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The method of shifted large-N expansion, where N is the number of spatial dimensions, is applied

to study the bound states of the Hellmann potential, which represents the superposition of the at-

tractive Coulomb potential ( —3/r) and the Yukawa potential B exp( —Cr)/r of arbitrary strength

B and screening parameter C. It emerges that although the analytic expressions for the energy

eigenvalues E„~ yield quite accurate results for a wide range of n, l in the limit of very weak screen-

ing, the results become gradually worse as the strength B and the screening coefficient C increase.

This happens due to the fact that the effective large-N potential becomes quite shallow in compar-

ison to the true potential and the expansion parameter is not sufficiently small enough to guarantee

the convergence of the expansion series for the energy levels. Furthermore, the present analysis re-

veals an intrinsic limitation of the technique in case of specific superposition of potentials: For cer-

tain choices of B, C, n, and I, the structure of the effective potential becomes such that it does not

possess a local minimum and consequently the method turns out to be inapplicable to determining

the corresponding bound-state energies. However, such a limitation does not persist for a simple

screened Coulomb potential and reasonably accurate energy eigenvalues and bound-state normaliza-

tions are obtained for the neutral atoms. It is expected that the normalized bound-state wave func-

tions obtained through the shifted large-N formalism may be useful in calculating the oscillator

strength, bound-bound dipole transition matrix elements, etc. which have significant importance in

atomic processes.

I. INTRODUCTION

Recently Adamowski' has presented a study of the sys-
tematics of the energy eigenvalues of the two-particles in-

teracting through the potential

V(r)= —A/r+8 e "/r, (1)

where A and 8 are the strengths of the Coulomb and the
Yukawa potentials, respectively, and C is the screening
parameter. It is assumed that A and C are positive
whereas 8 can be positive or negative. The potential in (1)
with 8 positive was first suggested by Hellmann ' many
years ago and henceforth this potential will be referred to
as the Hellmann potential irrespectively of the sign of 8.
The Hellmann potential has been used by various workers
to represent the electron-care ' or the electron-ion ' in-
teraction. Varshni and Shukla used this model potential
for alkah hydride molecules. Das and Chakravarty have
recently proposed that such a potential is suitable for the
study of inner-shell ionization problems.

The bound-state energies of the Hellmann potential for
various sets of values of 8 and C have been studied ela-
borately by Adamowski in a variational framework using
ten variational parameters. The energy eigenvalues have
been predicted very accurately but the calculations involve
extensive computational time and effort. Moreover, com-
pact analytic expressions for the energy eigenvalues are
not obtainable.

In this paper, we propose to investigate the bound-state

properties of the Hellmann potential using the large Nex--
pansion technique which has been claimed to be very
powerful for solving the Schrodinger equation to obtain
the bound-state energies as well as the wave functions in
potential problems. ' ' For our work we follow the
shifted 1/N expansion method first suggested by
Sukhatme and Imbo. ' These authors modified the stan-
dard 1/N method through the introduction of a shift pa-
rameter so as to restore the exact Coulomb results in the
leading order of the expansion. The accuracy of the shift-
ed large-N expansion has been tested for many smoothly
changing spherically symmetric potentials, e.g., the
power-law potentials, logarithmic, anharmonic oscillator,
Yukawa, Gaussian, etc. Although the accuracy of the en-

ergy eigenvalues is in general extremely good for such
smooth potentials, it is not a priori guaranteed that the
approach will work equally well for the superposition of
simple potentials such as the Hellmann potential. On the
contrary, it has been conjectured' that the technique may
not be suitable for rapidly varying potentials which can-
not be adequately described by a few leading terms in the
1/X expansion series. However, to our knowledge, no ex-
plcit case study has been undertaken to substantiate this
conjecture.

One of the prime motivations of the present study is to
explore the regions of validity of the large-N technique
for the superposition of potentials such as the one in (1)
which manifests different structures for various range of
values of 8 and C. Our calculations reveal that the de-
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gree of accuracy of the predicted energy eigenvalues varies

appreciably for different range of values of 8 and C and
for different quantum states. These observations have
relevance in the context of applications of the shifted 1/X
expansion technique to realistic problems of atomic phys-
ics. %'e pursue this work with a view to compute bound-
state normalizations and energy levels of neutral atoms,
which have been studied in recent time using various ana-

lytic techniques. The static screened Coulomb poten-
tial (SSCP)

V( r) = —(uZ)e "/r

which emerges as a special case of the Hellmann potential
in (l) with A=O, 8= —aZ, and C=5, where
a=(137.037) ' is the fine-structure constant and Z is the
atomic number, is often used for the description of the en-

ergy levels of neutral atoms. It is known that SSCP yields
reasonable results only for the innermost states when Z is
large. However, for the outermost and middle atomic
states, it gives rather poor results. Although the bound-
state energies for the SSCP with Z = 1 have been studied"
in the light of the shifted large-X method, it is perhaps
reasonable to investigate whether the method is useful in

predicting bound-state energy levels and bound-state nor-

TABLE I. Energy eigenvalues (—E) in atomic units of states 1s 4f for th—e Hellmann potential as functions of the screening pa-
rameter C for 8=%5. The variational results of Adamowski (Ref. 1) converted to our scale of units are given in parentheses. The
blanks correspond to divergent results and the abbreviations (n.a) indicate nonapplicability of the present method.
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malizations of light to heavy neutral atoms.
The relevant steps of the shifted large-N expansion

scheme for obtaining the analytic expressions for the
bound-state energy levels, eigenfunctions, and normaliza-
tion constants are presented in Secs. II and III. In Sec. IV
we discuss the numerical results. The bound-state ener-
gies of the Hellmann potential have been computed for is
to 4f states as functions of C and for various positive and
negative values of B. To assess the accuracy of our re-
sults we compare tPe predicted energy eigenvalues with
those obtained by Adamowski through his variational
method. ' To be more informative and compact we
present in Table I only those cases for which discrepancies
are appreciable for certain values of C. A few interesting
features of our results are observed: In certain regions of
values of B and C, excellent agreement is observed be-
tween the variational solutions and the results of the shift-
ed 1/N calculation. As expected, for a given quantum
number n, the results improve as I increases. However,

for certain combinations of B, C, n„, and 1, it seems that
the method is not at all workable as the effective potential
becomes very shallo~ and does not possess a local
minimum. A few interesting regularities of the energy
levels with respect to 8 and l emerge: For /~1', the ob-
served spacing of the energy levels E„t & E„ i for B & 0 or
E„tgE„ t for B y0 is found to be consistent with the
level ordering theorem of Grosse and Martin. In Sec. V,
we compare our calculations for the bound-state energies
and normalizations of neutral atoms with those obtained
by analytic perturbation theory and also by numerical
method. The accuracy of the shifted large-N calculations
for the energy levels is found to be extremely good. How-
ever, the normalization factors are not obtained so accu-
rately due to the fact that we have considered only the
leading order term in the expansion series for the wave
function. In the concluding section, we briefly discuss the
scope of extending the method to other areas of atomic
physics.

II. SHIFTED 1/N EXPANSION FORMULAS FOR ENERGY EIGENVALUES

In N spatial dimensions, the radial Schrodinger equation for the Hellmann potential in atomic units (R=ni =e = 1) is

1 d (k+a —1)(k+a —3)
dp2 8r

e——+8
r X„t(r) =E„tX„ i(r), (3)

where k =N+21 a, a is the—so called shift parameter. We follow the prescription of the shifted 1/N discussai in detail
by Imbo et al. ' and present here only the analytic expressions which are required to evaluate the bound-state energies.
The energy eigenvalues are given by an expansion in powers of 1/k. The relevant analytic formulas in physical N =3
space are obtained as follows:

k 2

To

1

8

(A Be ')—
4(A —Be ' BCe '),—

y(1) y(2) ]+,+, +0
4k k k

(4)

in which the quantity ro satisfies the equation

' 1/2

=2[ro[A —B e (1+Cro]]
A —Be '(1+Cro Cro)—

(2l+1)+(2n„+1}
A —Be '(1+Cro)

(5)

In Eqs. (4) and (5}, n„and n =(n, +(+ I}are the radial and principal quantum numbers, respectively. The quantities
y"' and y' ' appearing in the corrections to the leading order of the energy expansion are

y"'= —,(1—a)(3—a)+(1+2n, )e2+3(l+2n, +2n„)e4 co '[e i+6—(1+2n„)eie3+(11+30n„+30n„)e3], '

y' '=(1+2n„)53+3(1+2n„+2n, )54+ 5(3+Sn, +6n„+4n, )56

—t0 '[(1+2n„)e2+ 12( 1 +2n„+2n„)eqe4+2(21+'59n„+51n„+34n„)e 4+2ei5i

+6(1+2n„)ei53+30( 1+2n„+2n„)ei5&+6(1+2n, )e35i+ 2(11+30n, +30n, }e353

+ 10(13+40n,+42n, +28n„)e355]

+co [4e ieq+36(1+2n„)eie3e3+8(11+30n, +30n„)e2e 3+24(1+2n, )e ie4

+8(31+78n„+78n„)eie3'E4+ 12(57+189n„+225n„+150n, )e 3e4]

[Se ie3+108(1+2n, )e ie 3+48(11+30n„+30n, )eie 3+30(31+109n,+141n„+94n„)e3],

(6)

in which
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E='e /co J 5.=5 /co J c0=2ei ('0=J J P J J 2

' 1/2

A —Be '(1+Cr() —C r())
a =2—{2n„+1)e),

A —Be '(1+Cro)

51 ————,52 ———(1—a )(3—a )l4, 52 ———, 54—2e——i
————,e2 ——(2—a ),2 4 4

ei ————+ [A —Be (1+Cro+ —,C r()+ —,C r())],
—Cro 2 & 3 3

2

e4 ——+ [—/I+Be (1+Cro+ ,'C—r()+-,'C r()+ —,', C r())],k2

(8)

55 ————+ [A —Be (1+Cr()+ ,'C r()—+,'C —r()+—,', C ro+ „'OC r())],

56———+ [—A +Be (1+Cr() + ,' C r o+—6C r() +,'~ C r() + „'0 C r0+ „'0 C r() }].
k

For any given choice of the quantum numbers, n„and l,
Eq. (5) can in principle be solved for ro for a set of values
of A, B, and C. Only in some special cases (to be dis-
cussed in Sec. IV}, a real solution is not obtainable and the
method fails to predict the corresponding bound-state en-

ergies. Once ro is determined, the task of obtaining the
energy eigenvalues from the algebraic expressions Eqs. (4)
and (6)—(8) becomes relatively simple and straightfor-
ward. One may easily check that in the Coulomb limit,
i.e., /I =1, C~ao and/or B~O, y"' and y'2' vanish
identically. Consequently, one recovers from Eq. (4) the
well-known Coulomb result

E„(———1/2n

Using the connecting formula

L„(x)= '
)F)( n, m+—1;x),{n +m)!

n!m!

Eq. (10) becomes

(r ) N r(k —1)/2e ("/"0)
')

X )Fi( n+I+1,(—k —2)/e)+ I;2A(r/ro)"),

(14)

where the normalization constant N„( is given by

III. NORMALIZED EIGENPUNCTIONS
IN THE SHII' j.ED LARGE-N EXPANSION

k —2
+pg !

N

2
(15)

(r) C r(k —1)/2 k("/ 0) I (k —2)/8(2g( / ) )
1 P

(10)

The conventional large-X expansion technique yields
the radial wave functions, X„((r) which are accurate only
near the minimum of the effective potential. Very recent-
ly, Imbo and Sukhatme have obtained improved wave
functions which are accurate for all r and any choice of
the quantum numbers. Following their prescription, we
thus write the leading order bound-state wave functions

x =2)(,(r/ro)"

one gets from Eq. (10)
k

C2 ( (2g) —k/8 x (k/ai —1 )e —x[L (k —2)/aP( )]2d
7 0

(16)

The constant C„( may easily be determined from the nor-
malization integral for X„((r). Changing the variable

in which

A, =k/2a),
Using the relations

L„ is the Laguerre function L„(x)= g ( —1). . .x
(n —m )!(a+m )!m!

(18)

Z —Nl

dt's

L~( )
ex d

(
—x n+m)

pg ) d~N
(12) I (y)I"(1+a+n —y)

Re@~0,n!I {1+a—y)

and C„ I is a constant. For screened Coulomb problems,
the usual practice is to express the bound-state wave func-
tions in terms of the confiuent hypergeometric functions. in Eq. (17), we obtain finally
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k n

( 2 0
(2g) —ki8 y

k —2
(n, —m )!m!n„! +m

CO

(20)

From Eqs. (15) and (20), one can determine the normaliza-
tion constant for any bound quantum state. In the limit
of the nonrelativistic point Coulomb potential, one re-
trieves from Eqs. (14), (15), and (20), the Coulomb
bound-state wave function

X„I(r) =N„&r +'e "~" F ( n+—I+1,2l+2;2r/n ) (21)

with

=(2/ )'+'
(2!+ 1)! 2n (n —I—1)!

(22)

IV. NUMERICAL RESULTS

For the numerical work, we take A =1 and thus our 8
is to be identified with half of the corresponding rescaled
parameter in Adamowski's paper. Consequently, our en-

ergy eigen values are half of those obtained by
Adamowski. We compute the binding energies ( E„I ) of-
the lowest-lying states, ls to 4f, for various values of 8
and C obtained from the analytic expressions given in
Eqs. (4)—(8). The predicted results are then compared
with the accurate energy eigenvalues obtained by
Adamowski using a high precision variational technique.
However, for brevity, we display results in Table I only
for those sets of values of 8 and C for which appreciable
discrepancies are observed. Although we do not present
here ail the energy eigenvalues considered by Adamowski,
our calculation reveals certain interesting features of the
shifted large-N expansion method of approximation.

(i) For low strength of 8, the energy eigenvalues ob-
tained from the shifted 1/N expansion are in good agree-
ment with the variational results for low values of the
screening parameter C. Obviously, when C is small the
Coulomb field character prevails and the shifted large-N
method has been adjusted to that. However, the results
become gradually worse as 8 and/or C are large. Appre-
ciable discrepancy of our results from the variational cal-
culations occurs particularly for the s states and for large
8—+5. Even for the ground state, the error shoots up to
29%%uo for 8=+5, C=10 (see Table I). We suspect that
this happens because the large-N effective potential be-
comes shallow and its minimum (ro) shifts appreciably
from the minimum of the true potential. This may be
seen clearly from Fig. 1 in which we depict the gap be-
tween the minima of the true and the effective potentials
for the ground state for 8=+5, C=10. For certain
values of C, the large-N effective potentials for some
states becomes so shallow that the expansion for the ener-

gy series becomes divergent in the sense that y'" and y' '

terms in (4) dominate over the leading term and conse-
quently one gets anomalous results. In Table I, the space

I
I
l

I
I
l .3

~gk

g-0.5-
l
X
LLI

g- !.o.
O.

-25 „

FIG. 1. Schematic diagrams of the behavior of the Hellmann
potential, V(r)= —1/r+Sexp( —10r)/r (solid curve} and the
large-N effective potential for the ground state (dashed curve) as
a function of r. The locations of the minima of the potentials
are shown by dotted lines.

for the predicted energy eigenvalues is kept blank for such
a situation.

(ii) For certain negative 8, it is not possible to deter-
mine ro, the most crucial parameter without the
knowledge of which the calculation cannot proceed. For
peculiar combinations of 8, C, n„and 1, the quantity
within the square root sign on the left-hand side of Eq. (5)
becomes negative before ro attains the value necessary for
the matching condition to be satisfied. One such case is
8= —5, C=0.5, n„=0, and 1=3, i.e., for the 4f state.
For this set of values, the variations of the left-hand side
(LHS) as well as of the right-hand side (RHS) of Eq. (5)
with ro are shown in Fig. 2. The LHS becomes imaginary
at ro ——4.61. Absence of crossing of the curves indicates
that no real solution of Eq. (5) exists. Several such com-
binations have been observed and as a result, the method
is not applicable (abbreviated as n.a in Table I), to deter-
mine the corresponding bound-state energies. Clearly,
this implies that the large-N expansion has limitations for
potentials having varied structure in different domains of
the potential parameters.

(iii) The results presented in Table I indicate the level
ordering I &I', E„I~E„I for 8&0. We show that this
can be interIireted from the criterion obtained by Grosse
and Martin. s It was shown that for the potential
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which corroborates with the observed level ordering for
the Hellmann potential.

V. ENERGY LEVELS AND BOUND-STATE
NORMALIZATIONS FOR NEUTRAL ATOMS

CO

~CC

7
O

lh

s

4

Recently McEnnan et al. developed an analytic per-
turbation theory in which the energy levels and the
bound-state normalizations of neutral atoms were ob-
tained using the SSCP given in (2). To assess the effec-
tiveness of the present nonperturbative approach in this
context, we carry out calculation for the energy eigen-
values and normalizations for the neutral atoms. For the
energy levels, one needs simply to make appropriate
changes in Eqs. (4)—(8) for the potential (2). The explicit
forms of the normalization factors for the first three lev-
els obtained from Eqs. (15) and (20) are given as

FIG. 2. Variations of FRHs(ro) and F~Hs(ro}, the RHS (solid

line} and the LHS (dashed line) of Eq. (5), respectively with ro

for 8=—5, C=0.5, n, =0, 1=3. Before crossing occurs,
FI,Hs{ro) becomes complex at r0=4.61.

8 (2A, )
i ' 1/2

ro 1(3/8)

(27)

V(r) = —1/r+ U(r), r )0d 2dU
dr dr

the energy levels satisfy the inequality

E„i +( E„ i for I ) I' . (24)

Comparing the Hellmann potential in (1) with that in (23),
we find

U( r) =8 e Cr /r

and

d zdUr
dr dr

gc2r ~
—cP (25)

d 2dU $0 for 8/0
dr dr

(26)

All other quantities except 8 remaining positive, lead to
the condition

co (u, )"" 1/2

Ng) ——

ro I (5/co)

A comparison of our expressions for the bound-state ener-
gies and normalizations with analytic perturbation calcu-
lations of McEnnan et al. and exact numerical results is
given in Table II. We consider Z=13, 36, 79 in order to
cover the range of low to high atomic numbers. It is
found that the difference between the shifted 1/X expan-
sion results and the exact values for the E shell is some-
what less than 1% for low Z and improves as Z increases.
Maximum discrepancy occurs for the I. shell, the predict-
ed normalizations are in error up to 15% for Z= 36. This
indicates that only the leading-order term of the wave
function as given in Eq. (10) does not yield adequate
screening effect on the normalization constant. For better
results, one requires to incorporate the contribution due to
the nonleading terms in the 1/N expansion for the wave
functions.

TABLE II. Bound-state energies (in keV) and bound-state normalizations for neutral atoms. The numbers in parentheses indicate
powers of 1D by which the values are to be multiplied; e.g., —1.424( —1)= —1.424& 10'.

13

Present
{shifted 1/Ã)

—1.488(0)' —1.484(0)

Bound-state energy (keV)
Analytic

Perturbation
(Ref. 22) Numerical

—1.4&8(0)

Present
(shifted 1/X}

5.810(—2) 5.711(—2)

Bound-state normalization
Analytic

perturbation
(Ref. 22) Numerical

S.692(—2)

36 —1.424(1)
—1.676{0)
—1.567(0)
—7.491(1)
—1.249(1)
—1.225(1)

—1.424(1)
—1.615(0)
—1.504(0}
—7.495(1)
—1.245(1)
—1.221(1)

—1.424(1)
—1.692(0)
—1.566(0)
—7.495(1)
—1.250(1)
—1.225(1)

2.691(—1)
9.910(—2)
6.900(—3)
8.749(—1)
3.162(—1)
5.110(—2)

2.674( —1)
8.933(—2)
6.S&2(—3)
8.731(—1)
2.999(—1)
4.937{—2}

2.674( —1)
8.618(—2)
6.306(—3}
8.731(—1)
2.982{—1}
4.905(—2)
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VI. CONCLUDING REMARKS

The detailed analysis of the results in terms of various
domains of parameters 8 and C of the Hellmann poten-
tial reveals a few important facts concerning the applica-
bility of the shifted large-N expansion method. It appears
that for certain regions of values of these parameters, con-
vergence of the series expansion for the energy eigenvalues
is in serious trouble for certain quantum states. This is an
indication that the Taylor series expansion around the
large-N minimum is not adequately reproducing the
correct potential, i.e., six derivatives' which go into the
calculations of the first two nonleading terms y"' and y'2'

in Eq. (4) are not sufficient to describe a potential with
too much structure. Once this happens, one should not
trust results for values of n, higher than the value at
which the expansion ceases to converge. To circumvent
the convergence problem, an elegant prescription based on
large-X expansion in supersymmetric (SUSY) quantum
mechanics has been proposed very recently by Imbo and
Sukhatme. It has been shown that faster convergence of
the series expansion for the energy eigenvalues can be
achieved using a supersymmetric partner potential of a
given potential in (X+2)-dimensional space. This ap-
proach has been shown to work for simple potentials only.
Since SUSY partner potentials are narrower, it might well
be that this technique with N =5 will have improved con-
vergence for potentials which have trouble using N =3.

In a few circumstances, it is observed that even the lo-
cation of the minimum of the effective potential cannot be
ascertained and as a result the method seems to be inappl-
icable to these cases. This is clearly a limitation of the
large-X method which has not been mentioned earlier.

However, this fact should not diminish the utility of this
method as the problem arises only in case of superposition
of two potentials of widely different ranges. So far it did
not occur in the case of simple potentials. The method
being algebraic in nature, leads to calculational simplicity
to a great extent without sacrificing the accuracy of the
predicted numerical results. In order to obtain similar ac-
curate results by direct numerical integration of the
Schrodinger equation, one needs to invoke quadrupole
precision technique. Furthermore, one has to take precau-
tion to avoid truncation error.

To conclude, we like to mention that the normalized
wave functions obtained in the shifted large-N expansion
technique may be quite useful in obtaining analytic ex-
pressions for several important quantities such as the os-
cillator strength ' and nonrelativistic single-electron
(nl;n'l') dipole transition matrix elements for screened
central atomic potentials. Results for various bound-
bound transitions from atomic inner shells have been ob-
tained by Wang and Pratt ' using a nonrelativistic analyt-
ic perturbation theory. Study of these parameters from
the standpoint of the present nonperturbative approach
may have significance as far as the applications of the
large-N technique to atomic physics is concerned. Work
in this direction is in progress at present.
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