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Algebraic-eikonal approach to electron-molecule scattering. II.
Rotational and vibrational excitation of LiF and KI
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The algebraic-eikonal approach to electron-molecule scattering is further developed. A simple

perturbation method is used to illustrate the coupling of vibrational bands. Furthermore, it is shown

explicitly that the differential cross section summed over the final rotational states and averaged
over the initial magnetic substates does not depend on the initial angular momentuxn. Finally this

approach is applied to calculate the differential cross section for scattering electrons from the dia-

tomic molecules LiF and KI.

I. INTRODUCTION

The scattering of medium-energy (5—50-eV) electrons
from polar diatomic molecules is governed largely by the
long-range dipole interaction between the incoming elec-
tron and the molecule. ' This interaction leads to mul-
tistep processes which involve fully the rotational and vi-
brational degrees of freedom of the molecule. In principle
the scattering equations can be solved in a full close-
coupling calculation, but this is a prodigous numerical un-
dertaking. However, for electron energies well above the
rotational and vibrational excitation energies, simphfying
procedures have been used based on the adiabatic (fixed-
nucleus) approximation. This approximation has proven
to be particularly useful for electron collisions with polar
molecules. However, even in the fixed-nucleus approxi-
mation standard close-coupling calculations become very
complex especially for larger (triatomic and polyatomie)
molecules. It is therefore of great importance to fmd a
simple prescription that both exploits the simplifications
that arise from the dominance of the dipole interaction
and at the same time incorporates the rotational-
vibrational structure of the molecule at a level sufficient
to calculate the cross sections of interest.

In Ref. 10 (hereafter referred to as BAS) we have pro-
posed a new method to calculate cross sections for
electron-molecule scattering. In this approach we com-
bine an algebraic description of the molecular dynamics,
the vibron model, " ' in the adiabatic approximation
with eikonal scattering methods. ' This algebraic-eikonal
approach provides a simple method for describing
electron-molecule scattering that is numerically efficient
and presents a physically clear treatment of the scattering.
In the algebraic-eikonal appmach the full close-coupling
calculation is done essentially in closed form treating both
elastic and inelastic scattering to rotational and vibration-
al states on the same footing. In this paper we develop
the method further and apply it to medium-energy elec-
tron scattering from LiF and KI.

In Sec. II we review the algebraic-eikonal approach.
Section III describes a perturbation method for introduc-
ing coupling of vibrational bands that turns out to be an
excellent approximation for the cases at hand. In Sec. IV

we study the rotationally summed cross section. Since in
most experiments the rotational states cannot be resolved
it is of interest to study the differential cross section
(DCS) summed over the final rotational states and aver-
aged over the initial ones. We show that the algebraic
techniques make such sums easy to perform and we show
that in the limit of very large rotational bands the
summed and averaged differential cross section is in-
dependent of the initial angular momentum.

In Sec. V we present our results. To get to the dynam-
ics of our molecules we express the molecular energies
given by the vibron Hamiltonian in terms of a Dunham
expansion that has been fit to the molecular states. With
the Hamiltonian parameters fixed we calculate electron
scattering for LiF at 5.44 and 20.0 eV and for KI at 6.74
and 15.7 eV and compare with experimental data. The
excitation of the first vibrational band is predicted to be
four orders of magnitude smaller than the eikonal scatter-
ing in the ground-state band. We show that our results
differ considerably from the first Born approximation and
that the correct treatment of multistep processes (or
equivalently the correct treatment of close coupling) is
essential. In Sec. VI we conclude with some remarks
about future extension of this work.

~mot =Ho+ AP4+BL.L +ppgp+$pg p (2.1)

where

II. THE ALGEBRAIC-EIKONAL APPROACH

The vibron model" ' is an algebraic model of molecu-
lar dynamics realized in terms of four boson (or vibron)
creation (annihilation) operators divided into a scalar bo-
son with L =0+, s (s) and the three components of a
vector boson with L"=1,p& (pz); @=1,0, —1. For a
diatomic molecule we take only one such set and then the
dynamical group of the molecule is U(4) whose generators
are the 4 = 16 possible bilinear products of vibron
creation and annihilation operators. The most general
U(4) invariant Hamiltonian that contains no terms more
than quadratic in the generators and that preserves spheri-
cal symmetry and parity invariance is
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P4 ——,' (p—tp s—tst)(p p s—s)

= —,[ D—D L—L+N(N+2)]j,

D~=($ p+p $)p

L„=~2(p'p)„"',

n&
——p p,

(2.2)

where the first term is the kinetic energy of the projectile
electron, the second term is the vibron Hamiltonian of Eq.
(2.1), and the third term represents the coupling between
the electron and the molecule. It should be recalled that
in the algebraic description, the molecular degrees of free-
dom are carried by the boson operators. %e assume that
the incoming electron couples only to the molecule's di-
pole moment and write

N =nz+ n, =p p™+ss,
p„=(—1)"p „.

V(r) =a(r)r.D,
ea(r) =-

r +8
(2 6)

The s's and p's obey the usual boson commutation rela-
tions. Ho depends only on N, the total number of bosons,
which is conserved by H and therefore Ho determines
only the overall energy scale and will be dropped in the
following.

The vibron Hamiltonian for a diatomic molecule has
two interesting dynamical subgroups. If a=5=0, H, ~

has O(4) symmetry and the molecular states are specified
by N, the total number of bosons; I, the angular momen-
tum (and rn };and by o, a quantum number that can be re-
lated to the usual vibrational label U by U = (N —o )/2. In
this limit the molecular energies are given in closed form
by the expression

E I= ,' A (N o—)(N+0—+2)+BI(I+1) . (2.3)

In the large-N limit the O(4) Hamiltonian corresponds to
the Morse oscillator. '3'" The other dynamical symmetry,
U(3), arises if A =0. In this case the states are labeled by
N, I, m, and n, the number of p bosons. The energy
eigenvalues are given by

where D is the dipole operator of Eq. (2.2), r is the elec-
tron coordinate measured from the center of the molecule,
and a(r) goes like r for large r (dipole coupling) but is
cutoff or damped at small r to suppress the nonphysical
singularity at the origin in a modest attempt to represent
some of the short-range electron-molecule dynamics.

The essence of the eikonal treatment of scattering is to
realize that the electron kinetic energy is large compared
with the coupling energy to the molecule. If we also as-
sume it is large compared with the molecular energies car-
ried in H we can easily obtain an eikonal scattering ampli-
tude in closed form. This adiabatic assumption is
equivalent to the fixed-nucleus approximation of more
conventional treatments. The algebraic-eikonal scattering
amplitude for scattering from an initial molecular state
N O' I' m ' to N Uf If mf and from electron momentum
k; to kf (q=kf —k;) is given by

E„i=en+5n +BI(1+1). (2A}

+H ., +V(r),
2ln

(2.S)

In this case the large-N limit corresponds to the three-
dimensional anharmonic oscillator. 's's Given the success
of the Morse oscillator for the description of diatomic
molecules we expect that for realistic cases the vibron
Hamiltonian will be close to that of the O(4) limit.

To study electron scattering from a diatomic molecule
we write the Hamiltonian of the electron-molecule system
as

X(N, vf If mf ~

e' ' ' —1
~
N, u;, I;,m;),

X(b) =g (b)b.D, (2.7)

g(b) = — I dz a(r)

This reduces the solution of the scattering problem to a

two-dimensional integral over the impact parameter b.
The transition matrix elements

A A

(N „ I
~

ig(b)bD~N „

(~/2)d '. (~/2)gc f(lf)c '(I;)(N, u, lf, m ~e
*

~N, a, l;,m), (2.8)

with b=($,8=m. /2, /=0) are representation matrix ele-
ments of the dipole operator and can be derived using
standard group-theoretic techniques. ' ' The occurrence
of the representation matrix in Eq. (2.7) is typical of these
algebraic-eikonal approaches, but appears to be the first
case beyond the familiar Wigner D functions of rotation
theory of these matrices in physics. The scattering ampli-
tude in Eq. (2.7) contains the coupling between molecular
states to all orders and is completely equivalent to a

close-coupling calculation within the framework of the
adiabatic-eikonal approximation.

III. PERTURBATIVE TREATMENT
OF VIBRATIONAL COUPLING

It has been shown that the Morse oscillator potential
gives a relatively good description of the spectrum of dia-
tomic molecules. Therefore we expect the physically in-
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teresting diatomic molecules to be near the O(4) limit
which in the large-N limit corresponds to the Morse oscil-
lator. However, in the exact O(4) limit the dipole operator
does not couple vibrational bands and hence only in-band
transitions would be permitted in our treatment of
electron-molecule scattering. In this section we will use
first-order perturbation theory to illustrate the mechanism
of vibrational excitation in the algebraic-eikonal approach.

The simplest way to include mixing between the vibra-
tional bands with hu =+1 is to take 5=0 in Eq. (2.1) and
treat e to first order. Consider a state labeled by the vi-

brational quantum number u [in the O(4) limit
u=(N —a)/2). To first order we write for the state
function, in terms of the O(4) basis states,

@4%, 0=0.3

1(1+1)(N+2)
2o(o +2)

The mixing amplitude is given by

(0) (1)E.l =E~l +E~l

E~)'= ~ A(N a—)(N+o+2)+Bl(1+1),

E~~'= (N, a, l, m
~
enr

~
N, a, l, m )

(3.2)

IN" 1 m) = IN a=N —2u, l, m )

+ g a (1) ~N, o', l, rn), (3.1)

(N, a, l, m
~

en&
~
N, a', l, m )

(o) ~oiE l
—E

(3.3)

and for the energies which can be evaluated to give'

' 1/2—c (a+1+2)(a+1+3)(a—I +2)(o —1+1)(N a)(N+—o+4)
a +g(1)=

4A (o+2) (a+1)(a+3)
7

Ea, (l) =
420

(a+1)(a+!+1)(o—l)(o —1 —1)(N o+2}(N—+o+2)
(a —1)(a+1)

' 1/2 (3.4)

The scattering amplitude, Eq. (2.7), can be calculated jn
first-order (in e) perturbation theory using the wave func-
tions of Eqs. (3.1), (3.3},and (3.4). The transition matrix
element appearing in the right-hand side of Eq. (2.8) is an
O(4) representation matrix element, which has been de-
rived in closed form in the Appendix of BAS, Eq. (A10).
A simpler but equivalent expression can be obtained using
the isomorphism O(4) =SU(2)i@SU(2)2

(N, a, lf, m
(
e * (N, a, l;,m)

= g (a/2, p, a/2, m —
}Lb i lf, m )

X (o/2, p, a/2, m —p ~
l, ,m )e'ir'b"'I'™ (3 5)

IV. THE SUMMED CROSS SECTION

With present experimental techniques it is not possible
(except for H2) to resolve individual rotational transitions
(and sometimes not even vibrational excitations). To com-
pare theoretical calculations and experimental data the
quantity of interest in electron-molecule scattering is
therefore the differential cross section summed over the
final rotational states and averaged over the initial m
states. In this section we will use the vibron model to
show that in the limit of many molecular bound states
(large N) this summed and averaged DCS is independent
of the angular momentum of the initial molecular state.

The differential cross section for an electron of momen-
tum k; scattering through transfer q and exciting a dia-
tomic inolecule from an initial vibrational state u; to a fi-
nal vibrational state uf, averaged over the initial ( m;) and
summed over the final rotational states (lf,mf ), is given
by

For in-band rotational transitions we take U'=U and
o.=N —2u, while for vibrational transitions we have
O'=0+ I. These transitions amplitudes are linear in c and
to this order o can only change by 2.

In Sec. V we compare calculations of vibrational excita-
tion in electron scattering done to all orders in c with per-
turbation treatments based on results of this section. As
we shall see the first-order results agree very well with the
exact values even when the dimensionless parameter that
controls the size of the perturbation is rather large.

The scattering amplitude Af;(q} is defined in Eq. (2.7).
For the physically interesting cases the vibron Hamiltoni-
an is close to that of the O(4) limit. For simplicity we will
therefore assume that the molecular eigenstates have
O(4) symmetry. Since in the O(4) limit the dipole opera-
tor is diagonal in the vibrational quantum number
u =(N a}/2 the —sum over the final rotational states can
be done by closure to yield
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A A

der Ki iq (b) —b2) 1 y (
ig(b) )b) D ig—{b2)b~ D

2&
(q) = d b) d b2e ' ' N, cr, ;,m; 1+e e

21;+1

ig{bl )bl D —ig(b2)b2 D
I I (4.2)

This matrix element does not depend on N and can be evaluated in closed form using the results of BAS. However, for
1;/cr «1 and ger finite, we can obtain a very simple result for the summed and averaged DCS. In this limit, the first
term in the sum in the matrix element in (4.2) can be written as a single exppnential since the neglected commutator is pf
order 1;/cr. We have

A A

Thus all the matrix elements are of the form

(4.3)

I= g (N, a, l;,m; I

e's' ' '
IN, o, l;,m;&= g (N =cr, cr, l;,m; Ie ' IN =cr, cr, l;,m; &,

which can be evaluated easily using the isomorphism O(4) =SU(2))I3)SU(2)2,

I = g g ( cr/2, p, , cr/2, m; —
)M I 1;,m; & cps[(2)M —m;)g(b)] .1 2

(4.4)

(4.5)

For 1;/o « 1 this sum can be done using an asymptotic from the Clebsch-Gordon coefficient to give

sin[g (b)cr]
(4.6)

g (b)cr

Thus in the limit 1 lcr « 1 with ger finite the summed and averaged DCS does not depend on the initial angular momen-

tum of the molecule. Using g(b) =g (b}cr and introducing polar coordinates in (4.2) we can write

k;
(q)= f b)db)dit)) f bidbiditi2e

x[1+jo(I[g(bi)] +[g(bq)] —2g(b))g(b2)cos(0) —6)] } Jo(g(b))) —j—o(g(b2})]

(4.7}

We note that for finite values of N the DCS of Eq. (4.1}can be calculated numerically and compared with the large-N
result. For typical dipolar couplings, and N =cr=50 and initial angular momentum 1; & o/3, the fractional rms devia-
tion of the two sums is less than 0.01 while for 1; & cr/4 it is less than 0.005. From a numerical point of view it is diffi-
cult to calculate the four-dimensional integral of (4.7) because of the rapidly oscillating integrand. We have found it
more efficient to calculate the individual cross sections and sum them directly, but since we have proven that the result is
independent of the initial angular momentum 1; in our calculation we make the simplifying choice of 1; =0.

Another way to show that the summed and averaged DCS is independent of the initial angular momentum is by using
coherent states. In this method the connection with the classical rotor is immediately evident. Following the notation of
the Appendix of BAS, Eq. (4A) can be written as

(cr 1)!(cr+1+ 1—)! ig(b)DI=, , g f dQFi'(Q) f d, Q'Fi (Q')([cr],a(Q)
I
e 'I [cr],a(Q')&, ( .8)

where Q=(8,$) is the "direction" of the coherent state.
The action of exp(igD, ) on the coherent state is

In the large-o limit with g =go. finite, 0"=0', and the

matrix element in Eq. (4.8) reduces to

*
I [a] a«') &

=e'i
I [a],a(Q") &, (4.9)

([cr],a(Q)
I [cr],a(Q') &e'i (4.11)

a(Q")=e 'i a(Q'),

P=arctanI cos8'tan[g (b)] I .
(4.10)

The overlap of the coherent states with directions Q and
Q ' in Eq. (4.11) can be expressed in terms of a sum over
Legendre polynomials as
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([o],a(Q)
~
[g],a(Q'))

= [—,
' (1+0 Q ')]

glg!(2k + 1)

0 (cr —k)!(o+k+1)!
(4.12)

Combining Eqs. (4.8)—(4.12) we see that in the large-cr
limit Eq. (4.12) reduces to

I= g f d O'Yt (Q. ')Yt (. Q.')e'
l

—,
' f dcos8'e'e'"' =j u(g (b)o ), (4.13)

which confirms Eq. (4.6) and establishes the independent
on I&. It is interesting to note in passing that Eq. (4.12)
can be used to show that in the large-g limit the overlap
of the two coherent states reduces to a delta function

lim ([cr],a(Q)
~
[g],a(Q')) = 5(Q —Q')4m

0'~ oo g

(5.1)

The coefficients YJ are tabulated by Huber and
Herzberg's for a wide class of diatomic molecules. For
the vibron Hamiltonian we take the form discussed in Sec.
III. In first-order perturbation theory the energy eigen-
values are then given by Eq. (3.2). Expanding Eq. (3.2) in
u/N and comparing coefficients of (5.1) and (3.2) the pa-
rameters in the vibron Hamiltonian can be related directly
to the Dunham coefficients

tions for electrons scattered from the molecules LiF and
KI. The parameters in the vibron Hamiltonian (2.1) can
be determined either by fitting the molecular spectra
directly or by rewriting the energy eigenvalues in the form
of a Dunham expansion, ' a form which was introduced
as early as 1932 to parametrize the coupling between vi-
brational and rotational degrees of freedom. The Dun-
ham expansion writes the energy in terms of the angular
momentum land the vibrational quantum number u as

E„t Q——Y,J(u+ —,
' )'[l(I+1)]~ .

If the fundamental amplitude is diagonal in Q a very
simple proof of the independence from initial I; can be
given. For example, consider a rigid rotor molecule. In
the adiabatic approximation we can write the scattering
cross section between specific states of the rotor as

do(l;, mt ~lf, mf, q)

YI* f, T;, YI

2/+3
00

Y)p A(—E—+2),
Y20 ———A,

(%+2}(E—4) +8,
2X

2(%+2)

(5.2)

X ( (kf Q( T )ki, Q) [2Yt (Q)

0 f 0 T (4.16)

which clearly does not depend on the initial state.

V. RESULTS

A.s an illustration of our method we present some re-
sults for the rotationally summed and averaged cross sec-

(4.15)

where Q is again the "direction" of the rotor in space, and
the essence of the adiabatic approximation is the assump-
tion that the t matrix is diagonal in Q. For the summed
and averaged DCS the sum over the final rotational states
can be done simply by closure to yield

(q)= g f dQ Yt'~, (Q),
I + III ~

The first term Yoc contributes only to the binding energy.
In Table I we show the Hamiltonian parameters for the
molecules LiF and KI based on the Dunham coefficients
for these molecules given by Huber and Herzberg. ' For
N we have taken the nearest integer value. A measure of
the deviation from the O(4) limit is given by sj(E—1)A
which is 0.14 for LiF and —0.07 for KI. To fix the
electron-molecule interaction, the coupling constant d of
HAS is taken to be equal to the static dipole moment of
the molecule, d =6.58 D for LiF and d =10.82 D for KI.

In Figs. 1 and 2 we compare the cross sections for exci-
tation of the ground-state band (u =O~u'=0} and the
first excited vibrational band (u =O~u'=1) in LiF by
electrons of energy 5.44 and 20.0 eV, respectively, with
the measurements of Vuscovic et al. ' We have normal-
ized the experimental data to our absolute calculations at
8=40'. At the lower energy the agreement between our
calculation and the data is very good except at the larger
angles (where the eikonal approximation has doubtful va-
lidity in any case}. At the higher energy the discrepancy
between data and calculation shows up at a smaller angle

TABLE I. Parameters in the vibron Hamiltonian for the molecules LiF and KI.

Lip
KI

113
325

A
I'cm ')

7.929
0.574

8
(cm ')

0.792
0.082

127.268
—13.882
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gle. Excitation of the higher rotational states is also a

multistep process.
In Figs. 4 and 5 we show our calculations for KI in-

teracting with electrons of 6.74 and 15.7 eV compared
with the data of Rudge et al. Once again the data are

normalized to the absolute calculation at 8=15'. Most of
the main features of the KI calculation are the same as

for LiF. Also in this case the vibrational excitation is

quite small. The calculation begins to disagree with the
data at smaller angles in KI than in LiF. As before,
better treatment of the larger angles depends on including

more of the details of the short-range dynamics, particu-

larly exchange and perhaps resonances.
We have carried out our calculations using the parame-

ters of Table I in the vibron Hamiltonian. In addition we
have performed a calculation in which the term propor-
tional to e in the vibron Hamiltonian Eq. (2.1) is treated
in first-order perturbation theory as discussed in Sec. III.
Even though in LiF the deviation from O(4) symmetry as
measured by the parameter e/A (N —1) is of order 0.14,
and even though such a large deviation mi11 mean that a
first-order perturbation theory treatment of the molecular
energies or wave functions is not very good, we find that
the difference between cross sections calculated in first or-

10-12
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KI
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P
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E

~ 10"
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Cf)
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~ 10
lX
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FIG. 3. Differential cross section for vibrationally elastic ex-
citation of Lip by 5.~=eV electrons. The excitation to the indi-
vidual final rotational states II as well as the Born term are
shown exphcitly.

FIG. 4. Differential cross section for vibrationally elastic
(u =O~u'=0) and inelastic (u =O~u'=1) excitation of KI by
6.74-eV electrons. The experimental data (Ref. 20) are normal-
ized to our results at 15 .
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—14
10

der and to all orders is so sma11 as to be completely invisi-
ble in Figs. 1 and 2. The fractional rms deviation of the
two calculations is of order 0.005. This shows that these
scattering processes off polar molecules are largely dom-
inated by multistep excitation mechanisms rather than by
the details of the molecular wave functions. Since first-
order perturbation theory works so well for coupling of
the vibrational bands, the cross section for interband exci-
tation is a direct measure of the value of e/A (,ItI —1).

VI. CONCLUSION

E&o

QJ -16
cn 10
(f)
(f)
C)
CC

-17
~10

Ld
CL
LU

-~s
I ~o
Ch

-1g
10

-20
10

We have shown that the algebraic-eikonal theory of
medium-energy electron scattering from polar diatomic
molecules gives a simple yet adequate treatment of the
scattering for two typical examples, LiF and KI. In par-
ticular we have shown that the multistep or close-coupling
mature of the dynamics is essential while details of the
wave functions are less crucial. We have also seen that
the algebraic approach makes it easy to develop a pertur-
bative treatment of vibrational coupling and to do sums
and averages of cross sections.

So far the short-range dynamics has been included only
partially in our calculations. The neglect of the exchange
potential is probably responsible for the discrepancy be-

tween our calculations and the data at large angles. We
are presently working on a scheme to include exchange
and related short-range dynamics in the algebraic ap-
proach. We are also looking at ways to make corrections
to the adiabatic approximation which should allow us to
at least estimate the order of magnitude of the corrections.
Finally, but most importantly, we are working to extend
those methods to triatomic and polyatomic molecules
where the algebraic approach should have an even greater
advantage over other methods. Preliminary results for
HCN are most encouraging.

i0 60' 120

SCATTER ING ANGLE

180'

FIG. 5. As in Fig. 4, with electron energy 15.7 eV.
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