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Phase-space approach to the exchange-energy functional of density-functional theory
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The phase-space distribution function corresponding to a ground-state density of a many-electron

system proposed earlier [S. K. Ghosh, M. Berkowitz, and R. G. Parr, Proc. Natl. Acad. Sci. USA

81, 8028 (1984)] is employed to obtain a new approximate exchange-energy functional. This is

K[p] =(m'/2l f p (r)P(r)dr, with P(r) =1/kT(r), where T(r) is the local temperature previously

defined; z kT(r) is the kinetic energy per electron at r. In Thomas-Fermi theory, P=5(3o p)

and this formula gives '9 times the classical Dirac formula. This shows why the a parameter in

Xa theory is normally close to C,
'9 ){—, )=0.74. Numerical calculations on atoms are performed,

giving excellent results, and the exchange hole associated with the new formula is studied in detail.

I. INTRODUCTION

K[p]=C, f p (r)dr, C, =(3/4m)(3sr )'/ (2)

This has been much used, for example in the exchange-
only version of Kohn-Sham theory. The method due to
Slater, the so-called Xtz method, modifies this by includ-

ing an empirical multiplicative factor a,

The phase-space distribution function f(r, p) corre-
sponding to a ground-state electron density p(r), proposed
earlier' in connection with a thermodynamic transcription
of density-functional theory, recently has been shown~ to
be highly suitable for predicting momentum-space proper-
ties, viz. the Compton profiles for atoms and molecules.
In the present work, this same f (r, p) is used to generate a
new formula for the exchange energy functional K [p].

Consider the ground state of a system with an even
number of electrons, for which the exchange energy is
given by

K[p]=- f f Iy, '
dr dr, (1)

fr —r'
f

where y(r, r'} is the first-order density matrix. The prob-
lem is to turn this exact formula for K into a formula for
K in terms of the diagonal element of y(r, r'),
p(r) =y(r, r)

The classical way to do this is due to Dirac; one uses a
uniform electron-gas construction for y(r, r'). The result
is the well-known local density approximation (LDA) for
exchange, 3

II. EXCHANGE ENERGY

Consider an N-electron system characterized by the
ground-state density p(r). Associate a phase-space distri-
bution function f(r,p) with this density and assume it to
yield the correct kinetic energy density t(r,p) as well; that
1S

p(r)= f dpf(r, p), f drp(r)=&,

t (r p)= —, f dpp f(r, p), f dr t (r p)=Ei„„.
An entropy functional, S defined as

s = —k J dr J dpf[lnf —I],

(5)

where k is the Boltzmann constant, is then maximized
subject to the constraints of correct density, Eq. (4), and
correct kinetic energy density, Eq. (5), to give the unique
most-probable distribution function'

f ( )
—Q(fl —p(f)p /2 (7)

On evaluation of the Lagrange multipliers a(r) and p(r)
from Eqs. (4) and (5), one obtains

ing point is so appropriate. We here consider an alterna-
tive approach, which makes use of a Gaussian approxima-
tion to y(r, r'} (Ref. 1) that elsewhere has already been
shown to be highly useful for other purposes. ~ The result
is a simple improvement of Eq. (2) and also increased
understanding of Eq. (3).

K[p]= —,'aC, f p4/'(r)dr. (3) f (r,p)=[2nkT(r) J
/ p(r)exp[ —pi/2kT(r)],

Values of a have been determined by various means. To
reproduce Hartree-Fock energies of atoms, for example,
values of a ranging from 0.77 for the atom He to 0.70 for
the atom Xe are required. Gradient expansion correc-
tions to Eq. (2) also are known (sm below}.

For highly nonuniform systems such as atoms or mole-

cules, it is not certain that the uniform electron-gas start-

~here

P(r) = 1/kT(r) . (9)

—,
' p(r)kT(r) =t (r,p) . (10)

Here the local temperature T(r) is defined, in analogy
with an ideal gas, by
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The inverse transformation yields the density matrix y
from f(r,p),

y(r+ —,'s;r ——,'s)= f f(r, p)e'i"dp . (12)

The Maxwellian nature of this resulting f(r, p) leads to
various simple thermodynamic and fluid-theoretic equa-
tions for the electron cloud. '

The phase-space formulation of quantum mechanics be-

gan with the Wigner distribution function, defined
through partial Fourier transform of the first-order re-
duced density matrix y(r, r'),

f(r, p)=(2m) f y(r+ —,'s;r ——,'s)e 'i"ds . (11)

ti(r,p)= ,
'

t„—(r,p}= ~ ~ + —,
'

V p72 p

leads to the exchange energy

K [ ]
377 1 g/i

1
1 1 Vp Vp

+72 g 8/3

+2@

24Ck p5/3
dr, (19)

Taking Eq. (8) as an approximation for f (r,p)," OEq.

(12) leads to
—s2/2 r)y(r+ —,

' s;r ——,
' s) =p(r)e

The exchange energy K[p] of Eq. (1) then becomes

K [p]= f p—i(r)P(r }dr .

(13)

(14)

pt

2
= f f(r p)dp (15)

This equation is the basic phase-space formula for calcu-
lating the exchange energy from the density.

Consider now the functional form of the kinetic energy
density t(r,p) which defines P(r) or T(r) through Eqs. (9}
and (10). Although the kinetic energy density is not
unique, the most natural form, as has also been adopted in
earher works'i and confirmed by Berkowitz, ' is

which, on expansion and retention of second-order terms,
becomes

K[p]= (3H)'" f p4"dr
6m

25m (3g) 4~i VP VPd (20)
108 4/3

This expression can be compared with the conventional
gradient expansion

K[p]= (3n )'i' f p i'dr

+ (3m) dr, (21)
144 p

where the second coefficient is due to Sham' and is about
three times smaller than that found empirically by Her-
man et a1. ' Note that the coefficients of both the first
and the second terms are different. One can generate
higher order terms similarly. Equation (19) itself is an in-
teresting closed expression for exchange.

where the p; are orbital densities. The orbitals have been
here assumed to be real.

One also has various approximate kinetic energy densi-

ty functionals, for example„ the Thomas-Fermi form"

BI. EXCHANGE HOLE

Now consider the behavior of the exchange hole corre-
sponding to the exchange energy of Eq. (14). The ex-
change energy of Eq. (1) can be written in the form

to(r,p)=C»p(r), C» ———,', (3n )

for which Eq. (14) gives

K[p]= (3' )' f p(r) dr .
6m

(17)

K[p]= ——,
' f dr f dr' p(r)p, (r, r')

and can be visualized as the interaction energy of an elec-
tron with its associated exchange hole. The exchange-hole
density p„(r,r') is given by

Note that this expression differs from the familiar Dirac
expression of Eq. (2) by a multiplicative factor of —", .
That is, a =(—", )( —', ) =0.74 is predicted for Eq. (3}. Equa-
tion (17}is a modified local density approximation for ex-
change.

Although using the closed form of Eq. (14) clearly is to
be preferred, it is of some interest to generate gradient
corrections to Eq. (17) from Eq. (14) by augmenting the
Thomas-Fermi kinetic energy with correction terms.
Thus, inclusion of the second-order Weizsacker-Kirzhnits
correction,

p, (r, r') = ——1 Ir(r;r') I'
2 p(r)

(23)

p, (r, r') = —p(r)/2 (24)

and

f p„(r,r')dr'=1 for all r. (25)

The exact exchange hole is always negative and satisfies
two important other conditions,



PHASE-SPACE APPROACH TO THE EXCHANGE-ENERGY. . .

Rewriting the density matrix of Eq. (13) as N, (r)= f p, (r, r')dr'

y(r;r') =p
r+r'

2
exp —

(
r —r'

~
2P

r+r
2

, (26)

r+r'
P

the present exchange hole is seen to be given by Xexp —
~

r —r'
~

/P2 r+r'
2

z r+r'
P

r+r
)(exp —

~

r —r
) /I3

2
(27)

can be simplified on change of variable

(r+r')/2=R and r —r'=2(r —R), dr'=8dR

to y&eld

N, (r) = — f p (R)exp[ —4
~

r —R
~

/P(R)]dR .
p(r)

(28)

(29)

which clearly is always negative and satisfies Eq. (24).
The corresponding normalization integral,

(30)
For spherically symmetric densities (e.g., atoms), angular
integration can be performed leading to the simplified
form

N„(r)= — J dR Rp (R)(RR) exp — —exp
m'

2 4(r —R) 4(r +8)
rp(r) P(R) P(R) (31)

This is not necessarily equal to —1 for all r values. The
normalization condition of Eq. (25) is not necessarily ex-
actly satisfied by the exchange hole of the present scheme.

A most important aspect of the exchange hole is that its
spherical average that determines the exchange energy.
Thus Eq. (22) can be rewritten as

p„(r,r+s)
K [p]= ——,

' f dr p(r) f ds

SA( )
rpr s (33)

where the spherically averaged exchange hole is given by

p, (r,s)= p, (r, r+s)dQ, .I

4m

For the exchange hole of Eq. (27),

p„(r,s) = ——sA 1 1 1

2 rp(r) s
( r+s/2

~

X r' r'p r' exp —s r'

(34)

K[p]= —4m f drr p(r) f dssp„(r, s) .

The normalization integral is similarly given by

N (r) =4nfds s p, (r, s.) .

(36)

The integration in these formulas generally must be per-
formed numerically.

(35)
which determines the exchange energy through the simple
formula, for spherically symmetric densities,

IV. RESULTS

The present theory is readily tested for atoms by
evaluating the exchange energies based on Eq. (14) using
electron densities from the Hartrm-Fock atomic wave
functions of Clementi and Roetti. '7 The local tempera-
ture is calculated from the kinetic energy density, employ-
ing Hartree-Fock orbital densities in Eq. (15). For the
noble-gas atoms, the results are compared in Table I with
the exact exchange energies, the LDA result [Eq. (2)], the
modified LDA (i.e., using Thomas-Fermi kinetic energy)
[Eq. (17)],and some recent results of Perdew. '

Table I shows that (as is well known) the traditional
LDA underestimates the exchange energies; the underes-
timation varying from —13.8% for He to —4.7%%uo for Xe.
In the present method, on the other hand, the underes-
timation ( —11% for He) turns into overestimation (1.5%
for Xe) as one goes to higher atoms. The modified LDA
also shows the same trend. The considerable overall im-
provement over conventional LDA is clear.

Much detailed insight into the nature of the functional
can be obtained through the study of the properties of the
exchange hole. In Figs. 1 and 2, the exchange holes in the
present scheme are compared with the exact and the LDA
results. The last two are taken from a paper by Perdew
and Zunger. ' In Fig. 1, p„(r,r') for the neon atom is
plotted against (r' —r) at r=0.09 and 0.39 a.u. , where r'
lies on the line joining the point r and the nucleus. The
asymmetry of the exact exchange hole is much better
reproduced by the present method than by the convention-
al LDA method. %'hen r and r' are on the same side of
the nucleus, nearly exact coincidence with the correct hole
is observed, although, for points on opposite sides of the
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TABLE I. Exchange energies for noble-gas atoms (a.u.).

Atom
(Z)

He (2)
Ne (10)
Ar (18)
Kr (36)
Xe (54)

Exact
exchange'

1,026
12.11
30.18
93.9

179.1

Present
exchange

0.9129
11.57
29.24
94.26

181.7

LDA
exchange'

0.8841
11.03
27.86
88.62

170.6

Modified
LDA

exchange

0.9823
12.26
30.96
98.47

189.5

Modified
present

exchange'

1.022 (1.119)
12.15 (1.050)
30.97 (1.059)
97.46 (1.034)

188.1 (1.035)

Ferdew
exchange'

1.033
12.24
30.36
94.5

180.5

'Reference 18.
bEquations (9), (10},(14), and (15}of text.
'Equation (2) of text.
dEquation (17}.
'Equations (40), (41), and (45), with f=const (values off indicated in parentheses). See text.

nucleus the present hole decreases too fast. Figure 2
shows that the present scheme also reproduces the spheri-
cal average of the exchange hole [Eq. (35)] very well, in

good agreement with the exact result regardless of wheth-
er the hole center is located near ( r=0.09) or far ( r =0.39)
from the nucleus.

The next important characteristic of the exchange hole
after its shape is its normalization. As has already been

stated, the present exchange hole is everywhere negative,
satisfies the condition of Eq. (24), compares with the exact
behavior quite well, but does not exactly satisfy the nor-
malization condition of Eq. (25). The normalization in-

tegral N, (r) of Eq. (37) for the krypton atom is given in

Fig. 3. Although —N„(r) is not identically unity, it is
near the exact value in the important region. However, at
distances far away or very close to the nucleus, it is much

yM(r ri) r+r'
2

&&exp —
~

r —r'
I &fPC

r+r'
2

(38)

smaller than unity. It is interesting that the shell struc-
ture in the radial density is reflected in the normalization
curve (showing maxima at the points of radial density
minima).

Various schemes can be introduced to improve the nor-
malization. An exact normalization can, for example, be
realized by changing the density matrix of Eq. (26) to

j
I
l
I
I
I

~ ~

~t
~0

-Q2 -01
S

02
S

Q,4

stA

2
Ct.

I

FIG. 1. Exchange hole for neon atom. The observation point
r =r+s lies on a line joining the reference point r and the nu-

cleus. (a) and (b) correspond to two different values of r.

FIG. 2. Spherical average of the exchange hole for neon
atom. (a) corresponds to r=0.09 a.u. ; the hole normalizes to
—0.87 at this point. (b) corresponds to r=0.39 a.u. , where the
normalization is —0.79.
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f=f(r+ r') I2
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FIG. 3. Normalization of the exchange hole vs the distance

from the nucleus for krypton atom.

which amounts to assuming a modified P'„ i.e., an effective
temperature which is somewhat different from the one de-
fined through the kinetic energy and is determined so as
to give a correct normalized exchange hole. The exchange
hole corresponding to the density matrix modified in this
&ay is

r+r
P

p„(r,r') = ——
p(r)

where f is a function. To preserve the symmetry of the

density matrix, f should actually be f((r+r')l2) or

f (
~
r —r'

~
); or Lf (r)+f(r')] I2, f(r)f(r'), or some other

suitable symmetrized form. One simple choice is

Xexp —
~

r —r'
~

2

and the normalization is given by

(39)

4r —R 4r+R
N, (r)= — f dR Rp (R)f(R)13(R) exp — —exp

rp(r)
(40)

K[p] —f pr(r)f (r)P=(r)dr .
2

(41)

A second renormalization scheme follows if one as-
sumes f=f(r) only. In that case at each point r, one sin-

gle f(r) is uniquely determined by the normalization

with f(R) as yet undetermined, but to be determined to
give the correct normalization of Eq. (25). By imposing
this correct normalization, one obtains a set of nonlinear
simultaneous equations which can be solved for f The.
modified exchange energy then may be obtained from

—1=— RRp R r R
rp(r)

4(r —R)
f (r)/3(R)

4(r +R)
f(r)P(R)

The corresponding exchange energy is given by

(42)

I I

K[p]= ——,
' f dr f dr'(r —r'( 'p +

exp —(r —r'( f(r)[d
2 2

=——,
' f dR f dss 'p (R)exp —s f R+ — P(R)

2

= —2H f dR R p (R) f dss f d8sin8exp —s

r

P(R)f R +—+sR cos8
4.

(43)

The main drawback of this second scheme is that the den-
sity matrix no longer is symmetric in r and r'. The situa-
tion is comparable to the case of the weighted density
scheme for nonlocal exchange correlation (XC) density
functional as discussed, e.g., by Gunnarsson et al. ' and
Alonso and Girifalco, ' where the XC hole is assumed to
depend on a density p(r) which is determined through the
normalization condition, i.e.,

—1= f dr'pxc(r, r')

= f dr'p(r')g"[, )(r,r'),

where g" is the correlation function for the homogeneous
electron gas. This introduction of asymmetry in the ex-
change hole (since p depends only on r and is not a sym-
metrized function of r and r') amounts to assuming the
density matrix to be asymmetric.

There is a third alternative, which is simple to imple-
inent. One can choose f to be a constant, a scale factor.
Of course, normalization at each point cannot then be ac-
complished. However, one can choose the constant so as
to minimize the deviations of the normalization integrals
from their actual values in some least-squares sense. To
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I

2
2p(r)p(r)+ f p (r') dr'

5p(r)

(46)

Evaluating u„using Eqs. (9), (10), (15), and (46), and in-

corporating the result into the Kohn-Sham scheme, one
will obtain a modified self-consistent density-functional
procedure. A simpler modified self-consistent scheme
would follow from the modified local exchange of Eq.
(17). The exchange potential then is —", times the conven-

tional Kohn-Sham exchange.

incorporate the dominating effect of the most important
region, the radial density can be used as the weighting fac-
tor in the least square procedure. That is, one may deter-
mine the scale factor by minimizing the quantity

rI r )++Mr '. (45)

Results of doing this are included in Table I. They are
exceedingly good for lighter atoms but for heavier atoms
some overestimation of the exchange is found.

The numerical results reported here have been obtained
by evaluating the functionals using the Hartree-Pock den-
sities. However, this is only a convenience; one can as
well employ the Kohn-Sham orbital densities and, as has
been pointed out by Perdew, ' the difference is small. Of
course, the ultimate purpose is to employ the new ex-
change formula in the self-consistent procedure itself.
The exchange potential corresponding to the exchange en-

ergy of Eq. (14) is given by

Exact
Approximate

FIG. 4. Integrand for exchange energy for uniform electron
gas. Exact: Eq. (47). Approximate: Eq. (49). x is proportional
to

~

r —r'
~

1 —;see Ref. 23.

shown in Fig. 4. What the phase-space procedure has
done is average out the oscillations for large x —

~

r —r' ~,
and it is highly likely that the real behavior of the density
matrix for an atom conforms more to the smoothly de-
creasing integrand of Eq. (49) than to the oscillating in-

tegrand for the uniform gas, Eq. (47).
The foregoing paragraph, it must be emphasized does

not provide the fundamental rationale for the phase-space
approach, or an acceptable derivation of the factor —", .
The real justification is the entropic or information
theoretic derivation of the much more general result of
Eq. (14). It is a best or least-biased approximation that
has been made, and the factor —", is a consequence of that.

Reevaluate this by approximating the integral by the Ber-
kowitz expansion and resummation procedure

(slnx —x cosx) ~ xi/5
5

xe
X

(4&)

f 9x8 dx= (g= 9 (~).1 ~2/5 S Io 1 (49)
0

Here is the —", factor, in this case clearly in error. Howev-

er, consider the integrands in Eqs. (47) and (49); these are

There can be other methods to go from the density and
kinetic energy density to an approximate first-order densi-

ty matrix. For example, one may follow the method of
Negele and Vautherin, 0 which gives interesting results. '

Why is the present method so good'? Because of all such
methods it is the best in an information theoretic sense, as
has already been discussed elsewhere. '

Further insight is provided by consideration of the uni-

form electron-gas case. At first sight this presents a prob-
lem: Should one not recover the classical uniform gas re-

sult if one goes to the limit'? Note that Eq. (30) gives for
the uniform gas X,= ——,'p(np) ~ = —1.05, five percent
in error. K itself is 11% in error.

Consider the well-known integral which enters the cal-
culation of Dirac exchange,

" (sinx —x coax)
(47)

0 x'

The conclusion is that Eq. (14) is a most promising gen-

eralization of the local density approximation for ex-

change. It is a new nonlocal exchange function, but with

the whole effect of nonlocality packed into the local tem-

perature. It may be employed in self-consistent calcula-
tions without basic difficulty, in contrast with gradient
expansions, which have divergence difficulties.

A highly promising new method for computing ex-

change, due to Perdew, ' appears sometimes to surpass

Eq. (14) in accuracy. However, it has the problem that
the functional derivative 5JC/5p is not easily computed,
whereas the functional derivative of Eq. (14) can be dealt
with straightforwardly (although it is not trivial). That
the a parameter in Xa theory should be assigned a value
about 10% greater than —,

' would appear now to be under-

stood.
It should not be presumed that Eq. (14) will be as accu-

rate for molecules as for atoms. Indeed, it is evident from
the history of our derivation of Eq. (14), in the work of
Refs. 1, 2, and 10, that modification of Eq. (14) must be
expected when the symmetry is less than purely spherical.
For then the kinetic energy components in the three direc-
tions are not equivalent, and more than one effe:tive tem-

perature will be required for good accuracy. See for ex-

ample the calculations of Compton profiles in Ref. 2.
The lovely derivation of Berkowitz' in fact brings in

off-diagonal as well as diagonal elements of the local ki-

netic energy tensor; these must be investigated in detail.
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The most interesting questions of all, however, have to
do with the phase-space approach itself. Can the whole
exchange-correlation functional be treated similarly' ?

What theory of the many-body problem gives rise to Eq.
(8) or Eq. (13), and can such a theory effectively incorpo-
rate correlation effects'?

Discussions with Professor Max Berkowitz and Mr.
Weitao Yang have been very helpful. Professor Berkowitz
kindly provided a prepublication copy of Ref. 10, which
in fact inspired the present work. This research has been
aided by a grant from the National Science Foundation to
The University of North Carolina at Chapel Hill.
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