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The formation of pion molecular orbitals is investigated theoretically for an isolated system con-
sisting of a pion and two nuclei whose separation corresponds to typical molecular bond lengths.
The validity of the Born-Oppenheimer approximation is investigated and confirmed. The effect, not
previously studied, of the electrons which are associated with the chemical bond between the pair of
nuclei in a molecule has been examined. Although it is standard practice to neglect the effect of the
molecular electrons on the captured pion, except possibly for a constant screening factor, we find
that this effect is of major importance. In particular, this effect illuminates the process in which a
pion, initially captured in hydrogen, is transferred to a neighboring heavier atom.

I. INTRODUCTION

Many experiments at the Joint Institute for Nuclear
Research (Dubna), Organisation Européenne pour la Re-
cherche Nucledire (CERN), Schweizerisches Institut fir
Nuklearforschung (SIN), and TRIUMF have shown that
pion and muon interactions with matter are sensitive to
molecular structure.! These data have been interpreted
through various versions of the mesomolecular model.>—¢
This model postulates that a pion may be captured direct-
ly into an atomic orbital or it may first be captured into a
molecular orbital and then subsequently be captured by
one of the atoms of the molecule.

There is general agreement that pions initially captured
by hydrogen have a low probability of cascading through
the hydrogenic states and ultimately interacting with the
proton through the nuclear interaction because of a com-
peting “transfer” process. In the model developed by Po-
nomarev and co-workers, as applied to gas mixtures, it is
assumed that the small neutral pm— system diffuses
through the material until it collides with a heavier atom
and the pion is transferred to this atom.2~* In the model
developed by Jackson and co-workers®’ for capture in
molecules, transfer is assumed to take place to the
nearest-neighboring atom, which is the one to which the
hydrogen is bonded, and the mechanism is pictured as a
tunneling process.

The purpose of this work is to investigate theoretically
the formation of pion molecular orbitals for an isolated
system consisting of a pion and two fixed nuclei whose
separation corresponds to typical molecular bond lengths.
The standard method of calculation involves the use of
the Born-Oppenheimer approximation but, in this case, it
is necessary to justify the validity of this approximation
because of the increased mass of the pion compared with
the electron. These calculations for bare nuclei are report-
ed in Sec. II. In Sec. III we consider the effect, not previ-
ously studied, of the electrons which are associated with
the chemical bond between any pair of nuclei in a mole-
cule. It turns out that this effect is significant and, in
particular, illuminates the interpretation of hydrogen
transfer.

II. THE TWO-CENTER SYSTEM
WITHOUT ELECTRONS

A. Units of length and energy

The units used for length a, and energy W, are known
as mesoatomic units, with m,=#=e=1. In terms of the
electronic Bohr radius a, (0.529 A) and a standard energy
E, taken to be 27.2 eV, these mesoatomic units are given
by

a,=a,m./M, (1
and

W,=EM,/m, , b))
where

m_ (myn,+m,n,)
M, =2l n'tn (3)
Ma+mym,+myn,

is the reduced mass of the complete system; m,, m,, and
m . are the proton, neutron, and pion masses, respectively;
and n, and n, are the total number of protons and neu-
trons for the two centers.

Values of a, and W, are tabulated in Table I for dif-
ferent combinations of atoms of atomic number Z,; and
Z, of interest in this work. 1 A is a typical bond length
between these centers in many molecules. This length
corresponds to approximately 500a,, which is taken as
the center separation for many of the calculations to fol-
low.

TABLE 1. Values of a, and W, for different centers.

Z, Z, a, (10~" m) W, (keV)
1 1 208.1 6.915

6 1 196.0 7.345

7 1 195.7 7.357

8 1 195.4 7.365

8 6 194.7 7.390
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B. The Schriodinger equation for the two-center system

The Schrodinger wave equation for a two-center system

is given in mesoatomic units by®
Vi Vi
“3M "2 +V(R,r,) |¥;(R,r)=€y;(R,r,), (4)
where V% is the kinetic-energy operator for the center of
mass of the two nuclei, V2 is the kinetic-energy operator
for the pion, V(R,r,) is the sum of all electrostatic in-

teractions.

V(R,r,)=V(r,)+Z,Zy/R
=-2Z,/r1—2,/ry+Z,Z,/R , (5)

r; and r, and the distances for the pion from Z, and Z,,
respectively, R is the internuclear separation, and € is the
total energy of the system.

C. The Born-Oppenheimer approximation

The Born-Oppenheimer approximation’ states that the
nuclear motion and the pion motion can be separated and
that the potential energy of the pion in the field of the two
nuclei can be used to describe the nuclear motion. Thus
(dropping the subscript i) ¥(R,r,) can be rewritten as

Y(R,r)=u(R;r)Ju(R), (6)

where u(R;r,) is the pion wave function with the nuclei
fixed at an internuclear separation R, and v(R) is the
wave function for the nuclear motion. If (6) is substituted
in (4), then

V%{ V2 V(R,r,) |[u(R;r)V(R
- ZM - 2 + 7r1r u( ’rﬂ) ( )
. 1 du dv
=eu(R;r )u(R)— M 2-——aR 3R + 3R’ v (7)

The accuracy of the Born-Oppenheimer approximation
therefore depends on the magnitude of the extra term,

du v
23R 3R T ar2"°

_1
M

2

when compared to the kinetic energy of the nuclei,
P?/2M (P, is the momentum of the center of mass of the
nuclei and M is the reduced mass of the two nuclei). The
standard discussion® leads to the condition

(m /M) <1 . (8)

For electrons this condition is satisfied by virtue of the
large mass difference between the electron and the nuclei.
The approximation is inevitably less accurate for pions,
especially for systems with nuclei of low mass.

D. The pion potential

Assuming, at this stage, that the Born-Oppenheimer ap-
proximation is valid for pions, the Schrodinger equation
can be rewritten as

[— V24 V(R,r,)]u(R,r,)=E(R)u(R;r,) , 9)

which is identical to the original wave equation, except
that the kinetic-energy operator of the nuclei is omitted.
E(R) is the energy of the pion and includes the nuclear
repulsion energy Z,Z,/R. The purely pionic energy is
given by a similar Schrodinger wave equation,

2
- %’1 +Vir,)
with W(R)=E(R)—Z,Z,/R. V(r,) is the potential
field in which the pion moves and will determine the na-
ture of the potential barrier between the two centers. The
function E(R) can be used as the potential-energy func-
tion to obtain the wave function for the nuclear motion
from

u(R;r,)=W(R)u (R;r,), (10)

2

v
~ R LE®R)

3, v(R)=ev(R) . (11)

The shape and height of the barrier are very important,
as they will govern the formation of molecular orbitals.
In the mesomolecular models which ignore the possibility
of tunneling?~* it is assumed that there is a sharp transi-
tion between atomic states below the barrier and molecu-
lar states which can exist only within the energy range be-
tween the height of the potential barrier and the zero of
energy.

Contour plots of ¥(r,) in the y-z plane and V(r,) along
the internuclear axis (z axis) are presented in Fig. 1 for
H—H, C—H, N—H, O—H, and O—C bonds. The internu-
clear separations for these bonds were obtained from the
molecules of hydrogen (H,), methane (CH,), ammonia
(NHj;), water (H,0), and carbon dioxide (CO,). In order
to compare with similar bonds in different molecules,
C—H and O—H bonds were also examined in methanol
(CH3;0H) and the N—H bond was examined in hydrazine
(N,H,). Henceforth, the first group of molecules will be
referred to as group- 4 molecules and the second group as
group-B molecules. The bond lengths are given in Table
II. The small differences in V(r,) between group-4 and
group- B molecules are not evident on the scale of Fig. 1.

The value of the principal quantum number which cor-
responds to the atomic energy state nearest to the height
of the barrier separating the two potential wells in V(r,)
is given by!°

Z]R 1/2
T 2[14+2(2,/Z,)7]

no(Zy) (12)

(This formula is given incorrectly in Refs. 3 and 4.) The
values of ny(Z;) and ny(Z,) are given in Table II. States
with N <nq in either atom are regarded’~* as atomic
states, while those states above the barrier are regarded as
molecular states. It can be seen from Fig. 1 that the bar-
rier is sufficiently low to allow the formation of molecular
states.

E. United atom and separated atom quantum numbers

The quantum numbers most commonly used to label a
molecular state are the united atom quantum numbers
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FIG. 1. Plots of V(r,), in units of E|, for the two-center systems derived from group- 4 molecules: (a) H—H, (b) C—H, (c) N—H,

(d) O—H, (e) O—C.

(n,l,m). These refer to the limit of R =0 where the two
nuclei combine to form a single nucleus of charge
Z=Z,+2Z,. The principal quantum number » runs over
the positive integers n =1,2,3,4,... and the angular
momentum quantum number / takes the usual values
1=0,1,2,3,...,n —1 corresponding to s,p,d,f, ..., etc.,
states. The energy curves of the pion energy W (R) will
converge to values of 5(Z/n)? at R =0. m is the quan-
tum number which measures the component of angular
momentum along the axis of the molecule and takes the
values m=0, +1,+2,+3,+4, ..., £/ with doubly degen-
erate levels for +m except for m =0. States with m =0

are referred to as o states, those with m = +1 as 7 states,
those with m=12 as & states, etc. For homonuclear
two-center systems, the states are also denoted by a sub-
script g for even (gerade) states and u for odd (ungerade)
states. The parity of the state is determined by whether
the wave function changes sign or not after inversion in
the midpoint between the nuclei.

It is also possible to use separated atom quantum num-
bers (N,K,m) to define a particular quantum state. These
quantum numbers are obtained by separating the two
centers to infinity (R = «), where the energy curves tend
to atomic states around Z; and Z,, with energies of
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FIG. 1. (Continued).

+(Z,/N)? and 3(Z,/N,)? respectively. N and K are
related to the united atom quantum numbers by the corre-
lation'"

N=n—-Il+m+K,

(13)

where [x] is the integer part of x for the homonuclear
case and by a more complicated correlation for the
heteronuclear case. The m quantum number is identical
to that of the united atom quantum numbers. Values of
ng tabulated in Table II refer to the separated atom prin-
cipal quantum numbers for each of the two centers.

F. The solution of the Schrodinger equation

The solution of the Schrodinger equation® can be found
by the introduction of confocal elliptic coordinates which

allows the wave function to be written as'>~ !4
PY(R;r,)=L(A)M(u)Q() , (14)
A=(ri+7,)/R, 1<A< oo
pu=(r,—ry)/R, —l<u<l (15)

¢ =azimuthal angle, 0<¢ <27 .

The wave equation then separates into the three following
second-order differential equations;

TABLE II. Bond lengths and values of n, for different centers.

Bond R R
zZ,—2Z, Molecule (in units of a.) (A) no(Z,) no(Z,)
H—H H, 1.401 65 0.742 8

C—H CH, 2.066 50 1.094 31 7
C—H CH;0OH 2.07100 1.096 31 7
N—H NH; 1.916 38 1.014 33 7
N—H N,H, 1.93133 1.022 33 7
O—H H,O 1.808 84 0.957 34 7
O—H CH;0OH 1.806 90 0.956 34 7
O0—C CO, 2.194 40 1.161 30 24
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d ., dL 272
L= - A2—1
d}»(}‘ l)dk+ A+p )
m2
—— +R(Z,+Z))A |L=0,
A —1
(16)
d sz 2 2
£ (11— —p¥1—
d“(l ,u)d”-i—A p(l—pu*)
2
——— _R(Z,—Zu [M=0,
1—p
(17)
and
~d—2~+m2 Q=0 (18)
d¢? ’

where A is a separation constant and p=(—W/2)!/2

The eigenequation for A is often known as the “outer”
equation and that for pu as the “inner” equation. The
solutions of these two equations take the form of semi-
analytical series expansions!?!*

t t
< A—1
—(A2_1ym/2 o, —ph A=1
L(A)=(A"—=1)""4A+1)° tgog, vl |’ (19)
M= fiPmis1), (20)

s=0

with m non-negative, o=R(1+¢)/2p —m —1, and
q=2,/Z, (Zy>Z,). P, . (u) are the unnormalized
Legendre functions'® and the coefficients g, and f; are to
be determined. The eigenfunction for the angular coordi-
nate is simply

Q(d)=exp(time) . (21)

In order to calculate the eigenenergy as a function of R,
the solutions (19) and (20) must be substituted into Egs.
(16) and (17), respectively, from which three-term re-
currence relations for the series coefficients are obtained.
For example, if the outer equation is considered,

a;gj_1+Bgi+7;8+1=0, (22)

with j=0,1,2,3,..., and a, B, and y are functions of j,
p, A, R, Z|, Z,, and m. The quantum numbers n and !/
enter implicitly through the values of p and 4. If g_, is
set to zero and Eq. (22) is divided throughout by g, the
following equation is obtained;

G(p,A)=PBo+781/80=0, (23)

where g, and g, can be expressed in higher j terms using
the recurrence relation, and so G (p,A) becomes a contin-
ued fraction which is said to be “chained” at a value of j
for which the fraction is terminated. This value is deter-
mined by the convergence of G(p,A), and it has been
shown'!7 that the series solution for A allows G (p,A4) to
converge at a finite value of j for both small and large
values of p. A similar approach for the inner equation
will result in a second continued fraction,

F(p,4)=0. (24)

Simultaneous solutions of (23) and (24) exist only for
discrete values of p and A4, from which the eigenenergies
can be obtained. These solutions are found by initial
guesses for p and A4 from which more accurate values can
be obtained using a quadratically convergent Newton-
Raphson scheme. At R =0, the first initial guess for p
and A4 can be obtained from the eigenparameters for the
united atom, and subsequent guesses are obtained by ex-
trapolation. If the potential curve E(R) is calculated
starting from large R, the first two initial estimates for p
and A are given by large-R asymptotic expansions, and
again further guesses at other values of R can be extrapo-
lated. The large-R asymptotic expansions for p and A are
of the order of R ~%. More accurate initial guesses require
more complex expansions,'® but this generally only saves a
few iterations before arriving at an acceptable solution.

Having calculated p and A as a function of the internu-
clear separation, it is possible to go back to Egs. (23) and
(24) and obtain the coefficients g, and f; and hence to ob-
tain the complete expression for the wave function at any
value of R.

G. Eigenenergy calculations

The Schrodinger equation (10) for the two-center sys-
tem without electrons was solved and the energy curves
were calculated using a code developed by Power'® to in-
vestigate one-electron diatomic molecules. The input to
the code consists of the two nuclear charges (Z, and Z,),
the united atom quantum numbers of the chosen state
(n,I,m), the range of internuclear separations for which
W (R) is required, and accuracy criteria for the conver-
gence of the successive iterations to p and 4 and for the
convergence of the continued fractions and their deriva-
tives.

The accuracy of the values of p and A4 obtained by
simultaneously solving the two continued fractions was
initially set to ten decimal places. For quantum states
with a low principal quantum number, n, this accuracy
setting allowed a rapid convergence to the correct values
of p and 4, but for higher quantum states the conver-
gence was much slower, and in some cases a reduced ac-
curacy setting (to a minimum of five decimal places) was
required. The large-R asymptotic expansions proved to
be very reliable. However, the use of extrapolation to ob-
tain initial guesses necessitated extreme caution especially
in a range of R where the energy curve has a minimum or
a rapid change of slope. For such cases it was important
to use sufficiently small increments of R to follow the
curve, or else the initial guess either did not result in con-
vergence or converged to a solution of a different quan-
tum state.

The accuracy and convergence rate of the continued
fractions and their derivatives also depends on the choice
of quantum state. For increasing quantum numbers, the
pairs of eigenparameters get closer and closer together,
and consequently if F and G are to be continuous, their
derivatives must become smaller which in turn slows
down the convergence. The initial accuracy for the con-
tinued fractions was set to five decimal places, but again
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the accuracy was reduced (to a minimum of two decimal
places) when necessary.

A problem encountered in the calculation of the pion
eigenenergies was the occasional “jumping” from a
correct pair of eigenparameters for the state of interest to
a totally different pair belonging to a different eigenstate.
This phenomenon, known as the quasicrossing of energy
curves,’”~2! is manifested by a sudden discontinuity in
W (R) at a particular value of the internuclear separation.
A quasicrossing is the result of the interaction between
two states of the same symmetry and of almost equal en-
ergy, which belong to each of the two potential wells
below the barrier. Such interactions occur by virtue of
symmetry and for homonuclear systems may be ignored
since the two states involved are identical. However, for
heteronuclear systems, quasicrossings occur by “accident”
and it is important to be aware of their presence; other-
wise, incorrect eigenparameters may unknowingly be ob-
tained. Discontinuities in the energy curves can be detect-
ed directly by visual inspection of W (R) or else by com-
paring the calculated eigenenergies at zero and infinite
separations with the known energies of the united atom
and separated atom systems. The problem of quasicross-
ings was found to be most severe for the higher quantum
states where the energy separations between states be-
comes extremely small, hence encouraging the process.

H. Classification of bonding and antibonding orbitals

The shape of the potential curve E(R) for a pion quan-
tum state can be used to classify bonding molecular orbi-
tals??> and to find in which range of R they are likely to
occur. At R close to zero, the curve of E(R) will go to
infinity on account of the nuclear repulsion term, and at
infinite R, it will tend to a separated atom energy. If
E(R) decreases monotonically between the two limits, the
orbital will be repulsive at all values of R and will de-
crease in energy as the internuclear separation increases.
If, however, the curve has a minimum value at a distance
R in, the pion orbital will be stable over a range of R on
either side of R_;,, and the nuclei will be attracted to
each other by the pion charge density between the two

centers. The deeper the curve is for a bonding state, the
more stable the state will be. The lower quantum states
tend to be the most stable, as the higher states are of lower
energy, with much shallower minima.

The two-center systems of H—H, C—H, N—H, O—H,
and O—C were investigated for internuclear separations
ranging from zero to 700a,. This range covers typical
bond lengths associated with any pair of centers used.
Quantum states up to the united atom equivalent of n,
were examined.

The number of bonding states for the H—H systems is
tabulated in Table III. The values in this table correspond
to the number of m states which are bonding for all al-
lowed combinations of n and I. It can be seen that the
number of bonding states is considerably less than the
number of allowed states. The C—C system was also
shown to having bonding states.

The analysis of all the heteronuclear systems showed
that all the states were antibonding, as the energy curve
always decreased monotonically from the united atom
limit at R =0 to R =700a,,, where E (R) approached the
separated atom energy.

I. Verification of the Born-Oppenheimer approximation

An accurate analysis of the Born-Oppenheimer approx-
imation requires the evaluation of the extra term intro-
duced into the Schrodinger equation by the separation of
the nuclear and pion wave functions. This is possible for
simple molecular wave functions, using a linear combina-
tion of atomic orbitals,>>2* but using the series expansion
solutions, not only is the energy dependent on R, but so
are the coefficients g, and f; (which may be numerous for
certain states). The calculation of the partial derivatives
of these coefficients would be very difficult and very inac-
curate.

The Born-Oppenheimer approximation is valid for elec-
trons because they move so much faster than the nuclei
vibrate about their position of equilibrium, that the nuclei
can be considered as “frozen.” The same would be true
for pions if it can be shown that the average kinetic ener-
gy of the pion in a given state is substantially greater than

TABLE III. Bonding states for H—H.

n

1 13 12 11 10 9 8 7 6 5 4 3 2 1
12 11
11 9 9
10 6 8 9

9 3 5 7 8

8 0 2 4 6 7

7 0 0 1 3 5 6

6 0 0 0 1 2 4 5

5 0 0 0 0 0 1 3 4

4 0 0 0 0 0 0 1 2 4

3 0 0 0 0 0 0 0 0 1 3

2 0 0 0 0 0 0 0 0 0 1 2

1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0
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the molecular vibrational energy associated with that
state.

Using the virial theorem,? it is possible to show that
the average kinetic energy of the pion can be derived from
the potential curve E (R), by the relation®

tin=—E—R(dE/dR) , (25)

where dE /dR is taken at the center separation.

The vibrational energy may be estimated for bonding
states by expanding E(R) in a power series about the
equilibrium position at R;,. Thus,

E=—D+k(R —R,)*/2+ -, (26)

where D is the dissociation energy and k is a constant. If
higher-order terms are ignored, then to a first approxima-
tion, the force (—dE /dR) is proportional to the displace-
ment (R), and for vibrations of small amplitude, the equa-
tion becomes that of simple harmonic motion. The fre-
quency of the motion is

v=(k/M)'"* /27 27
and the vibrational energy is therefore
E i =Hk/M)"/* . (28)

For a more accurate estimation of E,;, a Morse poten-
tial® can be used to describe E(R) close to the equilibri-
um, instead of the quadratic used above.

The average pion kinetic energy for a selection of states
of the H—H system was evaluated using Eq. (25) at an in-
ternuclear separation of 500a,. The states chosen were
bonding states, and values of N close to n, were examined
more closely. dE/dR was found by using a nine-point
differentiation formula derived from a similar three-point
formula by Dorn and McCracken.?® Since E (R) was fair-
ly linear in the region of R =500a,, the accuracy of the
technique was acceptable. The energies were obtained in
mesoatomic units and later converted into units of eV.
Values of Ef;, are presented in Table IV together with the
united atom and separated atom quantum numbers of the
states, the binding energies, and the values of R ;.

The vibrational energy of the chosen states was found
by a minimization of the sum of the squares of the differ-
ences between the true values of E and the values of E ob-
tained from (28), in order to find a suitable value for k.
Calculated values of k and E., are also presented in
Table IV together with the ratio between E;, and Eg}, ex-
pressed as a percentage. Thus the Born-Oppenheimer ap-
proximation is valid for pions to an accuracy of ~5%,
except for the lowest state.

An estimation of E.,/E}, was obtained for the
ground state of the hydrogen molecular ion (for which the
Born-Oppenheimer approximation is known to be valid)
in order to test the above numerical techniques. The aver-
age kinetic energy of the electron was found to be 16.37
eV and the vibrational energy to be 0.287 eV (2% of

TABLE IV. E{}, and E,;, for various states of the H—H system.

Rmin
(in units Ebinding :‘i/n k Evib Evib/Ela(;'(n
n 1 m N K of a,) (eV) (eV) (eV/m~?) (eV) (%)
1 0 0 1 0 2 —3478.2 3464.3 1.6x 10% 1167.9 34
3 2 2 3 0 18 —398.7 384.9 1.7 10% 37.8 10
4 3 3 4 0 32 —230.4 216.5 2.6x 10%* 14.7 7
5 4 4 5 0 53 —1524 138.6 2.4x10% 4.5 3
6 5 3 5 1 49 —152.6 138.4 2.1x10% 13.3 10
7 6 4 6 1 69 —110.3 96.0 7.5% 103 7.9 8
8 7 4 6 1 103 —110.3 96.0 1.1x10% 3.0 3
9 8 5 7 1 134 —84.8 70.5 4.3x10% 1.9 3
10 7 0 6 3 109 —110.3 96.0 1.2x10% 3.2 3
10 7 3 8 2 125 —67.9 54.2 1.0x 10 2.9 5
10 9 0 5 4 104 —153.3 137.6 6.3x10% 7.2 5
10 9 7 9 1 151 —56.9 42.6 6.1x10%2 2.2 5
11 8 0 7 4 113 —85.1 70.1 3.5x10% 5.4 8
11 8 4 9 2 157 —56.5 43.0 5.1x10% 2.0 5
11 10 0 6 5 120 —111.5 94.7 7.3 105 7.8 8
11 10 8 10 1 185 —48.7 34.6 3.0x 102 1.6 6
12 9 0 7 4 146 —85.1 70.1 9.2 102 2.8 4
12 9 5 10 2 193 —48.4 34.9 2.7x 102 1.5 4
12 11 0 6 5 148 —111.5 94.7 2.6x10% 4.6 5
12 11 9 11 1 223 —42.7 28.6 1.7x 102 1.2 4
13 9 0 8 4 180 —68.2 53.9 2.6 102 1.5 3
13 9 3 10 3 198 —48.4 34.9 3.2x 102 1.6 5
13 12 0 7 6 168 —86.6 68.3 2.8x10% 4.8 7
13 12 10 12 1 264 —38.0 24.1 9.8 10?! 0.9 4
15 14 0 8 7 225 —70.9 50.4 1.2x10% 3.1 6
17 16 0 9 8 290 —60.7 36.8 5.3 102 2.1 6
19 18 0 19 9 364 —54.5 20.5 2.7x 102 1.5 7
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&'.). The value of the nuclear vibrational energy agrees
well with the value of 0.285 eV calculated by Bransden
and Joachain.?’

J. Evaluation of pion two-center wave functions

Having obtained the energy of a pion state from the
code described above, it was possible to evaluate the coef-
ficients g, and f, and hence define the pion two-center
wave function at any internuclear separation. This was
done using a code developed by Salin'* which requires in-
formation about the charges of the two centers, the united
atom quantum numbers, the internuclear separation (in
mesoatomic units), the eigenenergy, and the separation
constant. The code represents the three-term recurrence
relationship for the outer equation (22), and the equivalent
equation for the inner equation, in the form of ¢,, and s,,
linear equations, where t,, and s,, depend on the required
accuracy of the wave function. These equations are then
transformed into matrix form and solved using a Fortran
translation of an ALGOL program written by Martin and
Wilkinson.?® The matrix of the outer equation is tridiago-
nal and that of the inner equation is tridiagonal for a sys-
tem of identical nuclei and pentadiagonal for nonidentical
nuclei. In the case of identical nuclei, the solution to the
inner equation is summed only over odd terms if / +m is
odd and only over even terms if / 4+m is even.

Once the coefficients of the expansions have been ob-
tained, the wave function can be normalized to unity by
integration over the confocal elliptic coordinates. The in-
tegration over the angular coordinate is trivial and that
over the p coordinate can easily be done analytically by
using the orthogonal properties of the associated Legendre
polynomials. The integration of the remaining coordinate
is more difficult and must be performed numerically.

The wave functions of the lowest bonding and anti-
bonding orbitals of the hydrogen molecular ion were cal-
culated in order to test the code, and showed the expected
behavior. The behavior of E(R) against R and contour
plots of the wave functions for selected pion states are
shown in Fig. 2.

III. THE TWO-CENTER SYSTEM
INCLUDING ELECTRONS

A. The Schrodinger equation

The addition of electrons to a simple two-center system
will result in an extra potential between the pion and elec-
trons which must be included in the Hamiltonian of the
original Schrodinger equation. We assume that the pres-
ence of the pion leaves the molecular electron distribution
essentially unperturbed and use known electron distribu-
tions in order to investigate the effect of the electrons on
the pion. To a considerable extent, this assumption is dic-
tated by practical considerations, namely the availability
of unperturbed molecular wave functions and the huge
complexity of a true self-consistent calculation, but it may
also be argued that the pion is moving rapidly through the
available states while the electron distribution is relatively
undisturbed. This is a good argument if there is instan-

taneous refilling of electron holes caused by Auger transi-
tions. We have endeavored to investigate the effect of fi-
nite refilling times.

Self-consistent” and approximate®® calculations have
been carried out for muonic atoms. The partial penetra-
tion of electrons through the muon orbit is not significant
for light atoms but in heavier atoms is most pronounced
for muon orbits with large n or the more eccentric orbits.
It is concluded®® that the largest uncertainty in the calcu-
lation of screening corrections in muonic atoms is con-
nected with the incomplete filling of the electron shells.

The Schrodinger equation now becomes

2
——+V(R,r,)+E,(r,)

5 u'(R;r,)=E'(R)u'(R;r,),

(29)

where E,(r,) is the pion-electron potential. The wave
equation for the nuclear motion (11) will also change be-
cause of the addition of a modified potential-energy curve
E’(R) and a new potential E,(R) between the electrons
and the nuclei,

2

V&
_ R L EYR)+E,(R)

M v'(R)=€v'(R) . (30)

B. Electron wave functions

In order to calculate pion-electron potentials, it is neces-
sary to obtain electron wave functions in a molecular con-
figuration around the bonds of interest. For the H-H
bond, this is possible by using the total electron wave
function for the diatomic molecule H,. However, for the
remaining bonds (C—H, N—H, O—H, and O—C), true
diatomic molecules do not exist and so it is necessary to
extract the electron wave function from wave functions
for large molecules (i.e., CH;, NH;, H,0, CO,, CH;0H,
and N,H,).

A convenient description of electron wave functions is
available by using summed ‘“‘contractions” over a Gauss-
ian basis set.’!"32 Tables of coefficients (C) and exponents
(a) exist for an extensive collection of molecules,?® to-
gether with data on the positions of the nuclei in the mol-
ecule, the bond lengths, and the bond orientations.

The wave function of the ith contraction for a center k
may be written as

pic= 3 kNij kCiif Xi, Y, Zi Jexp(—xay; RE), (1)
J
where the function f (X, Y,Z;) is defined as

1 for S contractions

X, for PX contractions

[ (X, Yi, Zi )= (32)

Y, for PY contractions ’

Z, for PZ contractions

Xp =Xx —xy, etc., (Xg,Vx,2x) are the Cartesian coordinates
of the kth center, and Ry =(X?+ Y?+Z})'/2. The nor-
malization constant ; &;; is such that
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FIG. 2. Plots of E(R), in units of W, and of pion wave functions: (a) H—H, (b) H—H, (c) C—H, (d) O—H.

[ drph=1 (33)

and can be evaluated for S and P contractions by the for-
mulas (dropping all subscripts)

N*=(2a/m)’"? (34)
for S contractions and
N2=(2""2a5%) /732 (35)

for P contractions.

The 1s electron wave function is found by summing the
S'1 and S2 contractions, the 2s wave function by sum-
ming the $3 and S'4 contractions, and the 1p,, 1p,, and
1p, wave functions by summing the PX 1 and PX2 con-
tractions, the PY1 and PY2 contractions, and the PZ 1
and PZ 2 contractions, respectively.

The total electron density for a two-center system
(k=2)is

2
2 zaikpxgk ,

k=1 i

(36)

where a; is the Mulliken charge®® associated with the

wave function of the ith contraction of the kth center.

Contour plots of the electron densities for H,, CH,,
H,0, and CO, are presented in Fig. 3 together with sec-
tions along the z axis. Similar calculations have been
made for C—H and O—H bonds extracted from CH;OH.
H, and CO, are linear molecules, whereas the remainder
are nonlinear and have bond orientations which are not
along the z axis, used to define the electron configuration.
The bonds in the latter case can be reoriented along the
desired axis by transforming the Cartesian coordinates
used in the description of the electron wave functions,
with a rotation matrix

cos@cosp — sinf cos@sing
sinfcos¢ cosf sinfsing |,
—sing 0 cos¢

where ¢ is the angle made between the bond and z axis,
and 6 is the angle made between the projection of the
bond in the x-y plane and the x axis.

C. The pion-electron potential

Using the summed contractions of Gaussian basis sets
to obtain the electron wave functions, as described above,
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the pion-electron potential can be calculated as a function
of the pion position by evaluating the following three-
dimensional integral‘

2 2 f dTeptk

k=1 i

‘ 1 Pik > (37)
where r,, and r, are the pion and electron position vectors.
This potential will be repulsive and will therefore be of
opposite sign to the attractive potential C(r,) between the
pion and the nuclei.

Although the electron wave functions were originally
described in Cartesian coordinates, the integration was
performed by first transforming to confocal elliptic coor-
dinates, using the transformation equations

=—§(A2— DY2(1—p2) 2sing,
y=_123—(l2—1)‘/2(1——,u2)’/zcos¢, (38)
R
==A
z ) T

with the two nuclei at (0,0,+ 5 R), and then integrating us-
ing a Gauss-Laguerre quadrature for A and Gauss-

Legendre quadrature for p and ¢. Integrations using both
pion and electron wave functions, such as overlap in-
tegrals, could then be done using the same quadrature
techniques.

The accuracy of the integration was dependent upon the
number of pivotal points used for each of the coordinates
Unfortunately, increased accuracy requires a greater num-
ber of points, which poses problems with the time taken
by the calculations, and hence a compromise between ac-
curacy and time had to be found. The number of times
the integrand must be calculated for one integration is
equal to the product of the number of pivotal points used
for the three coordinates. The functional form of the in-
tegrand is complicated, as it contains the sum over 20
contractions (in the worst case of O—C) and the transfor-
mation of the coordinates system. Furthermore, for
centers which are not orientated along the z axis, the use
of the rotation matrix was also necessary. Time proved to
be a limiting factor, especially since E, was required in a
plane at the very least (and preferably in all space). The
best choice of the number of pivotal points was 32 for the
integrations of the A and u coordinates and eight points
for the less important angular coordinate. The accuracy
of the integration technique was tested by computing the



752 C. TRANQUILLE AND DAPHNE F. JACKSON

(@)
Y
30 1,004
2.04
0.80
25
1.0
Z=1 Z=1
0.604
0 z
-1.04 0.40
25
-2.04
0.20
-30 T T T T T
-30 -20 -10 O 10 20 30
0.00 . . ; . —
-3 -2 -1 [ 1 2 3
z/ ag
(b) 2=6 Z=1
Y
3.0 3.00-
2.0
2.404
1.80
Fz
04 1.20
0.604
-3.0 T T T T T
-30 -20 -10 O 10 20 3.0
0 . T . v = —
-3 -2 -1 o 1 2 3
z/ae
(©)
Y Z=8 Z=1
3.0 L :,oo}
2.404
/ NN 1.80
\ ) L.
)
N Y
-0 = 1.204
0.60
—30 T T BE Al R
-30 -20 -1.0 0 1.0 20 30
0 T T T A T .l
-3 -2 -1 [} 1 2 3
z/ae
(d) Z2=8 Z=6
Y -
3.0 L 300
2.40
1.80
Lz
1.204
0. 60
-3.0 .
-3.0 -20 -10 0 0 20 30 ° u T T T
-3 -2 - [ H 2 3
z/ag

FIG. 3. Plots of the electron densities derived from group- 4 molecules: (a) H—H, (b) C—H, (c) O—H, (d) O—C.



34 PION MOLECULAR ORBITALS 753

-3.0

-30 -20 -10 0 10 20 30 Y

) z/a

30

2.0

1.04

0 / o "\:
o)

~-1.04 q
-2.04
-3.0 . — -

-30 -20 -1.0 o 1.0 20 30

Z=8 Z=6

FIG. 4. Plots of E,(r,), in units of E,, for group- 4 molecules: (a) H—H, (b) C—H, (c) O—H, (d) O—C.



754 C. TRANQUILLE AND DAPHNE F. JACKSON 34

TABLE V. Comparison of exact charge with calculated
charge.

Bond Molecule Exact charge Integrated charge
H—H H, 2.000 2.000
C—H CH, 7.553 7.544
N—H NH; 8.577 8.566
O—H H,0 9.386 9.374
o0—-C CO, 13.707 13.696

charge normalization integrals (36) for the different
centers. The results are tabulated in Table V and illus-
trate the adequacy of the choice of pivotal points.

Contour plots of E, in the y-z plane and sections along
the bond axis are presented for group- 4 molecules in Fig.
4. The scales used for the graphs are identical to the ones
used in Fig. 1, for comparison with the pion-nuclear po-
tential. The signs of the two potentials are, however, op-
posite. The sum of the pion-nuclear and pion-electron po-
tentials is shown in Fig. 5. The same calculations have
been made for group-B molecules. There are differences
which can be seen in the contour plots but not in the sec-
tions on the scale of these figures.

The calculations of E, were checked by considering the
behavior of the potential close to and away from the
centers. As the pion moves away from the centers, the
magnitude of the pion-electron potential will become
equal to that of the pion-nuclear potential, since at this
distance the two potentials look identical, although oppo-
site in sign. Hence, for large distances, the 1/r, behavior
of ¥V and E, cancel each other out, as shown in Fig. 5.
Close to the centers, E, must approximate the potential
between a pion and an equivalent atom. Similar calcula-
tions have been made using electron wave functions for
atoms obtained from self-consistent-field (SCF) theory.>*
The values of E, at the position of the centers were com-
pared using the two different approaches. Potentials cal-
culated from atomic electron configurations defined using
the same Gaussian basis set used previously were also cal-

culated for comparison. The results, found in Table VI,
1

show that the potentials are comparable and that they are
larger for the molecular configurations, as would be ex-
pected because of the greater number of electrons and
concentration of charge. The atomic Gaussian basis-set
calculations are closer to the atomic SCF calculations.
The behavior of E, between the two limits is both smooth
and regular.

The pion-electron potential was also calculated for
group-A molecules after removing the 1s electrons (S'1
and S2 contractions) and the valence electrons (PX1,
PX2, PY1, PY2, PZ 1, and PZ?2 contractions) in order to
see the contribution to E, by the different electrons. Re-
sults are shown in Fig. 6. Since hydrogen only contains a
1s electron, it was not removed in these calculations
(hence the omission of H, in Fig. 6). It can be seen that
the 1s electrons make an important contribution to the
pion-electron potential close to the nuclear centers. Omis-
sion of the 1p electrons has a much smaller effect close to
the centers and a large effect away from the centers.

The increase in the barrier height as a consequence of
the addition of the electrons is presented numerically in
Table VII which gives the barrier heights of the original
pion-nuclear potential and of the new potential including
the electrons. Also tabulated are the barrier heights after
removal of the 1s electrons from carbon, nitrogen, and ox-
ygen centers. This is of interest because, physically, elec-
tron states are depleted in the pion cascade process due to
Auger transitions and the states are subsequently replen-
ished by electrons from higher orbitals.’> The rate of
electron refilling is thought to be extremely rapid, except
for core electrons in light nuclei.’®3” We expect that, on
average, one K-shell electron is missing from C,N,O in
the light molecules we are considering. Thus, the true sit-
uation should be between the two cases we have examined,
i.e., all electrons present or both K-shell electrons absent.

D. Parametrization of V +E,

An attempt was made to parametrize the sum of the
pion-nuclear and pion-electron potentials to facilitate cal-
culations with this total potential. The following func-
tions were tried:

V+E,=—(Z,/r)exp(—Ar\)—(Z,/r,)exp(—Br,) (39)
=—[(Z,—C)/r ]Jexp(—Ar,)—[(Z,—D)/r,}exp( —Br,) (40)
=—(Z,/r))exp(—Ar})—(Z,/r,)exp(—Br}) (41)
=—(Z,/r\)+Cexp(—Ar,)—(Z,/ry)+D exp(—Br,) . 42)

TABLE V1. Comparison of E, calculated from different electron configurations.

Gaussian basis Gaussian basis

SCF (atom) set (atom) set (molecule)
Center (eV) (eV) (eV)
H 33 49 (H,)
C 316 385 398 (CH,)
484 (CO,)
N 403 481 526 (NHj3)
(0] 521 584 608 (H,0)

663 (CO,)
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TABLE VII. Barrier heights for different potentials.

757

Height of
(V+E,)/E,
Height of Height of (without 1s
Bond Molecule V/E, (V+E,)/E, electrons)
H—H H, _2.854 —1.075
C—H CH, —5.765 —0.743 —2.204
CH;0H —5.753 —0.937
N—H NH, —6.945 —0.950 —2.523
N,H, —6.894 —1.060
O—H H,0 —8.115 —1.212 —2.868
CH,;0H —8.124 —1.272
0—C CO, —12.699 —1.868 —5.511

The constants were found by a least-squares minimization
routine.

The Gaussian potential (41) and the potential (42) were
the least satisfactory of the chosen functions, especially in
the region between the two centers. We refer to the poten-
tial (40) as a “screened” Yukawa potential because the
strength of the charges on the two centers has been re-
duced. Both the Yukawa and the screened Yukawa po-
tentials were very adequate, the latter being slightly supe-
rior because of the extra parameters. The exponential
terms in both of these potentials describe the fall to zero
of V +E, away fom the centers very well, while, closer to
the centers, the Coulomb terms dominate. Values of the
fitted constants are listed in Tables VIII and IX for the
Yukawa potential and the screened Yukawa potential.
The parameters were found using units of @, and E, for
length and energy, and also in mesoatomic units for the
Yukawa potential. The differences between the parame-
ters for group- 4 and group- B molecules are significant.

E. Density of atomic states

The increase in the height of the potential barrier
caused by the addition of the electrons will necessarily re-
sult in an increase in the number of atomic states centered

on either of the two nuclei. Hence the value of ny which
corresponds to the transition from atomic to molecular
states requires a new analysis.

The derivation of the original formula for n, assumes
that the energies of the atomic states are given by the sim-
ple Bohr formula, valid for a Coulomb potential. The
new potential in the vicinity of one center is no longer a
Coulomb potential, but a Yukawa potential. However,
the large separation between the two centers implies that
the binding energies may still be estimated by the Bohr
equation, with a slight modification for screening.

If (V +E,)max is the height of the potential barrier in-
cluding the effect of the electrons, then the value of
no(Z,) for the heavier of the two nuclei (Z;) can be
found from

(V+E)max=—3(Z,/N{)*—0,/R, (43)

where 0, is the part of the nuclear charge of the lighter of
the two nuclei (Z,) which is not screened by the electrons,

0,=2,-9,,

8, is the sum of the Mulliken charges on nucleus Z,, and
R is the internuclear separation. The value of ny(Z,) is
given by a similar expression for the lighter nucleus,

TABLE VIII. Parameters of Yukawa potential.

A B A4x107? BXx1072

Bond Molecule (in units of a,") (using mesoatomic units)
H—H H, 1.359 1.359 0.535 0.535
C—H CH, 2.087 1.463 0.772 0.541
CH/ 0.755 0.860 0.279 0.318
CH;0H 1.977 1.182 0.732 0.437
N—H NH; 2.201 1.408 0.813 0.519
NH;* 0.933 0.685 0.345 0.253
N.H, 2.146 1.210 0.793 0.446
O—H H,O0 2.327 1.212 0.861 0.451
H,0* 1.104 0.385 0.408 0.142
CH;OH 2.307 1.131 0.852 0.417
o—C CO, 2.132 1.881 0.785 0.692
CO;? 0.966 0.467 0.356 0.172

*Without 1s electrons.
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TABLE IX. Parameters for screened Yukawa potential.

A B C D
Bond Molecule (in units of a, ") (in units of E;)
H—H H, 1.452 1.452 —0.038 —0.038
C—H CH, 1.743 1.687 0.790 —0.025
CHg 0.813 0.689 —-0.171 0.020
CH;0H 1.540 1.380 0.998 —0.011
N—H NH; 1.902 1.609 0.705 —0.018
NH;* 1.005 0.472 —0.210 0.027
N,H, 1.787 1.402 0.839 —0.012
O—H H,O 2.011 1.426 0.701 —-0.017
H,0? 1.306 —0.077 —0.482 —0.078
CH;OH 1.976 1.328 0.734 —0.011
o0—C CO, 1.837 1.426 0.855 0.849
CO,? 0.937 0410 0.198 0.215
#Without 1s electrons.
(V+E ) max=—3(Z,/N;)*—0,/R . (44) The use of a 1/r potential must overemphasize the den-

Usually there is no charge from the second nucleus
(0,=0) since it is totally screened by the electrons. How-
ever, if the 1s electrons are removed, some of the nuclear
charge becomes exposed and must be considered. From
the values of the barrier heights in Table VII, values of ng
were recalculated for the bonds extracted from the dif-
ferent molecules. Results are tabulated in Table X. Com-
parison between Table X and Table II shows that, even
for hydrogen, the value of n, has increased significantly.
For the heavier atoms, the increase in n, is dramatic, even
when depletion of the 1s electron shell is considered.

The energies of the atomic states have been calculated
for K =0, m =0, and the density of states for the bonds
taken from group-A4 molecules are displayed in Fig. 7.
The density of states for the original system without elec-
trons is shown for comparison. Many more atomic states
are available when the presence of the electrons is taken
into account and there is a near-continuum for Z > 6 near
the top of the barrier. The low-lying states in carbon in
the C—H system coincide, in the two calculations, up to
N ~17, while discrepancies arise for hydrogen at N ~4.

sity of states near the top of the barrier. It is possible to
calculate the energies of the low-lying states in a single
Yukawa potential whose parameter is given in Table VIII.
This Yukawa potential represents a parametrization of
V(r,)+E,(r;) so it takes account of the presence of the
electrons. Results for the 1/r potential, without and with
electrons, and the Yukawa potential are given in Table XI,
for the symmetric H, molecule. Although the density of
states is reduced in the Yukawa potential, the binding en-
ergies are also greatly reduced which will enhance the
probability of direct capture and of barrier penetration.
In similar calculations with the single Yukawa potentials
for Z =6,7,8, the number of states below the barrier is al-
ways increased compared with the situation when the
presence of electrons is ignored, although the effect is not
as dramatic as in Fig. 7, and the binding energies of states
near to the barrier are greatly reduced.

F. Perturbation calculations

The Schrodinger wave equation (29) can no longer be
solved by the same series expansions used to solve the

TABLE X. Recalculation of n,.

Bond
Z]-Zz Molecule oy (25} no(Zl ) no(Zz)
H—H H, 0 0 11 11
C—H CH, 0 0.1843 87 14
CHg 1.2617 0.1843 48 10
CH;0H 0 0.1911 76 13
N—H NH; 0 0.2887 92 12
NH;?* 1.1333 0.2887 53 9
NH, 0 0.3079 86 12
O—H H,0 0 0.3859 94 11
H,0?* 1.2276 0.3859 58 8
CH;0H 0 0.3827 90 11
o0—-C CO, 0 0.5867 74 52
CO,* 1.7060 2.5861 45 33

*Without 1s electrons.
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FIG. 7. Atomic states for V(r,) (upper figure) and V(r,)+ E.(r,) (lower figure), in units of E,: (a) O—H, (b) O—C.

two-center problem without electrons because the poten-
tial term in the Hamiltonian is different from that of Eq.
(10). Furthermore, the potential E, is known exactly for
a limited number of discrete values only. If spherical
symmetry is assumed, as in the preceding section, E, can
be best expressed by a sum of two Yukawa potentials.
Unfortunately, a consequence of such a parametrization is
that the wave equation can no longer be separated, using
confocal elliptic coordinates, thus making the solution
very difficult.

An estimation of the change in the pion energy, 8W, at
internuclear separations corresponding to the bond lengths
of the two-center systems can be found by using first-
order perturbation theory. If E, is considered as a small
perturbation, then §W is given by

8W= [ dr,| ¥, | L., 45)

where E, can be written as the difference between the

TABLE XI. Energies in eV for low-lying K =0 states in the
H, molecule calculated in various potentials. The barrier height
without electrons is —77.63 eV and the barrier height with elec-
trons is —29.24 eV.

1/r potential
N  without electrons

1/r potential
with electrons

Yukawa potential
with electrons

1 —3476.98 —3457.39 —3420.85
2 —883.76 —864.36 —827.73
3 —403.54 —384.17 —348.45
4 —235.46 —216.09 —181.38
5 —157.67 —138.30 —104.76
6 —115.41 —96.04 —63.88
7 —89.93 —70.56 —39.95
8 —73.39 —54.02 —25.11
9 —42.68 —15.57

10 —34.57

11 —28.57
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parametrized form of (¥ +E,) and the Coulomb poten-
tials (using parameters obtained in mesoatomic units), i.e.,

E,=—(Z,/r|)exp(—Ary)
—(Z,/ry)exp(—Bry)—V(r,) . (46)

The assumption that E, is a small perturbation is strictly
not valid, except close to the centers. However, the calcu-
lation of 8W can give some indication of the effect of the
electrons on the pion energy. A few calculations are listed
in Table XII. The solutions described in Sec. IIJ were
used as the zeroth-order wave functions.

It can be seen from Table XII that the lower quantum
states have binding energies (i.e., zeroth-order energies)
which are at least an order of magnitude greater than § W.
In contrast, the higher states have binding energies which
are comparable to, or even less than, the energy change
SW. For the latter states, the potential E, is not a small
perturbation and a higher-order calculation is required for
a good approximation to the total energy. Thus the calcu-
lations without electrons do not give any useful informa-
tion about pion states with N > 15.

G. Hydrogen transfer

In the model developed by Ponomarev and co-
workers® ™ it is assumed that pion capture on hydrogen
can proceed only through the intermediate stage of a pion
molecular orbit. This assumption is based on theoretical
calculations for atomic hydrogen®® which show that the
radiative capture rate for muons is very small (10°—10’
s~!) compared with the Auger rate (10'° s~! for n =5).
Hence, if the electron is lost, direct atomic capture can
proceed only by the slow radiative transitions which are
negligible compared with the rate for transitions from a
molecular state to an atomic state which is estimated®® to
be ~10°Z% s~!. When, however, the hydrogen atom is
one of the molecular systems discussed here, all the
valence electrons of the whole molecule are available for
refilling.

We have shown that the correct calculation with the in-
clusion of electrons provides many more atomic states in

pionic hydrogen. It can be seen fom Fig. 7 that the densi-
ty of states in the heavier nucleus near to the top of the
barrier is such that unidirectional barrier penetration is a
very likely process. The small discrepancies in energy be-
tween adjacent states in hydrogen and in the heavier atom
are very much less than the vibrational energies, so we can
easily anticipate that in the vibrating system exact energy
matching can occur.

The highest states in hydrogen are close to the top of
the barrier. This means that the exponential factor in a
quasiclassical calculation of the barrier penetration will be
close to unity and the transition rate for hydrogen transfer
depends on the classical frequency with which the pion
approaches the barrier. We can estimate the latter from
the kinetic energy of the pion, assuming circular orbits, or
from the vibrational frequency, and obtain an estimate of
the hydrogen transfer rate as 10'2—10'3 s~!. This is quite
comparable with typical Auger, radiative, and refilling
rates in light atoms,*%3"%° but much bigger than the radi-
ative rate in atomic hydrogen. Hence the hydrogen
transfer process is fast and will dominate over radiative
transitions in hydrogen. Even transfer from lower-lying
hydrogen states, for which the exponential factor may
reduce the transition rate by a few orders of magnitude,
will be competitive with radiative transitions.

It may be noted that the pion transferred from hydro-
gen goes into a state in the heavier atom with a much
higher principal quantum number, but with the same en-
ergy. There is no obvious mechanism which would cause
the orbital angular momentum to change. Hence the
transfer process will populate preferentially the lower an-
gular momentum states and this may explain the need*!
for an upper cutoff in the angular momentum distribution
chosen to initiate cascade calculations, at least for the
kind of molecular system we are discussing here.

It should be noted that our approach to hydrogen
transfer is very close in theoretical principle to the ex-
planation given in terms of quasicrossings by Gershtein
and Ponomarev.>?° Indeed, Gershtein®! has used this ap-
proach for a calculation of the transfer of a muon in a K
orbit of hydrogen to a nucleus Z > 1. Unfortunately, this

TABLE XII. Results from the perturbation calculations.

R Ebinding W
Bond Molecule (in units of a,) n / m (in units of W) (in units of W,)
H—H H, 357 10 0 0 —7.058x10~? 7.487% 1073
1 0 0 —0.502 7.772x 1073
C—H CH, 558 30 0 0 —2.273% 1072 4,664 102
20 0 0 —4.654 <1072 47131072
10 0 0 —0.182 4,758 <1072
N—H NH; 518 30 0 0 —3.059x 1072 5.719x 1072
20 0 0 —6.292% 1072 5.77x 102
10 0 0 —0.247 5.823x 1072
O—H H,0 490 30 0 0 —3.710x 102 6.894 1072
20 0 0 —8.178 1072 6.958 <102
10 0 0 —0.322 7.018 1072
o—C Co, 596 30 0 0 —4.612x 1072 5.110x 1072
20 0 0 —9.77% 1072 5.283x 1072
10 0 0 —0.330 5.560% 10~2
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calculation and others®?° use the two-center model
without including the molecular electrons.

IV. DISCUSSION AND CONCLUSIONS

We have shown that it is possible to calculate pion
molecular eigenenergies and wave functions using codes
originally developed to investigate one-electron, two-
center problems. As might be expected, the codes were
more accurate and efficient at the small internuclear
separations and low quantum numbers for which they
were originally written. They required greater care when
used for pion systems, especially in the case of nonidenti-
cal nuclei where quasicrossings were a potential source of
error. The problem of quasicrossings was most severe for
the higher quantum states, where the energy separation
between levels becomes very small.

Bonding pionic states were found only for homonuclear
systems. The lack of bonding states for heteronuclear sys-
tems does not exclude the formation of molecular orbitals,
which by definition only require an energy above the top
of the barrier. It does suggest that the pion wave function
is centered on one of the two nuclei, usually the heavier of
the two. However, the extent of the wave functions for
some of he heteronuclear systems is sufficiently large to
contribute an important pion density in the region of the
lighter nucleus.

Inclusion of the electrons associated with the molecular
bonds has proved very significant. The Gaussian basis set
used to generate electron wave functions was very useful,
as the tables of coefficients and exponents covered an ex-
tensive range of molecules. The main disadvantage was
that the wave functions are tabulated only for a fixed
bond length, which restricted the calculation of the pion-
electron potential to one value of the separation between
the two centers.

The plots of the pion-electron potential show clearly
that the magnitude of E, is comparable with the pion-
nuclear potential in all space, except very close to the nu-
clear positions. The pion-electron potential for the two-
center systems with significantly different nuclei (C—H),
N—H, O—H) show that the potential due to the hydro-

gen atom is dwarfed by the potential due to the heavier
atom. For these systems, the pion-nuclear potential along
the bond axis is essentially asymmetric between the two
centers. However, addition of the two potentials, V +E,,
results in a more symmetric total potential.

Because of the importance of E, away from the nuclear
centers, there is a very substantial change in the energies
of the pion states for N > 15. This means that the calcu-
lation without electrons does not give any useful informa-
tion about the pion molecular states for N > 15.

Another important consequence of adding the pion-
electron potential is the substantial increase in the barrier
height of the total potential. The energy range available
for the formation of molecular orbitals is thus greatly re-
duced, and the formation of atomic levels close to the top
of the barrier becomes more important. Indeed, we may
question whether the concept of atomic bound states near
the top of the barrier has much meaning and whether ei-
ther of the formulas for n are significant.

The probability of barrier penetration and transfer fom
one of the pionic hydrogen states to a state of correspond-
ing energy in the neighboring heavier atom is greatly
enhanced. Clearly, the tunneling process in bonds con-
taining hydrogen is unidirectional. For the O—C bond,
however, the density of atomic states for the two centers
is not very different and the net effect of transfer should
be small.

We conclude that (i) the formation of molecular orbitals
is probably less important than is usually implied by the
mesomolecular model, (ii) the assumption of direct atomic
capture on to hydrogen is justified, and (iii) the tunneling
mechanism can explain the transfer of pions from hydro-
gen to heavier atoms in the same molecule.
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