too seriously.
Equation (39) is a rough approximation which attributes
the origin of the rotational constant to the bielectronic
repulsion. This approximation leads to the linear depen-
dence of B on Z which trend is well respected by the
values of B deduced from the energy levels in Ref. 22, see
Table III. In summary, this behavior of the rotational
constant B contrasts with that of molecules. The rotation
of molecules can be treated as quasirigid rotors because
the positions of the atoms are localized and are deter-
mined by the electronic potential surface, where the atoms
perform simple harmonic-type oscillation about the poten-
tial minima. Electrons in a doubly excited atom perform
periodic motion about the nucleus; it is the effective rota-
tion of their orbits which contributes to the rotational en-
ergy.

The linear dependence of B on Z arose from that of
1/ry, on Z. The same linear law holds with the vibra-

tional constant W(R), Eq. (27). This is checked in Table
IV to complete our examination of the main molecular
constants. An estimate of v from Eq. (38) is
v=(7Z /20vV'5)N ~3. For He this gives 0.012 a.u. which is
to be compared with the value 0.0145 a.u. given in Table
I. Note also the ratio v/B~14N /3 from Eq. (38) is close
to the empirical rule v/B~4N (HKP).

B. The rotational contraction of intrashell states

Evidence of the rotational contraction, namely, the
negativity of D of Eq. (35), was noticed by HKP not only
by the energy fitting but also from the fact that the posi-
tion of the hyperspherical minimum moves inward as L
increases (see Fig. 8). (This trend does not hold for 4 =0
channels.) Using the | PQLM ) basis of HKP again, one
can evaluate (PQLM | R?| PQLM ). The result is

2
R22—81!Z7[40N2+17—6L2+3T2— 12N(+1)
+3(w+1)?] (40)

[Egs. (A7) and (8) of HKP used]. The negative coefficient
of L? indicates the rotational contraction. Let us look
into this effect more closely. In Fig. 9 we show the sec-
tional view of the reduced density as a function of @. The
value of 6, is set to where the density is maximum. Fig-
ure 9(a) is for (2,07 and Fig. 9(b) is for (1,1); channels,
respectively, the latter having higher angular correlation
energy. In both cases the a wave function moves toward
a=0 and peak less at a=m/4 with increasing L. In the
configuration-interaction language, this is because the
larger L is, the more weight is placed on orbital (NI,,nl,)
of larger I, and [,, or in classical terms, on orbits of
smaller eccentricity, hence the average size r= (R sina)
tends to be smaller. (Note (r2)=(R?)/2.) Because of
this reduction in the amplitude near a=/4, the corre-
sponding sectional view in 6, (Fig. 10) shows that the
charge density shifts toward small 6;, as L increases.
This is in contrast with the prediction of the rigid-bender
model where the shift is toward 6,,=m as L increases.
This can also be seen from the O(4) expectation value of
cos6;, given by Eq. (3.31) of HKP, namely,

(cosfy)=—[8N2+1+12N(v+1)
+3(v+1)*—2L%]/8N?. (41)

The negative coefficient of L? implies that (6,,) de-
creases from 7 as L increases. In other words, in doubly
excited states with large L, both the radial and angular
correlations are weakened.

TABLE IIl. Z scaling of the rotational constant B. Formula (39) predicts that B/Z is a constant.
[B was calculated using the energy spacing between 3(2,0); 'S¢ and *P°.] Numbers in square brackets

represent powers of ten, e.g., 1] —2]=1Xx10"2

z 2 3 4 5
B 1.36[ —3] 2.24[ —3] 3.09[ —3] 3.95[ —3]
B/Z 0.68[ —3] 0.75[ —3] 0.77[—3] 0.79[ —3]
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TABLE IV. Z scaling of the vibrational constant v. Formula (27) predicts that v/Z is a constant. [v
was calculated using the energy spacing between 3(2,0)7 and 3(0,0)i" of the 'S® symmetry.] Numbers in
square brackets represent powers of ten, e.g., 1[ —2]=1x10"%

z 2 3 4 5
v 1.92[ —2] 3.30[ —2] 4.73[—2] 6.17] —2]
v/Z 0.96[ —2] 1.10[ —2] 1.18[ —2] 1.23[—2]

C. The T doubling

To complete our discussion of moleculelike normal
modes, we wish to comment on the T doubling (also re-
ferred to as / doubling or A doubling). We have already
indicated the general tendency for a pair of intrashell
states with the same 4, L, K, and T but different 7 (i.e.,
T doublets) to have p=+ higher than yp=—. This
behavior can be explained in terms of the restriction on
each member of the pair of the possible atomic configura-
tions. To demonstrate this, let us consider the He (N =2,
1po3pe) doublets. The available intrashell configurations
are 2s2p for 'P° and 2p? for 3P°. Let us set a=mw/4.
Then the antisymmetrized wave function of the former is
proportional to the M component of the vector or (T;+7,)
[proportional to QOIIM(?I’?Z)"I"@011M(?Z,?1)]' Slmllarly,
the wave function of the latter is proportional to the M
component of the vector ¥, XT,. Their densities are pro-

35 {a)

3 ri ’ T I 'sl‘

30 A + 3P —
> (K,T)=(2,0) 4
;-252.5 B 4
w20 | Ipe
w 3F°
Was .
s
20 |- / -
(&) {/

os } SN 4 -

00 | | L

(0} 45
Q (deg)
(b)
IO-.
(K, )= (1,0 Yy
'Ee 7y
= 3Ine ///
3 D
Ewn O5L o /,’ -
m. .P //,
3 o
Q T
e et .
OO a 450

FIG. 9. (a) Sectional view of the charge density as a function
of a for channels with (K,T)4=(2,0), (b) same for
(K, T)"=(1,1){. In (b), the charge density is renormalized so
that the maximum is unity.

portional to 1+ cosf;, and sin’6,,, respectively. Since
sin%0,, vanishes at 6,,=0, and =, the 3P¢ intrashell state
already has the behavior characterized by (K,7)=(0,1).
The formation of a rovibrator mode for the 'P° state re-
quires the configuration interaction with the neighboring
intrashell states such as 2s3p,2p3d,2p4d,.... These
states have rather small amplitude near a=m/4 so that
their contribution is somewhat marginal in reducing the
amplitude at 6;,=0 and in sharpening the rovibrator
behavior. Therefore the repulsion is larger for !P° than
for 3P¢. This argument can be readily generalized to
11,1, >2 as in Ref. 5 noting the property

Y 10,8 =0 11 L (T2, T) (42)
and 6,,=0 when T,=%,. A demonstration of this fact is
given in Fig. 11 for a nontrivial case of He (N =3,
1F°3F®) with (K,nT)4=(1,%1)7 by slicing the reduced

(a)
3.5 T I L] I 1

30
(k.7 (2,00

\J T T

(KTY= (1,0

180°

FIG. 10. (a) Sectional view of the charge density as a func-
tion of 8,, for channels with (K, T)4=(2,0); as in Fig. 9(a), (b)
same for (K,T)4=(1,1)7 as in Fig. 9(b).
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FIG. 11. Demonstration of the nonvanishing amplitude of
the (1,1)§ 'F° charge density at a=w/4, 6,,=0. On the con-
trary, the (1,1)§ 3F¢ charge density vanishes identically. Angu-
lar configurations included are sf,pd,dg,df,fg for Fo,
pf,d* f?,dg,gd for °F°.

density at a=w/4 as a function of 6;,. Note that the
nonvanishing amplitude of !F° (= +1) at 6,,=0 which
enlarges the effect of the bielectronic repulsion is respon-
sible for the fact that 'F° lies slightly above *F¢ (see Fig.
7.

V. SYSTEMATICS OF AUTOIONIZATION WIDTHS

In this section we study whether the knowledge of mol-
eculelike normal modes gives insight into two-electron
dynamics. There is fragmentary evidence indicating cer-
tain systematics in decay widths, which can be explained
qualitatively in terms of moleculelike normal modes. The
overlap between the quasibound resonance wave function
and a continuum wave function is large near the locus of
the ridge?® where the pair correlation in the continuum
channel is just breaking up and the quasibound resonant
wave function is gaining amplitude. From the
configuration-interaction viewpoint, the major contribu-
tion to the overlap weighted by the bielectronic repulsion
arises from the a=m/4, 6,,=0 region, and is large when
both channels have similar characteristics. The details of
the asymptotic portion of the continuum wave function
do not matter owing to this localization of the coupling
region. Therefore a rule of thumb® is that the partial
width is the largest when the continuum channel corre-
sponds to

(i) AN=—1, AK=—1 (i.e.,, Av=0), AT =0 with 4 un-
changed. This rule is well satisfied in the e-H col-
lision,'*? for example, other rules which follow from
similar arguments are the following:

(ii) The — states have widths that are orders of magni-
tudes smaller than those of the corresponding -+ states
because of both the reduction in amplitude near
a=1/4,0,,=0 and also of the expanded size of the atom-
ic states which makes the amplitude of the wave function
small at the critical value of R.

(iii) The lower member of a T doublet generally has the
smaller width since it has the less amplitude near a =7/4,
91220 (Sec. IVCQC).

(iv) When N, T, and K are the same then the states
with higher L have larger widths. This is because the
higher rotor states have larger amplitude near 6,,=0 (see

Table V). However, this effect is more subtle since higher
L states have less amplitude near a=m/4 (Sec. III B).
When the former factor is dominant, which appears to be
often the case, then this rule applies.

(v) When N, L, S, 7, and K are the same, then the ones
with the larger T have the larger widths. This is due to
the increase in the amplitude near 6,,=0. [For example,
the 3(0,0)F 'D* state is narrower than the 3(0,2)7 'D€ state
by factor 3.5.]"3

(vi) When N, L, S, 7, and T are the same, then the one
with smaller v is expected to be narrower since the larger
v is the larger the amplitude near 6;,=0. [For example,
the 3(2,0)5 'S state is narrower than the ;(0,0);" 'S¢ state
by a factor of 1.8.] However, for the majority of cases,
the increase of v leads to a considerable reduction in
correlation energy and hence to the significant shallowing
of the potential well. The radial wave function then ex-
tends further out and the normalization integral is dictat-
ed by the large R contribution, resulting in the reduction
of the amplitude at small R. This inverts the trend. Typ-
ical examples of this inversion are the pairs 5(0,0); and
3(2,0)F of *P° and 'D®, and ;(—1,1)7 5(1,1)F of 'P°.
The ratios of the widths'? are 2.0, 7.4, 2.2, respectively.

We note that the rules (i), (ii), and (iii) have rather gen-
eral validity but the others arise from a few competing ef-
fects, so exceptions occur. These rules were drawn from
data in the presently available literature. Confirmation of
these rules must be based on more accurate and extensive
compilation of widths and on critical analysis of compet-
ing effects. In the future, efforts should be directed to
this end.

VI. CONCLUSIONS

In this article we examined the wave functions calculat-
ed in hyperspherical coordinates in the body frame of the
atom. By decomposing the body-frame wave functions
into rotational components, the quantum numbers K, T,

TABLE V. This set of data demonstrates how width grows
along the rotor series owing to the increases in the amplitude
near 6;,=0. Numbers in square brackets represent powers of
ten, e.g., [ —2]=1x10"2,

(K, TR BHILT Width (eV)

Heﬁt

3(2,0)F 'S¢ 0.828[ —1]* 0.825[ —11°
3pe 0.976[ —1]* 0.116°
1pe 0.242° 0.154°

(H™)**

3(2,0)F 's¢ 0.388[ —1]°
3po 0.483[—1]°
1pe 0.493[—1]°

5(4,0)F 'S¢ 0.150[ —1]¢
3po 0.163[ —1]¢
pe 0.177] —1}¢

2Reference 13.
"Reference 24.
‘Reference 25.
9Reference 26(a).
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and A used by Lin for the classification of doubly excited
states were related to the moleculelike behavior of the
atom. The framework developed permits us to have a
very global and unified picture of two-electron correla-
tions: Not only the classification scheme based on hyper-
spherical coordinates can be qualitatively related to the
rovibrator model and its quantum numbers, but the quan-
titative deviations of molecular term constants from the
latter model can be assessed.

The picture presented here in part parallels that of the
group-theoretical treatment and in part complements it.
Examination of the wave function calculated in hyper-
spherical coordinates in the body frame of the atom al-
lows the immediate interpretation of rovibrational quan-
tum numbers and the quantum numbers K and T ob-
tained in the O(4) scheme; it also allows the identification
of radial quantum number 4 directly. Thus, the approxi-
mate symmetries which are implicit in the labeling of en-
ergy levels are identified with pictures of coupled electron
motions, either in terms of the pattern of radial and angu-
lar correlations or in terms of the qualitative molecular
normal modes.

The body-frame analysis elucidates the underlying
correlations with emphasis on the geometrical constraints
of the wave function of the system. The systematics in-
ferred from the study of quasi-invariants are considerably
sharpened in the hyperspherical analysis.

Despite the unified view of doubly excited states
developed in this paper, there still remain a number of
open questions: How should the normal modes of doubly
excited states formed by two valence electrons be affected
by the presence of a structured core? How should the
moleculelike normal modes manifest themselves in angu-
lar distribution of fragments, for example? (A partial
answer was given by Greene,!! but a global picture is still
lacking.) How does the structure theory presented here
help us in understanding the dynamical aspects of col-
lisions (such as the formation of He** in Het + He col-
lisions?”)? As a further extension, we may ask ourselves
whether triply excited states exhibit XY; moleculelike
normal modes. We hope that in the future these questions
will be studied both experimentally and theoretically.
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APPENDIX A: SYMMETRY PROPERTIES
OF THE BODY-FRAME FUNCTION ¥ UNDER
PARTICLE EXCHANGE AND REFLECTION
WITH RESPECT TO 0,,=7

In this appendix we derive the symmetry properties of
¥6(R,a,0),) under (i) a—7/2—a and (i) 6,,—27—6),.
The final results were given in Egs. (13) and (17), respec-
tively.

Under the exchange of particles 1 and 2, a—7/2—a
and X—»>7—(X+86,,). (See Fig. 2.) According to our
choice of the body frame, the new coordinate system is
(8, —1%,—%2). In the new frame,

Yine®12)= 3 (Lim\lmy |LQ) Yy m (R1)Y,,(R7)

my,m,

= 3 (limilamy | LQ )Yy gy (m—(X +613),00Y, . (7—X,0)

my,m,

= 3 (himilymy | L=, (X 4613,0)%),,(X,0)

my,m,

L +,+Q s
=(—1)""7 Y1,L,L0(®2,T1)

=(—DF +Q@121,LQ(?'1,?'2) ,

'1'=(1r—(X+012),0) ’ (A1)
Ty =(7r-X,0), (A2)
and the body-frame function (12) is given by
¥ R,—;——a,ﬂu =3 IIJ{"IZ(R sina, R cosa)
.1
X@,llzLQ(’f}',’f'z') . (A3)
From the following relations,
Yim(m—0,74+¢)=(—1)Y,,(6,¢) (A4)
and
Y (r—6,7)=(—1)"Y},, (m—6,0) , (AS)
we obtain
Yim(m—6,0)=(—1)*™Y,,.(6,0) (A6)
such that
]
(A7)
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where we have used
1
Yy 10t =" Y @R

and Q=m,+m,;.
We also need to know ;bﬁ,z(rz,r, ). From Eq. (10),

1/’(rz,r1)=121, Y1, (r2r % L (B f)
172
=(—1%(r,,1,)

=(—=1° 3 ¥ L(r1,r) 11, (F18)

LT

We can see easily that
1/;{‘112(r2,r1 )=(—1)

With Eqgs. (A8) and (A12), Eq. (A3) reduces to

I+, +L+S 1
1”1211("1,’2) .

g

m L A AN
R,> —a,6p =121 U (r2,r )% ,0®1,17)
1°2

I, +l,+L+S ' A
= (=" Vi, (ri,r) ¥ 1, 10 @ 1R~ 142

Il

=m(—1°*%5(R,a,0,,) ,

where 7 is the parity of the state. This is the result given
in (13). Notice that the change of frame (8,1,%,)
—(8,—1,—1y,) is equivalent to the rotation about the §
axis through #. This transforms D&’j}-»( - l)LD(féM.
Combining with Eqs. (15) and (A13), one also sees that
the spatial wave function indeed gains the phase factor
(=1 as in Eq. (A10).

To derive (17), we notice that the reflection with respect
to 6,,=1r axis is equivalent to the replacement of X — —X,

(A8)
(A9)
(A10)
(A11)
(A12)
(A13)
T
and X +6;,—2m— (X +0,,). Using the property
Yim(—06,0)=(—1)"Y,,(6,0) (A14)
it is easily seen that
¥(R,a,2m—0))=(—D%G(R,a,61,) , (A15)

which is identical to Eq. (17).

l(a) M. E. Kellman and D. R. Herrick, Phys. Rev. A 22, 1536
(1980); (b) J. Phys. B 11, L755 (1978).

2D. R. Herrick, M. E. Kellman, and R. D. Poliak, Phys. Rev. A
22, 1517 (1980).

3D. R. Herrick, Adv. Chem. Phys. 52, 1 (1983).

4P. Rehmus and R. S. Berry, Chem. Phys. 38, 257 (1979).

5G. S. Ezra and R. S. Berry, Phys. Rev. A 28, 1974 (1983). See
Also H. J. Yuh, G. Ezra, P. Rehmus and R. S. Berry, Phys.
Rev. Lett. 47, 497 (1981).

6P. R. Bunker and J. M. R. Stone, J. Mol. Spectrosc. 41, 310
(1972).

7(a) C. D. Lin, Phys. Rev. A 25, 76 (1982); (b) 26, 2305 (1982);
(c) 27, 22 (1983); 25, 1535 (1982); (d) 29, 1019 (1984).

8J. H. Macek, J. Phys. B 1, 831 (1968).

9U. Fano, Rep. Prog. Phys. 46, 97 (1983), and references therein.

10H, Klar and W. Schlecht, J. Phys. B 9, 7699 (1976).

11C, H. Greene, Phys. Rev. Lett. 44, 869 (1980).

12C, Wulfman, Chem. Phys. Lett. 23, 370 (1973).

13D. R. Herrick and O. Sinanoglu, Phys. Rev. A 11, 97 (1975).

143, D. Louck and H. W. Galbraith, Rev. Mod. Phys. 48, 69
(1976).

ISE. A. Solovev, Zh. Eksp. Teor. Fiz. 82, 1762 (1982) [Sov.

Phys.—JETP 55, 1017 (1982)].

16D, R. Herrick, Phys. Rev. A 12, 413 (1975).

17E. Thiele and D. J. Wilson, J. Chem. Phys. 35, 1256 (1961).

18], M. Launay and M. L. Dourneuf, J. Phys. B 15, L455 (1982).

19(a) M. J. Davis and E. J. Heller, J. Chem. Phys. 75, 246 (1981);
(b) 73, 4720 (1980).

20U, Fano, Phys. Rev. A 24, 2402 (1981).

21A. R. P. Rau, Phys. Rev. A 4, 207 (1971).

221, Lipsky, R. Anania, and M. J. Corneely, At. Data Nucl.
Data Tables 20, 727 (1977).

23], Macek and P. G. Burke, Proc. Phys. Soc. London 92, 351
(1967).

24P, G. Burke and A. J. Taylor, J. Phys. B 2, 44 (1969).

25P. G. Burke, Advances in Atomic and Molecular Physics, edit-
ed by D. R. Bates and I. Esterman (Academic, New York,
1968), Vol. 4, pp. 173—249.

26(a) Y. K. Ho and J. Callaway, Phys. Rev. A 27, 1887 (1983);
(b) J. Phys. B 17, L559 (1984).

27(a) J. M. Feagin, J. S. Briggs and T. M. Reeves, J. Phys. B 17,
1057 (1984); (b) A. Itoh, T. J. M. Zouros, D. Schneider, U.
Stettner, W. Zeitz, and N. Stolterfoht, ibid. (to be published).



