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A self-interaction-corrected local-density approximation to the exchange part of the exchange-
correlation functional is proposed. The method is based on the Rae exchange energy of an N-
electron homogeneous gas and it gives rise to a one-electron equation where the exchange potential is
a function of the number of electrons present in each shell. The results of the calculations of usual
atomic properties, such as total and one-electron energies, electron affinities, and ionization poten-
tials, are also presented, as well as the comparison with other approximations. In general, a very
good agreement is found between the results of the method of this paper and the Hartree-Fock
values and, when it is combined with a standard expression for correlation, with the experimental re-

sults.

INTRODUCTION

The main problem in the application of the density-
functional theory!~* (DFT) to the calculation of the elec-
tronic structure of real systems is to find a good approxi-
mation to the exchange-correlation energy functional.

The more simple and more generally used method is the
local-density approximation (LDA), which was proposed
originally by Kohn and Sham’? by similarity to the
Thomas-Fermi theory and to the Slater® approximation to
the Hartree-Fock (HF) theory. This approximation gave
excellent results also for very inhomogeneous systems, as
atoms or molecules, where one did not expect to find good
results.®

This success is partly due to error compensation.
Quantities which are calculated by differences, such as
ionization potentials, binding energies of molecules or
solids, and hyperfine fields, are generally very well
predicted by LDA in spite of the not very good agreement
between experimental and calculated total energies and the
fact that charge densities near the nucleus are not very
well described by this approximation.

But error compensation is not all. Other quantities,
such as overall charge densities, are reasonably well repro-
duced by LDA, showing that some other argument, for
example, the respect of the “sum rule,”” must be invoked
to explain this success.

Nevertheless, it is well known that LDA fails on some
questions. For example, in atomic physics, bound states
are not predicted for some negative ions and total energies
are systematically too high; in solids, the gap of insulators
is greatly underestimated.

We do not want to list all the problems which are not
correctly solved by LDA. We want only to point out that
perhaps the most serious deficiency is given by the bad
approximation that the LDA eigenvalues represent for the
removal energies.

Recently, it was proved®® that the one-electron energy
of the more external electron of a finite system is, in the
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exact DFT, the ionization potential of this electron. The
estimate of this eigenvalue given by LDA is very bad and
this shows how different the LDA and the exact DF po-
tentials are.

Improvement to LDA can be obtained using nonlocal
approximations. Some general, nonlocal functionals ex-
ist!*=12 and have begun to be used in calculations of the
electronic properties of atoms and solids. However, a
simpler way to try to improve LDA is provided by the
fact that the local approximation to the exchange-
correlation functional does not compensate exactly the
self-interaction in the Coulomb energy and potential. If
one divides exchange and correlation into an exchange
part, defined by the usual HF expression, and a correla-
tion term, this spurious interaction is compensated by the
self-exchange. So one can hope to obtain better results
treating the self-exchange exactly and taking a local ap-
proximation of the interelectron exchange and of the
correlation.

By its definition, correlation is self-interaction-free.
Unfortunately, the expressions of the correlation energy
obtained from the theory of the infinite homogeneous
electronic gas do not give the correct result for a one-
electron system. This justifies the introduction in the last
few years of some self-interaction-corrected expressions of
the correlation energy.'>~!* These expressions reduce re-
markably the error of LDA and encouraged some au-
thors!>1>~17 to treat exactly the exchange term and to use
the local approximation for correlation only, as proposed
originally by Kohn and Sham.?

For applications to systems such as large molecules and
solids, where HF calculations are still not possible, we
think that an accurate self-interaction-corrected local ex-
pression for the exchange energy is interesting.

In our first paper on this subject!® (hereafter referred to
as I) we used for that the Rae expression of the exchange
energy.'” This expression, which gives the interelectron
exchange energy of a homogeneous gas of N electrons,
reads as the classical expression for the infinite gas, multi-
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plied by a factor y which is a function of the number of
electrons in the system.

The main problem in applying the Rae expression to in-
homogeneous systems is to decide the number of electrons
to use to determine y. In the earlier paper we used the to-
tal number of electrons of the system. We obtained, from
self-consistent calculations on atoms and ions, charge den-
sities and eigenvalues in good agreement with HF. How-
ever, the zero of the energy, in that method, was not well
defined. This was a consequence of the fact that adding
an electron at large distance to a system changed the value
of y but not the physical properties of the system, and it
made the total energies insignificant.

In the following, we shall show how one can use the
Rae expression in self-consistent calculations, fixing the ¥
coefficient by the number of electrons present in each
shell. The scheme obtained will be naturally free of the
zero-energy problem.

THE SELF-INTERACTION-CORRECTED
LOCAL-SPIN-DENSITY APPROXIMATION

Let us review the Rae theory of the exchange energy of
a homogeneous gas of N electrons. The exchange energy,
in atomic units, of N, electrons of spin o in a box of
volume V with periodic boundary conditions is given by

N
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This expression is usually evaluated by transforming it
into the integral

d’k,d’%k,,

fk2<kF fkl<k1,- Ikl—k |2

(2)

where kp is the Fermi momentum.

To do that the i~/ condition is disregarded, and this
implies the inclusion of the self-interaction terms. To
take in account this condition Rae'® proposed to eliminate
from the integration region in Eq. (2) a small volume
around | k;—k,| =0. This volume is defined by the con-
dition that it contains N, states
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One obtains
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This equation determines B as a function of N,.?° One
can now calculate the integral (2) with the condition
| ki —k; | >Bkr. The result is
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where

y(N,)=1—5B+ 3B~ B . (6)

Thus the self-interaction-corrected exchange energy of a

homogeneous gas of N, electrons of spin o is given by the
classical expression for the infinite gas, multiplied for a
factor ¥ which is a function of N,. As N,=1, one ob-
tains =2 and y=0; as N,— «, one obtains =0 and
y=1. So Egs. (4)—(6) give the correct results for the lim-
iting cases.

Suppose now that there is an external potential V(r).
DFT says that, if one knows the functional dependence of
the exchange-correlation energy from the spin-up and
spin-down charge densities p,, one can obtain, in principle
exactly, the ground-state charge density by

Po(0)= 3 pio(r)= 3 u;(D)u;4(r), (7)

where u;,(r) are the solutions of the one-electron equation

(= 3V Ve + VO Vi Ui (1) =g01;0(T) (8)
V€ is the electrostatic interaction between the electrons
uka )uk,,(r')
V<r) dr', 9
(r)= 2 f | r )

and V¥ =8E "°/8p,, is the functional derivative of the
exchange-correlation energy. Disregarding correlation,
V% is approximated in LDA by the expression for the in-
finite homogeneous gas
1/3
Vi=—

6
= 10
. Po (10)

while the self-interaction-corrected theories prefer an
orbital-dependent expression:

f u,-f,(r' )uia(fl)

] d3r'+ Ve (1

Vie(r)=—

Ve is some approximation of the interelectron exchange

potential. For example, Lindgren’' and Perdew and
Zunger'* assumed
s 17 (6 1/3
Vie'=—|_Po —Pio (12)

Let us now show how the Rae expression can be used to
obtain an approximation for Vj,°. Consider a system of
N, electrons of charge density p,(r) and exchange-per-
volume unit &%(p,). Suppose now we divide p,(r) in two
arbitrary groups containing N,, and N, electrons and let
Paolr) and py,(r) be their densities. Then one can write

gi(Pa) = [ g;(pa) - g;(pao) - g;(pbo)]
B (Pag)+ EXPpo) s (13)

where the value within parentheses is the “intergroups”
exchange. Taking now the local approximation and using
Eq. (5) to obtain a self-interaction-free expression, one has
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because there is no self-interaction in the intergroups
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term. So, the interelectron exchange potential for an elec-
tron of the group a is given by

173
6
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In the homogeneous-gas case there is no reason to
divide the electrons into groups. All the electrons are
equivalent, in the sense that their densities are identical.
A consequence of this is that Eqs. (14) and (5) are con-
sistent only if N,,=N, and N,,=0.

Suppose now that p,, and p,, are two densities such
that their overlap integral is zero. Then the total ex-
change is the sum of the exchange energies of the two dis-
tributions, and using the Rae result for both these densi-
ties one obtains the second term in the second member of
Eq. (14). The intergroups exchange must be zero and this
is correctly given by the first term in the second member
of Eq. (14). In conclusion, Eq. (14) is the correct LDA for
the interelectron exchange of this system.

We think that many inhomogeneous systems can be
treated using these limiting cases. In an atom, for exam-
ple, electrons in the same shell (identified by the same
values of n and [) have identical densities in spherical
average and we think that one can apply to them the Rae
expression. On the other hand, electrons in different
shells and slightly overlapping, for example 15 and 3s, can
be well described by Eq. (14). There are, naturally, inter-
mediate cases, such as 25 and 2p, that one cannot easily
classify as one group or two different groups.

We assume that one can divide the electrons shell by
shell and treat them by Eq. (14). The intermediate cases
will be a source of errors which add to those due to the lo-
cal approximation.

With this assumption, introducing an index of shell s
and using p,, for the density of one electron with spin o
in the s shell and Ny, for the number of electrons with
spin o in this shell, from Eqgs. (15) and (14) one respective-
ly obtains
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We remark that this scheme is free of the zero-energy
problem because an electron added at large distance to the
system belongs necessarily to a different shell and it does
not affect the y’s pertaining to the other shells.

We point out that Eqs. (16) and (17) were already used
for self-consistent calculations in two limiting cases. In
paper I we considered all the electrons of spin o as a
group and we calculated y using the total number of elec-
trons. The opposite approximation, where each electron is
itself a group, coincides with the self-interaction correc-
tion (exchange only) proposed by Perdew and Zunger.!*
Their method, usually referred to as SIC, if applied to the

homogeneous gas, does not give the Rae expression. For
the reasons explained above, we believe that our approxi-
mation, consisting in the intermediate choice of fixing the
v coefficient by the number of electrons present in each
shell is more consistent with the homogeneous-gas theory
and, as we shall see, can give better results.

Finally, we want to point out that, in spite of the fact
that one can look at SIC as a limiting case of our approxi-
mation, a different conception underlies the two theories.
The Perdew and Zunger method is a general method to
correct any non-self-interaction-free expression of the
exchange-correlation energy. It is not dependent on the
particular form of this expression. Our method gives a
special approximation for the exchange energy based on
the nonrelativistic theory of the homogeneous gas. It can-
not be extended without further work. In the following
we refer to the method described in this section as N-SIC
(N-dependent self-interaction correction).

RESULTS AND DISCUSSION

In this section we show the results of self-consistent
spin-polarized calculations on atoms and ions of the first
two rows of the Periodic Table. Some elements of the
third row (K, Se, Br) will also be considered.

With a view to testing our approximation for the ex-
change energy, we compare our calculations with the HF
results, which we consider the “exact” values. Compar-
ison will also be done with the results of the Kohn and
Sham (KS) local-density approximation and with the
self-interaction-corrected local-density approximation of
Perdew and Zunger.

Calculations including correlation will also be reported
to show that our approximation of the exchange, com-
bined with a well-known correlation expression, agrees
very well with the experimental values.

Apart from the results in the HF approximation taken
from Ref. 22, all the results in this paper were obtained
using a predictor-corrector program to solve the radial
Schrodinger equation. The small nonorthogonality ef-
fects, due to the use of a Hartree-type equation, were tak-
en into account by a Schmidt orthogonalization after each
iteration.?

Before beginning the discussion of the results, we must
note that quantities such as ionization potentials (IP) and
electron affinities (EA) cannot be accurately obtained if
there is not a compensation of errors in the atomic and
ionic calculations. This cannot happen in the N-SIC ap-
proximation since it uses coefficients which depend on the
number of electrons in each shell. The errors in the con-
tribution of the more external electrons to the exchange
energy have a different weight. For this reason, we arbi-
trarily decide to fix the y coefficient by the degeneracy
(271 4+ 1) of each shell. Of course there is a difference only
if there are open shells in the system. We will refer to this
method as D-SIC.

We remark that quantities which are not calculated as
differences are generally better reproduced by N-SIC.
Consider, for example, Ar. The total energy of atomic Ar
is 1053.635 Ry in HF approximation and 1053.208 Ry
both in N-SIC and in D-SIC. The energy of the ion Ar*
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TABLE 1. Hartree-Fock (HF) total energies and the differences between the total energies calculated
by the KS, SIC, and D-SIC approximations and the HF values (Ry).

HF KS SIC D-SIC

(Ry) (Ry) (Ry) (Ry)
Li —14.865 0.478 —0.003 —0.003
Be —29.146 0.699 —0.010 —0.010
B —49.058 0.931 —0.040 0.007
C —75.377 1.153 —0.113 0.007
N —108.802 1.383 —0.211 0.008
O —149.619 1.635 —0.307 0.029
F —198.819 1.870 —0.453 0.025
Ne —257.094 2.111 —0.625 0.021
Na —323.718 2.428 —0.718 0.056
Mg —399.229 2.730 —0.828 0.071
Al —483.753 3.039 —0.931 0.120
Si —577.709 3.343 —1.049 0.168
P —681.437 3.657 —1.164 0.231
S —795.010 3.969 —1.290 0.293
Cl —918.964 4274 —1.433 0.350
Ar —1053.635 4.597 —1.568 0.427

is 1052.549, 1052.169, and 1052.131 Ry in HF, N-SIC,
and D-SIC, respectively; as one can see there is a small
difference between N-SIC and D-SIC (only the 3p elec-
trons “spin down” are treated differently) and the total-
energy N-SIC is slightly better than D-SIC. However, the
IP is 14.78, 14.14, and 14.66 ¢V in HF, N-SIC, and D-
SIC, respectively.

We emphasize that our choice to calculate ¥ for open
shells using the degeneracy, is completely arbitrary and
one can obtain better results for the energy differences
with “ad hoc” choices as, for example, the numbers of the
electrons in the atomic or in the ionic shell, or intermedi-
ate numbers. In the following we will report only the D-
SIC results.

Let us first consider the total energies. In Table I we
report the HF total energies of all the atoms of the first
two rows of the Periodic Table and the differences, with
respect to HF, of the total energies calculated by the dif-
ferent approximations. In all cases (including positive and
negative ions which are not reported in the table) the D-
SIC error is smaller than 0.04%. Furthermore, D-SIC
improves SIC (excepted Li and Be, where the two approx-
imations coincide) and KS by a factor varying between 3
and 30 and between 10 and 170, respectively.

Similar conclusions can be obtained by comparing the
exchange energies (self-exchange plus interelectron ex-
change), that we report in Table II for the rare-gas atoms
Ne, Ar, and Kr. The error of D-SIC is 0.6, 1.0, and
1.5%, respectively, and D-SIC improves SIC by about a
factor of 2 and KS by at least a factor of 4.

We remark finally that the total and the exchange ener-
gies in the D-SIC approximation are generally higher than

of the more external electron can be interpreted, in the ex-
act theory, as its relaxed IP. The comparison between this
eigenvalue and the IP will be done in Tables V and VI.
However, we think that some remarks about the structure
of the eigenvalue set can be interesting. The energy
differences between the last level with principal quantum
number n and the first level with principal quantum num-
ber n +1 are about the same in HF, SIC, and D-SIC and
are very different with respect to KS. So this difference
seems determined by the self-exchange term, whereas the
interelectron exchange seems uninfluential. This is
reasonable because orbitals with different principal quan-
tum number have a small overlap. On the other hand, the
splitting of two levels with the same value of the principal
quantum number is more similar in SIC, D-SIC, and KS
than in HF. This shows that this splitting is essentially
determined by the interelectron exchange. There is not
much difference between SIC and D-SIC. Curiously, the
first is a better approximation of HF for p states, whereas
the latter is better for s states.

We have briefly studied the total charge densities by
calculating their Fourier transforms for the values of
sinf/A between 0.05 and 1.50 A ~', with a step of 0.05
A ~!. We report in Table IV, for all the atoms of the first
and second row, the average percent errors of each
method with respect to HF. As one can see, SIC and D-

TABLE II. Total exchange energies (self-exchange + in-
terelectron exchange) for some rare-gas atoms from HF, KS,
SIC, and D-SIC calculations (eV).

the HF values, while the SIC values are systematically HF KS SIC D-SIC
lower. (eV) (eV) (eV) (eV)
In Table III we show t}}e. one-electron energies for a Ne 3295 2976 3376 _3275
neutral atom and for a positive and a negative ion. It is
. . . Ar —821.3 —755.8 —841.6 —812.8
known that while the HF eigenvalues have the meaning of —2561.9 24075 —2630.8 25234

nonrelaxed IP’s, in the DFT, only the one-electron energy
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TABLE III. One-electron energies for C1~, Ar, and K* by the HF method and the KS, SIC, and D-

SIC approximations (Ry).

HF KS SIC D-SIC
(Ry) (Ry) (Ry) (Ry)
cl- 1s 209.010 208.467 208.640
2s 20.458 19.082 19.181
2p 15.391 15.089 14.855
3s 1.466 1.167 1214
3p 0.300 0.252 0.215
Ar 1s 237.221 227.433 236.606 236.765
2s 24.644 21.460 23.145 23.232
2p 19.143 16.756 18.786 18.513
3s 2.555 1.666 2.161 2.196
3p 1.182 0.668 1.098 1.040
K+ 1s 267.507 257.102 266.825 266.977
2s 29.418 25.989 27.803 27.884
2p 23.478 20.876 23.073 22.767
3s 3.929 2.902 3.457 3.487
3p 2.342 1.726 2.231 2.157

SIC describe very well the charge densities, their average
error being always smaller than 0.5% (except N for SIC).
D-SIC is slightly better than SIC for the atoms of the first
line, whereas the two methods are about equivalent for the
atoms of the second line. KS, which has an average error
smaller than 1% beginning from C, is clearly worse than
SIC and D-SIC for the first line, whereas it is equivalent
to D-SIC for the second line. It can be also interesting to
remark that the maximum error of D-SIC is 1.06% for Li
while in all the other cases it is smaller than 1%. Furth-
ermore, the maximum error of D-SIC is always smaller
than the maximum error of SIC (except Ar) and of KS
(except P).

TABLE 1V. Average percent deviations in the interval
0.05<sind/A<1.5 A~! of the charge-density Fourier
transforms with respect to the HF values.

KS SIC D-SIC

(%) (%) (%)
Li 2.49 0.30 0.30
Be 1.74 0.39 0.39
B 1.24 0.38 0.37
c 0.89 0.48 0.34
N 0.71 0.59 0.37
o 0.60 0.44 0.36
F 0.55 0.43 0.40
Ne 0.54 0.49 0.45
Na 0.44 0.48 0.44
Mg 0.41 0.46 0.42
Al 0.34 0.39 0.35
Si 0.31 0.33 0.31
P 0.27 0.29 0.27
) 0.26 0.22 0.26
a 0.25 0.19 0.25
Ar 0.25 0.17 0.26

The first ionization potentials of all the atoms of the
first two lines of the Periodic Table and the electron affin-
ities of some elements are shown respectively in Tables V
and VI. We have evaluated them both as total-energy
differences (method usually referred to as ASCF) and tak-
ing the negative of the eigenvalue concerned (value within
parentheses). From this test, one can obtain much infor-
mation about a self-interaction-corrected theory, because
the results are determined both by the quality of the func-
tional and by its ability of compensating the errors. It is
for this latter property that the KS results for the IP
(ASCEF) are very good, better than the SIC values. D-SIC
removes this drawback of SIC, giving IP often better than
KS. Furthermore, it reduces greatly the large error (~1
eV) of SIC for some elements (C—Ne). Similar con-
clusions can be obtained from the EA of Table VI.

Essentially D-SIC is better than SIC when a p electron
is concerned (exception: Al and P), while the two
methods are about equivalent when an s electron is con-
cerned.

The examination of IP and EA as determined by the
eigenvalues gives rise to different remarks. First, one can
see that SIC and D-SIC are clearly better than KS, which
gives wrong values. Second, in all the cases where the re-
laxation effects are important, the SIC or D-SIC eigen-
values are a better approximation of the IP or of the EA
obtained by ASCF-HF rather than the HF eigenvalue it-
self. This means that the quality of both functionals is
sufficiently good to permit one to see a part of the relaxa-
tion effects included in the exact theory. This does not
happen in KS. Comparison with ASCF-HF shows a
better agreement with D-SIC for the EA and some IP,
with SIC for the majority of the IP.

No contribution is given in this paper to the correlation
study. So, to compare with experiment, we will use an ex-
isting expression for the correlation energy. Without
comparing the different possibilities, we choose to use the
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TABLE V. Ionization potentials, in eV, from exchange-only calculations. The first value is the IP
calculated as difference of total energies; the value within parentheses is the IP obtained from the nega-

tive of the one-electron energy.

HF KS SIC D-SIC

(eV) (eV) (eV) (eV)
Li 5.34 (5.34) 5.03 (2.73) 5.38 (5.31) 5.38 (5.31)
Be 8.04 (8.42) 7.64 (4.63) 8.13 (8.38) 8.13 (8.38)
B 7.93 (8.43) 7.55 (3.27) 8.30 (7.93) 7.67 (7.08)
C 10.79 (11.79) 10.77 (5.33) 11.59 (11.24) 10.90 (10.28)
N 13.96 (15.44) 14.01 (7.52) 14.87 (14.60) 14.12 (13.54)
(6] 11.88 (17.19) 11.87 (5.70) 12.59 (13.06) 11.91 (12.04)
F 15.72 (19.86) 16.26 (8.87) 17.02 (17.56) 16.28 (16.42)
Ne 19.84 (23.14) 20.51 (12.05) 21.29 (21.96) 20.49 (20.72)
Na 4.95 (4.95) 4.87 (2.63) 5.18 (5.06) 5.22 (5.09)
Mg 6.61 (6.88) 6.48 (3.87) 6.87 (6.96) 6.90 (6.99)
Al 5.51 (5.71) 5.16 (2.35) 5.57 (5.21) 5.18 (4.70)
Si 7.66 (8.08) 7.44 (3.91) 7.91 (7.47) 7.49 (6.90)
P 10.04 (10.66) 9.69 (5.53) 10.23 (9.74) 9.77 (9.10)
S 9.03 (11.90) 8.82 (4.69) 9.41 (9.34) 8.95 (8.69)
Cl 11.79 (13.78) 11.71 (6.92) 12.36 (12.16) 11.86 (11.44)
Ar 14.78 (16.08) 14.49 (9.08) 15.18 (14.94) 14.66 (14.15)

TABLE VI. Electron affinities, in eV, from exchange-only calculations. The first value is the EA
calculated as the difference of total energies; the value within parentheses is the EA obtained from the

negative of the one-electron energy.

HF SIC D-SIC

eV) eV) (eV)
sLi —0.12 (0.40) —0.08 (0.40) —0.08 (0.40)
O —0.54 (3.52) 0.70 (1.73) 0.37 (1.13)
oF 1.36 (4.92) 2.78 (4.35) 2.38 (3.65)
1Na —0.12 (0.34) —0.02 (0.38) —0.01 (0.38)
165 0.91 (2.92) 1.56 (1.82) 1.28 (1.39)
17Cl1 2.58 (4.08) 3.14 (3.43) 2.82 (2.93)
10K —0.08 (0.28) 0.03 (0.03) 0.02 (0.03)
4Se 1.04 (2.75) 1.59 (1.76) 1.32 (1.36)
3sBr 2.58 (3.78) 3.00 (3.14) 2.70 (2.69)

TABLE VII. Ionization potentials, in eV, from KS, SIC, and D-SIC calculations including correla-
tion. The values were obtained as differences of total energies. The experimental results (Ref. 25) are

given in the first column.

Expt. KS SIC D-SIC

(eV) (eV) (eV) (eV)
Li 5.39 5.47 5.44 5.44
Be 9.32 9.04 9.11 9.11
B 8.30 8.56 8.87 8.24
C 11.26 11.72 12.07 11.37
N 14.53 14.94 15.30 14.56
o 13.62 13.99 14.24 13.54
F 17.42 18.11 18.37 17.61
Ne 21.56 22.19 22.44 21.64
Na 5.14 5.36 5.30 5.34
Mg 7.65 7.74 7.74 1.77
Al 5.99 5.99 6.03 5.63
Si 8.15 8.25 8.33 7.90
P 10.49 10.50 10.62 10.16
S 10.36 10.62 10.78 10.32
Cl 12.97 13.29 13.50 12.99
Ar 15.76 15.95 16.19 15.65
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TABLE VIII. Electron affinities, in eV, from SIC and D-SIC
calculations including correlation. The values were obtained as
differences of total energies. The experimental results (Ref. 26)
are given in the first column.

Expt. sIC D-SIC

V) (eV) V)
,Li 0.62 0.56 0.56
o) 1.46 1.81 1.46
oF 3.40 3.75 3.34
11Na 0.55 0.59 0.59
16S 2.08 2.53 2.23
17Cl 3.62 401 3.66
1K 0.50 0.56 0.56
14Se 2.02 2.51 2.24
3sBr 3.36 3.83 3.52

Perdew and Zunger'* parametrization of the Ceperley-
Alder** precise data for the homogeneous gas and to
correct the self-interaction effects in it by the SIC
method.

There is not much to learn when examining the total
energies. It is well known that correlation expressions de-
rived from the homogeneous-gas theory overestimate the
correlation energy in an atomic case for about a factor of
2 and that the self-interaction correction reduces greatly
this error.'

It is more interesting to examine the IP and EA report-
ed, respectively, in Tables VII and VIII. In these tables
we compare the experimental values, with KS, SIC, and
D-SIC. We remark that in KS we used a non-self-
interaction-corrected correlation, whereas the difference
between the SIC and D-SIC results is entirely due to the
exchange term. The comparison with the corresponding
Tables V and VI points out that the agreement of D-SIC
including correlation with experiment is better than the
agreement of the same method (exchange only) with HF.
This reveals a (causal) mechanism of compensation of er-
rors which works very well even in cases where the errors
of the correlation and exchange contributions are large.
In most cases the self-interaction-corrected correlation is
satisfactory enough and it gives a contribution to the IP
and to the EA that brings their values close to the correct

experimental ones. This does not happen for the non-
self-interaction-corrected KS expression which generally
gives a too-large contribution to the IP.

CONCLUSIONS

The use of the Rae expression for the exchange energy
of a homogeneous gas of N electrons permitted us to in-
troduce a new method for a self-interaction correction in
the LDA. We obtained a scheme where the exchange-
energy density and the exchange potential are dependent
from the number of electrons in each shell.

The calculation of the properties of atoms and ions of
the first two rows of the periodic system gave results
which agreed very well with HF and, combined. with the
Perdew and Zunger correlation, with experimental results.
In particular, the total and exchange energies were very
close to HF and clearly better than the corresponding KS
and SIC values. Improvements were also obtained for the
charge densities, the ionization potentials, and the electron
affinities. The eigenvalue set structure was typically that
of the self-interaction-corrected methods and the one-
electron energy of the more external electron was a good
approximation of the first ionization potential.

We think that this paper confirms the idea that simple
considerations based on the homogeneous-gas theory per-
mit, in many cases, a satisfying description even of very
inhomogeneous systems. We believe that the use of this
method can be useful for complex systems, where HF cal-
culations with local correlation are still not available. In
particular it would be interesting to apply it to the band
calculations of semiconductors and insulators, hoping to
obtain better values of the gap between the conduction
and the valence bands.
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