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Type-II intermittency in a periodica11y driven nonlinear ogci11ator
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%'e report on the first numerical observation of type-II Pomeau-Manneville intermittency in a periodically

driven third-order nonlinear oscillator. A discussion of such a transition to chaos in terms of the interac-

tion of s local instability (subcritical Hopf bifurcation) and a global instability (homoclinic bifurcation) of a

periodic motion is provided. %'e investigate the distribution of the laminar lengths and compare our nu-

merical results with the theory. Emphasis is given to the 1/f s divergence (S-0.67 20.10) observed in the

small-frequency limit of power spectra.

Among the mell established routes to deterministic cha-

os, ' ' the so-called Pomeau-Manneville scenario4 has re-
ceived considerable interest, both in an experimental as well

as in a theoretical context. This fascinating scenario is
characterized by short irregular or turbulent bursts inter-

rupting, seemingly at random, a neariy regular (periodic)
signal. Such an intermittent transition to weak turbulence
arises in the process of destabilization of a limit cycle.
Three different types of intermittencies have been original-
ly4 distinguished according to the nature of the local bifurca-
tion ' Type-I intermittency is associated with a saddle-
node bifurcation (a real Floquet multiplier crosses the unit
circle at +1), type-II intermittency comes with a subcritical
Hopf bifurcation (two complex corrugate multipliers cross
the unit circle), and type-III intermittency involves a sub-
critical period-doubling bifurcation (a real multiplier crosses
the unit circle at —1). However, such a local instability is
not the only ingredient required for intermittency to occur.
The conjecture which accounts for intermittency is that
simultaneously to the local linear instability, there is a glob-
al nonhnear mechanism (strange attractorlike behavior)
which ensures the dynamics to be reinjected in the neigh-
borhood of the limit cycle. In (Ref. 4) this property was ob-
tained in periodizing the phase space. In most of the
theoretical studies~ the reinjection process has been
phenomenologically modeled by random reentries with

~hite probability distribution. In numerical as well as real
experiments one can reasonably expect to observe devia-
tions from such a theoretical hypothesis.

Since the pioneering work of Manneville and Pomeau, 4

type-I intermittency has been frequently encountered in nu-
merical studies of ordinary differential equations (ODE) and
discrete dynamical syst'ems. ~" Detailed measurements of
type-I intermittency have been carried out with different ex-
perimental devices. ' '5 More recently, type-III intermitten-

cy was observed in Rayleigh-Benard convection in confined
geometry. '~ But so far, there have been no examples identi-

fying type-II intermittency in either real experiments or in

simulation studies. The main purpose of this paper is not
only to report about the discovery of type-II intermittency in
a periodically driven nonlinear oscillator but also to discuss
the strategy we have adopted to give evidence of such a
scenario to chaos.

Consider the following ODE system:"

X+qL+ VX+ PX+ kIL + k2X

+k3XX+k~X+k5X2X-F cos(~t) . (1)

In the limit of vanishing amplitude of the periodic forcing
(F 0), this system reduces to a third-order autonomous
ODE, which has been shown to arise naturally as the trun-
cated normal form of a triply degenerate problem" (the
dispersion relation has a triple zero eigenvalue at the triple
point vi- v- p, -0). Special interest was dedicated to the
study of this amplitude equation which exhibits period dou-
blings and strange attractorlike behavior as close as we want
to the onset of the triple instability. The main step in our
approach to type-II intermittency consists of showing that
this truncated amplitude equation also accounts for the in-
teraction of a subcritical Hopf bifurcation and a global
homoclinic bifurcation. ' 7

For F 0, Eq. (I) possesses two equilibria X' 0 and
—p/k~. Both these equilibria display a Hopf bifurcation
when p. gv and p, - —gv, respectively (q, v) 0). From
now on let us focus on the origin, keeping in mind that our
argument extends to the nontrivial steady state. In the
neighborhood of the critical surface p. - qv, the use of both
the center manifold theorem and the normal form tech-
niques' ' allows us to reduce Eq. (1) to a two-dimensional
system which can be conveniently written in polar coordi-
nates as

p Ap + a p3+ higher-order terms,

8 0 + bp + higher-order terms

where X —(iu, —qv) measures the distance to the critical
surface and 0-&v+0() ). The coefficients u and b are
computed on this surface. The detailed expressions of these
coefAcients in terms of the parameters k& of the nonlinear
terms in Eq. (1) are very complicated. Let us simply men-
tion here that the arbitrariness in the choice of the ki's re-
covers both the situations a &0 and a &0, which corre-
spond to subcritical and supercritical Hopf bifurcations,
respectively.

As discussed in Ref. 18, the strange attractorlike behavior
displayed by Eq. (1), for F -0, can be interpreted in terms
of chaotic orbits which occur in nearly homoclinic condi-
tions as ensured by a theorem of Shil'nikov. '~ %e did not
ascertain ana1ytica1 conditions for the-existence of such
homoclinic orbits, but we have located these conditions us-

ing a numerical technique elaborated on in Ref. 20. Thanks
to a simple trial and error method we traced the homoclinic
bifurcation up to a close neighborhood of the previously
described subcritical Hopf bifurcation. In such research, the
saturating highest-order term k5X2X added in Eq. (1) has

been of great help. Such a concomitant" situation favors
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the application of the Shil'nikov theorem: The homoclinic
orbit is biasymptotic to a saddle focus, the origin, which sa-
tisfies the requirement' ' that the negative real root of the
corresponding dispersion relation has larger magnitude than
the real part [k. +0, in Eq. (2)] of the complex-conjugate
roots. Hence, as already experienced in Ref. 20, there is
hope that asymptotically stable chaotic motions will be ob-
served within the conditions where the homoclinic orbit has
been (numerically) shown to exist. Moreover, if anything,
this chaotic behavior will ensure a reinjection of the dynam-
ics in the neighborhood of the origin. %e actually per-
formed a numerical investigation of Eq. (1) without forcing,
and for different values of the control parameter p, . As
suspected theoretically, when varying p. through the subcrit-
ical Hopf bifurcation value, we do witness a direct transition
from rest to a turbulent regime. This transition manifests
itself as chaotic bursts, vrhich from time to time emerge
from a nearly stationary signal.

When turning on the periodic driving (FNO), such a
scenario to chaos generalizes to type-II intermittency. Fig-
ure 1 illustrates the results of a numerical investigation of
Eq. (1) for the parameter values F 0.5, co 15, ~ 1,
v 1.2, k~ —100, k2 120, k3 0, kg —20, k5 100.
Three time series are represented corresponding to three
different values of p, '. (a) p-1.14: below the subcritical
Hopf bifurcation we observe a periodic signal with a fre-
quency equal to the driving frequency; (b) p, -1.16: just
above the subcritical Hopf bifurcation very exceptional short
bursts of chaos interrupt very long laminar episodes; (c)

1.25: far above criticality the chaotic episodes become
more frequent; their average length increases with p, at the
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FIG. 2. Enlargements of the time series for p, 1.25. (a) and {b)
differ in the dilatation rate of the time scale.

expense of the laminar phase duration. Enlargements of
the time series in Fig. 1(c) are shown in Fig. 2. It is clear in
these pictures that the occurrence of chaotic bursts comes
with a modulation of the original periodic oscillation at the
frequency 0-Jv —T'I- in m-units; the amplitude of this

modulation increases slowly initially, but when it reaches a
high value the increase becomes very rapid. Then the signal
loses its regularity and a turbulent episode is initiated. Im-
mediately after the chaotic intermission there is a reappear-
ance of the regular behavior, corresponding to a return to

3a4
POINCARE MAP

.50
0

(b)

3a2

3A

2as

-50
0 100

2a4
Oa1 Oa3 Oa5

k

OIR

Time(s)

FIG. 1. Time plot of X (unit scale 10 2) as computed with Eq.
(1) for (a) p, -1.14, (b) 1.16, and (c) 1.2S. The model parameter
values are given in the main text.

FIG. 3. A stroboscopic Poincare map corresponding to the time
series shovrn in Fig. 1(c). This picture represents an enlargement of
this map in the neighborhood of the underlying saddle focus as
projected onto the (XX) plane.
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FIG. 4. (a) Reinjection distribution inside the two-dimensional unstable manifold of the fixed point p 0 and (1) probability distribution
P (n) for the laminar lengths; same model parameters as in Fig. 1(c).

p„+~ (I+a)p„+ap„+higher-order terms

t)„+, t)„+0 + b pal+ higher-order terms (Q irrational)
(3)

the preceding periodic behavior. The position of the reentry
point determines the length of the following laminar period.

When dealing with systems like Eq. (1), where an exter-
nal periodic forcing occurs, the usual way to define a Poin-
care first return msp consists of sampling the orbits in phase
space st the frequency of the forcing. Figure 3 represents
such a defined three-dimensional Poincare map as computed
from the time series in Fig. 1(c). Only a few points have
been retained in this figure in order to distinguish both the
one-dimensional homoclinic reinjection process in the
neighborhood of the fixed point and the very mild spiraling
behavior sway from this point which corresponds to a lam-
inar phase.

Taking advantage of the rotational invarisnce of the Hopf
normal form for msppings, '-'

Fig. 4(b). P(n) appears to be peaked not only at low n

values but also at high n values (n —250), which at first
sight is rather puzzling with respect to the predicted ex-
ponential decay. Indeed, such a peak simply reflects the
particular shape of the reinjection distribution which [as
seen in Fig. 4(a)] is peaked toward the small p values: All
the reentry points fall almost on a curve, but with a high
density in the neighborhood of the fixed point, which runs
counter to the observation of an exponential tail in P(n)
The computation of (n) for values of p, ranging from
1.15-1.30 yields (n) —s '~2, which contradicts the expect-
ed In(1/e) behavior, but which is in fair agreement with the
theoretical scaling relation derived when assuming s one-
dimensional reinjection process. 4

As emphasized in Refs. 22 and 23, the arbitrarily long
laminar regions observed on an intermittent time series
manifest as 1/f' divergencies in the small-frequency limit of

the theoreticians have assumed uniform reinjection distribu-
tion in a disk (p & const) contained in the two-dimensional
unstable manifold of the fixed point. %ithin such s work-
ing hypothesis, the probability distribution P(n) of the lam-
inar lengths is predicted to behave like P(n) —n ' at small
laminar period n, and to decay exponentially P(n)—exp( —2en) at large n In add.ition, the average length
of the laminar episodes is expected to scale like (n)—ln(1/e), where e —y, —p, l is characteristic of the distance
from the intermittency threshold p,q

—1.149. . . .
The reinjection distribution corresponding to the time

series in Fig. 1(c) is shown as the histogram in Fig. 4(a).
The ~hole set of reentry points falls into a narro~ range in
the 8 variable, clearly indicating that the homoclinic reinjec-
tion process not only breaks the rotational invsriance of Eq.
(3)," but that it is, in fact, intrinsically one dimensional.
Therefore, one can expect to observe severe deviations
from the theoretical predictions. The corresponding proba-
bility distribution of laminar length P(n) is iBustrated in
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FIG. 5. Power spectrum as computed ~ith Eq. (1) for p, -1.15.
In the inset, the po~er spectrum is plotted vs lnf.
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power spectra. Figure 5 illustrates the po~er spectrum com-
puted from the Poincare map obtained at the value p, = 1.15
immediately above the intermittency threshold. A lo~-
frequency 1/f s behavior is detected with 8 —0.67+0.10. In
the frequency range reported in Fig. 5, this numerical esti-
mate of the exponent 5 is quite compatible ~ith the loga-

rithmic corrections to a I/f'i' divergence as predicted when

considering a one-dimensional reinjection mechanism. "
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