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Diffusion-limited growth of polymer chains
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A new self-avoiding walk (SAW) which grows without terminating is introduced as a model of
the diffusion-limited growth of linear polymers. The model is in a different universality class than
the equilibirum SA% and previously considered kinetic SA%'s, with v 0.774+0.006 in two di-

mensions and v 0.56+ 0.02 in three dimensions. The "indefinitely gro~ing SA%" is sho~n to
emerge as a particular limit of our model.

The seminal work of Witten and Sander' on diffusion-
limited aggregation (DLA) has generated considerable in-
terest in growth processes in which the clusters are frac-
tals. The interest has spread into the realm of self-
avoiding walks (SAW's), which are commonly used as
models of polymer chains. 3 The primary problem in the
study of growing SAW's has been that it is difficult to find
growth rules that lead to walks which are self-avoiding and
which never terminate. Amit, Parisi, and Peliti intro-
duced a walk (the "true" SAW) which grows forever, but
which only prefers not to revisit a site. A walk which is
strictly self-avoiding but which may terminate, the kinetic
growth walk, was subsequently studied by several groups. s

Finally, a growing walk that is both self-avoiding and
unending, the indefinitely growing SAW (IGSAW), was
discovered. s s The walker in the IGSAW is "smart": It
never steps into a cul-de-sac from which there is no es-
cape. If several smart moves are possible, they are given
equal weight.

The subject of this Rapid Communication is a new ki-
netic walk which grows without terminating and which is
strictly self-avoiding, the diffusion-limited SAW
(DLSAW). In this model, bifunctional monomers diffuse
to the growing tip of a linear polymer from faraway, so
there must always be a path from the tip to infinity that
does not touch the polymer. Thus, the model explicitly
contains a physical mechanism leading to "smartness. "
The problem is also an interesting cross between growing
SAW's and DLA. The DLSAW should apply to the
diffusion-limited growth of a polymer chain in a dilute
solution of monomers, provided that the characteristic dif-
fusion time is much shorter than the time characterizing
the relaxational dynamics of the chain.

Our Monte Carlo studies in two dimensions (2D) show
that the DLSAW is in an entirely different universality
class than the IGSAW. In particular, if c is the probabili-
ty that a diffusing monomer adheres to the tip on contact,
then for a 1 the fractal dimension is D 1.29+ 0.01. A
simple, heuristic explanation for why this is smaller than
the IGSAW value D 1.76+'0.01 will be given. To gain
some insight into the scaling behavior for 0 & a & 1, we
first show that the DLSAW reduces to the IGSA.W in the
c 0 limit. %'e then argue that for any c & 0 the scaling
behavior seen in the IGSAW is present only up to a length
l, (a), and that on longer length scales, crossover to the

tt 1 DLSAW scaling behavior must occur.
So far, work on the IGSAW has been restricted to

2D.s s The DLSAW, however, can be simulated for gen-
eral dimensions d using essentially the same procedure as
in d 2. We obtain D 1.79+ 0.06 for the DLSAW on
the simple cubic lattice with a 1, so the upper critical di-
mension d, is greater than 3.

In the DLSAW a dimer is initially placed on an arbi-
trary pair of nearest-neighbor points on a d-dimensional
Euclidean lattice and is held fixed there. One of the ends
of this polymer is considered to be the growing tip, and the
other the "root." A hypersphere Z of radius Ro is drawn
about the root; Ro is to be large compared to the lattice
constants. A point on Z is chosen at random and a particle
is released there. The diffusing particle then moves as fol-
lows: At each time step one of the particle's nearest-
neighbor sites is chosen at random. If this site is not occu-
pied, the particle moves there; otherwise, it temporarily
remains where it is. For each time step the particle spends
at a nearest-neighbor site of the tip, there is a probability a
that it sticks there. Once the particle has struck, it moves
no further and so becomes the new tip of the polymer. A
second particle is then released on Z, and it diffuses until it
adheres to the new tip. This process continues with the ad-
dition of the third particle, the fourth particle, and so on.
If any particle wanders too far away from the polymer, it
is discarded and another diffusing particle is released on Z.
(We discarded the particle it it reached a point 2Ro away
from the root. )

DLSAW's and IGSAW's are both formed in an in-
herently kinetic and irreversible way, and both are unend-

ing and strictly self-avoiding. However, smart moves need
not be weighted equally in the DLSAW, and this is what
leads to different scahng behavior in the two problems.
The differences in weighting are best illustrated by a sim-

ple example. In the conformation on the 2D triangular
lattice shown in Fig. 1, the probability of growth into the
oui-de-sac at C is zero in both the DLSAW and the IG-
SAW. It is also easy to evaluate the probability that the
next particle joins the polymer at A (pg ) or at 8 (ptt). By
definition, p~ pa 2 in the IGSA%. Now consider the
DLSAW. Each time the diffuser arrives at A, it adheres
with probability a. (Recall that the move A ~ A is con-
sidered to be a new arrival at A. ) Given arrival at A, the
probability of the particle adhering at 8 before returning
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FIG. 1. A conformation on the triangular lattice. The poly-
mer is shown as a bold line, and the root and the tip are shown as
a closed and an open circle, respectively.
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FIG. 2. Plot of v(N) vs N ' for the DLSAW on the square

lattice with a 1. The solid line gives the linear extrapolation to
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Since the walker can only reach 8 via A, pa/p~
(1 —a)/(I+5a) and, hence, pg&pg for 0&a «I.

Also note that p~ —
pq 0(a) for a((1, so p~ and pa con-

verge to their IGSAW values as a 0.
In our Monte Carlo studies of the DLSAW, we generat-

ed a large number of relatively short DLSAW's and as-
sumed that the mean-square radius of gyration &R2) has
the scaling form9

&R'(N)) -WN'"(I+BN '+CN '+ ), (1)

where N is the number of particles in the chain and
v=—D '. A value for v was then obtained from the expan-
sion

v(N):=-& ln[(R (N+1))/(R (N))l/ln[(N+1)/N]

v ——'BN ' ——'BCN +

To study the DLSAW in 2D, we generated 10000
chains of length N 32 on the square lattice with a l.
Two optimization techniques introduced in Monte Carlo
studies2'o of DLA were employed. (i) Rather than keep-
ing the release radius Ro fixed, we took Ro to be R,„+2,
where R,„ is the distance from the root to the furthest
point in the polymer. This is permissible because the first
passage probability of the diffusing particle is isotropic. 2

(ii) If the diffusing particle was further than R,„+4
from the root, the step size was increased to 2. The step
size was further increased at progressively longer distances
from the root. This technique has been tested in DLA, and
has been shown to significantly reduce computing time
without compromising accuracy. ' Figure 2 shows our re-
sults for v(N) plotted versus N '. The curve becomes
quite flat as N grows, and accordingly the value of 8 must
be rather small. Moreover, there is no evidence of any cur-
vature after a transient at small N, so it appears that
6 & 1. Thus, v can be determined by linear extrapolation.
We obtain the value v 0.774+'0.006 for d 2.

The exponent v for the DLSAW with a 1 is substan-
tially larger than the value v 0.567+ 0.003 obtained for
the IGSAW in 2D. There is a simple argument for why
this must be. In our example (Fig. 1), the site A in effect
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FIG. 3. Plot of v(N) vs N ' for the DLSAW on the simple

cubic lattice with a 1. The solid line is the least-squares fit to
the form (2).

screens 8 from the incident particle flux, and adhesion at
8 (which leads to a more compact chain) is less likely than
adhesion at A. Screening is also present in the DLSAW in
much more general circumstances. If the tip is approach-
ing another part of the polymer —so that a loop is nearing
completion —the growth sites outside the partially formed
loop shield the growth sites inside. This shielding favors
those smart moves which lead to the most rapid growth to-
ward infinity and, hence, to less compact polymers.

Nienhuis" has argued that the Flory value' v —,' is ex-
act for equilibrium SAW's in 2D, and this is in agreement
with most of the numerical evidence. '3 Our result is suffi-
ciently accurate to exclude the possibility that v is exactly
equal to —,

'
in our problem, so the DLSAW is in a different

universality class than the equilibrium SAW. Our model
is also in a different universality class from the kinetic
growth walk (which is in the same class as the equilibri-
um SAW' ) and the "true" SAW (which has v —,

' in two
dimensions ).

To investigate the DLSAW in three dimensions (3D),
we generated 28000 chains of length 32 on a simple cubic
lattice with rr 1. The results for v(N) (obtained using
100 hours of central processing unit time on a VAX-
11/780 computer) are shown in Fig. 3. A least-squares fit
to the form (2) gives 8=0, C= —2.6, 6=-1.2, and the
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desired exponent v 0.56+'0.02. This value is smaller
than the theoretical, ' experimental, ' and Monte Carlo'
values of v obtained for the equilibrium SAW in 3D. '

We also see that the DLSAW must have an upper critical
dimension 1, which is greater than 3, since v(d 3) & —,.
Preliminary studies of the DLSAW in d 4 indicate that
d, is probably also greater than 4. This suggests that d,
may be infinite, as it is believed to be in DLA. 2'9

Finally, let us study the a dependence of the DLSAW.
First consider the behavior of the diffusion field around a
polymer when tt 0. Suppose that the site r is not com-
pletely surrounded by the polymer, and that k of its z
nearest neighbors are occupied. In equilibrium the proba-
bility that the diffusing particle is at r, p (r), satisfies
zp (r) kp (r) +gp (r'), where the sum runs over the
z —k vacant nearest-neighbor sites r'. For large r, p(r)
must approach a constant c which is determined by the
normalization condition. The solution that meets this
boundary condition is simply p(r) c for all sites r that
can be reached by the diffusing monomer, and p (r) 0 for
all sites that cannot. The IGSAW then corresponds to the
limit in which the diffusing particles come into equilibrium
with the polymer before adhesion occurs.

For tt) 0, the diffusing particle makes an average of
tt ' contacts with the tip before it adheres. Thus, for
small a the particle wanders for a long time before adher-
ing, and during this time it comes close to reaching equili-
brium. We therefore expect the probability of growth at a
particular site in the DLSAW with a(&1 to differ from its
IGSAW value by, at most, a term of order a. (This has
been explicitly verified in our example. ). Thus, the
DLSAW with small ct should display the same scaling
behavior as the IGSAW on short length scales. Indeed,

In(R (X)) for the DLSAW on the square lattice with
a 0.1 was found to lie within 2% of the exact IGSAW
values for W up to 22. The time t, between the particle"s
initial contact with the tip and adhesion is proportional to
a ' —1, however. Thus, when 0& a & 1 there is a new
length scale l, (tt)-(Dt, )'t in the problem which is not
present in the tt 0 or tt 1 limits. (Here D is the dif-
fusion constant. ) This suggests than the effect of a small
but nonzero tt accumulates as the polymer grows, and that
on length scales much longer than 1,(a), crossover to the
scaling behavior seen in the a 1 DLSAW will occur.

The proposed behavior of the DLSAW for a & 1 is
analogous to that displayed by DLA when there is a
nonzero probability 1 —a that the diffusing particle fails to
adhere upon contact with the aggregate. In the limit
tt 0, DLA reduces to the Eden model, 20 which has com-
pact clusters. ' However, it appears that for any tt &0,
crossover to the tt 1 scaling behavior occurs once the ag-
gregate is sufficiently large. ' This nontrivial scaling
behavior has been attributed to the fact that the tips of the
branches shield the interior of the aggregate from the in-
cident particle flux. ' In precisely the same way, we have
argued that the DLSAW scales differently than the
IGSAW because the interior of an incipient loop is shield-
ed by the growing tip of the polymer.
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