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We consider the generalized quantum Chirikov map under a resonance condition 27fi=M /N.
This is the quantum-resonance condition discovered by Casati et al. At the resonance, the quantum
system reduces to a set of independent N X N unitary matrix eigenequations. We can reduce the
evolution operator of the original system as a direct sum of these N X N unitary matrices. We then
obtain the eigenstates and eigenenergies (the pseudoenergies) of the quantum map and illustrate their
dependences on a number of parameters. We plot these eigenstates in the coherent-state representa-
tion and show that they follow closely the Kolmogorov-Arnol’d-Moser curves and other classical or-

bits.

I. INTRODUCTION

One of the most studied area-preserving iterative sys-
tems is the Chirikov (standard) map.! We may obtain this
map from a periodically kicked free rotor with the ampli-
tude of the kick being a periodic function of the rotation
angle. When the kick amplitude is zero, the system is in-
tegrable. For small but finite kicks, the system is a mix-
ture of quasiperiodic solutions and chaotic regions. These
quasiperiodic solutions are the well-known Kolmogorov-
Arnol’d-Moser (KAM) trajectories.? For strong kicks and
based on numerical studies, the system appears to be er-
godic. This standard map has served as a testing ground
for many theoretical ideas.

The introduction of quantum mechanics into a Chiri-
kov map leads to many additional features. The quantum
Chirikov map describes the qualitative behavior of atoms
and molecules under the radiation of a laser beam. It may
also predict the quantum stability of particle beams in an
accelerator.’

Casati, Chirikov, Izraelev, and Ford made an important
discovery of quantum resonance in the quantum Chirikov
map.*~® When the external frequency and natural quan-
tum frequency have simple rational ratios, they discovered
numerically that the average energy of the system in-
creases quadratically in time. This quadratic increment in
energy is true for all coupling strength k, while the energy
of the classical system is bounded for small k. Based on
an analogy to Anderson localization, Grempel et al. sug-
gested that the irrational cases should lead to states local-
ized in p space and hence must have bounded energies.”?

Recently, Casati and Guarneri made an important
discovery of the existence of nonresonant and nonre-
current behavior of kicked quantum rotors.” Up to the
time of their discovery, it was a general belief that there
are no possibilities for a periodically driven quantum sys-
tem to be anything other than resonance and recurrence. '
Casati and Guarneri showed rigorously that there is a
third possibility: For a generic choice of the potential
V(q) there is a nonempty set of nonresonant values of the
external frequency, sufficiently close to the rationals, such
that the quasienergy spectrum still has a continuous com-
ponent.
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There are many other studies about how a quantum
system should behave. Using semiclassical method, Barry
et al. concluded that the Wigner function'! of a quantum
eigenstate must lie on a classical invariant manifold.!? As
we shall see, a coarse graining of the Wigner functions is
necessary to achieve the quantum-to-classical transition.

The evolution operator under the quantum-resonance
condition can be reduced into a set of finite matrix eigene-
quations. We then diagonalize these matrix equations,
and obtain the eigenvalues (pseudoenergies) and eigen-
functions of the original problem. In a separate paper, we
shall work out the propagation of a localized state, and
study a nonresonance condition as a sequence of reso-
nance conditions.!> A brief summary of our results is
presented in Ref. 14.

This paper is organized as follows. In Sec. II, we study
the evolution operator and its matrix elements for a gen-
eralized quantum Chirikov map. In Sec. III, we impose
the resonance condition, and reduce the evolution operator
into a set of N XN unitary matrices. These two sections
contain a short survey of essentially the same mathemati-
cal treatment as given by Izrailev and Shepelyanskii in
Ref. 5. We include some detailed formulas which are
necessary for our applications. In Sec. IV, we introduce
the coherent-state representation and show that they are
the coarse-grained Wigner functions. In Sec. V, we obtain
the pseudoenergies and eigenfunctions by diagonalizing
these N X N matrices numerically. We describe the pseu-
doenergies and eigenfunctions for reducible fractions in an
Appendix.

II. EVOLUTION OPERATOR

The model that we shall study is the quantum Chirikov
map and its generalization.! We consider both the classi-
cal and the quantum map generated by a periodically
kicked free rotor with the Hamiltonian

2
H=£-1v3eu—n), @.1)
n
where the potential is periodic in g,
Vig+1)=Vi(q) . (2.2)
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We denote the coordinate at the kick ¢t =n as g,, and the
momentum just before and after the kick as p, and p, .,
respectively. (See Fig. 1.) The p, and g, obey the discrete
equations

Pn+1=Pn—V'(q,,) ’ (23)
dn+1=Gn+Pn41(mod 1) . (2.4)

If we choose V(g) to be k [cos(2mq)]/(2m)?, then, Eq.
(2.3) reduces to

k .
Pn+1=Pn+ ;sm(Zﬂqn) . (2.5)

Equations (2.5) and (2.4) are the familiar Chirikov equa-
tions.

To describe a quantum system, we need to impose the
quantization rule. The quantization rule for the discrete
system (2.3),(2.4) is'®

[qun]=-—iﬁ . (2.6)

To relate (p,q) from time ¢ to ¢ +1, we introduce a uni-
tary evolution operator

e —(i/zmp}e —(i/RVig,)

U= 2.7

It is straightforward to show that
pn+l=U——lanr qn+1=U—1an~ (2.8)

Indeed, Eqgs. (2.7) and (2.8) and the quantization relation
(2.6) imply the equations of motion (2.3) and (2.4).

We introduce the eigenstate of the evolution operator
by

Ulyp)=e|y). 2.9)

Since U is unitary, its eigenvalues are pure phases as indi-
cated in (2.9). The factor e~ is the analog of e ~£!/%,
The quantity @ (or more precisely #iw) is known as the
pseudoenergy, and is only determined up to mod(2m).
Since q is periodic, the eigenvalues for the momentum
p are discrete. We denote the momentum eigenstates by

{m | which obeys
(m|p=2mtim{m| . (2.10)

Multiplying Eq. (2.9) by {m |, we have

t=n+l, g=dn+|

R’H»l
time t=n,q=qy
R
t=n-1, =qdp-

FIG. 1. The coordinate at the kick at ¢t =n is ¢,, and the mo-
menta just before and after the kick are p, and p, ., respective-

ly.

2 Umm’¢m’=e_iw¢m ’ (2.11)

m'=—co

where ¢,, is the wave function in p space, and U, is the
matrix element of U in p space.
For the Chirikov map, Izrailev and Shepelyanskii have
worked out U, explicitly as
Uppr =€ ~127mH(_jym'=my . (2), (2.12)
with
k

Z=—

o (2.13)

III. REDUCTION OF U,

A. Resonance condition
As a classical iterative system,
Pn+1=Pn—V'(qn) ,
9n+1=9n +Pn+1(mod 1)
are invariant under the transformation
p—p+M, 3.1

where M is an integer. If such a symmetry also exists in
the quantum system,'® it corresponds to a transformation
in the momentum eigenvalue m by

mom+— (3.2)

p2 A

Since the eigenvalue m is an integer, Eq. (3.2) can be valid
only if

M
— = 3.3
- (3.3)
is an integer, or equivalently, only if
2nfi=M /N (3.4)

is a rational number. The condition that 27 is a rational
number is the resonance condition discussed in Ref. 4. In
our convention, 277# is the ratio of the natural quantum
frequency w =47*#% and the driving frequency Q =27.""
Under (3.4), the symmetry condition (3.2) becomes

m—m +N . (3.5)

It is straightforward to show that the matrix element for
the displaced m’s obeys

Um ANmAN=€ —iTM(2m +N)Umm’

=(-1M U, . (3.6)

There are two possibilities: (1) At least one of M and N is
even. (2) Both M and N are odd. We consider the first
case here. We shall leave the second case in the Appen-
dix.
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. . . .
B. Reduction to N X N matrices (U); = f da e‘“‘l[ Ulana)l, , (3.13)
. 0 27
In case (1) mentioned above, we have MN =even, and

n ™ da —ialy rrn

Upn +N, m'+N=Umm' . (3.7) (U 1l’)s-{er= fO '2—7—_;3 [UMa)(a)l, , (3.14)
Intr Oducing where

m=s+NIl, 1<s<N, —wo<l<w (3.8) [Wa)],= 2¢s+~1€m1 , (3.15)

1
we have the general form of an eigenfunction as 4
) an

b5 ni=e [dla)];, 0<a<2m (3.9) v da e
where ¢,, obeys Ysin= fo P [¥(a)]s . .16)

bmon=0" (3.10) Thus we can obtain the iterative property of ,,,

m - m - .

— o <m <, from the iterative property of (a);,

The variable a (0 <a <27) is the analog of the wave vec- 1<s <N. Note that we can invert (3.11) to give

tor k in Bloch wave. In terms of the N X N matri 2 . .
¢ e Uimgsnr= [, e=el-UU@)],. (.17
’ 0 27
[U@)]w= 3 Usgynre ™", (3.11)
r C. Explicit evaluation of U(a)
we can show that From Egs. (2.7), we obtain
, 2 g ] . o

E[U(a)]ss'¢(a)x'=e*"‘"‘”[¢(a)]s . (3.12) Uy =€ i2mrm ﬁfo dge (i/RV(q), —i2mim —m')g (3.18)

’ Under the condition
In other words, @(a) is the eigenvectcirigg)the N XN ma- 2m#i=M /N and MN =even , (3.19)

trix U(a) with the same eigenvalue e . It is straight-
forward to show that U(a) is unitary in the N X N space. we obtain

Thus, the original problem of finding the eigenvalues sk el ) ) ,
and eigenstates of an « X oo matrix U is reduced to that ~ Us+Nis'+NI' =€ fo dg e~ /A Qg —il2mis —s')g
of finding the eigenvalues and eigenstates of N XN ma-
trices Ul(a).’

i - X e ~i2mI =N (3.20)
We can express the transformation property of an arbi- ) ’
trary wave function under U in terms of the transforma-
tion properties of N X N matrices as Now, we are ready to compute U(a),
: ]
. i2m2s2 1 . . , L . .
Ula)y = 2 Us s nre —ial' _ ,—i2m’s*h fo dqe—(t/ﬁ)V(q)e —i2ms —s')q 2 e —ial +i2niNg (3.21)
r l=—e
T
To simplify (3.21), we make use of the Poisson summation where
formula'®
S o= 3 54— (3.22) Tl (3.25)
=, = : (P4 :
and obtain . . .
The finite N XN matrix Ul(a) involves only elementary
[Ula)]s functions. From (3.23), we note that U(a) depends only
— o —i2mis M i(s'—s)a/N on V(q) at
1 ¥ i a_ | j|, i2ms'—s)j a  2mj
= Lyl ) _a 27 .
XNE,"’"" 7V Nt Nl N amg=+ b j=12....N. (3.26)

. .. (3.23)
In particular, for a Chirikov map, we have Since 2mq describe angles, we can represent them as points

1 . - it circle. They form N equally-spaced points with
=— —i2ms — N on a um y qua’ly-sp p
Ula)s N expl —i2ms™fitils'—s)a/N] the initial point 2wq, (=2mq,) located at a /N, as shown

N (s’ —s)j 2ari in Fig. 2. Under the operation of U and for a fixed a,
X 3 exp L2 =5 7 cos | <MLL || only N discrete values of g are involved and map into
j=1 N N each other. The g’s associated with different a’s never

(3.24)  MIX.
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2mq,=2Tqy

\/ > a/N

2Tay-

FIG. 2. The N XN unitary matrix U(a) depends only on
V(q) at N equally-spaced points with the initial point
go=a/2mwN, and spacing 1/N. They are represented here as N
points on a unit circle.

IV. COHERENT-STATE REPRESENTATION
AND COARSE-GRAINED WIGNER FUNCTIONS

A. Coherent-state representation

To compare the quantum states with the classical
states, we describe the quantum states in the coherent-
state representation.!® In the following, we review briefly
several important results of the coherent-state representa-
tion.

A coherent state |a) is an eigenstate of the annihila-
tion operator a,

ala)=ala), 4.1)

where the annihilation and the creation operators are

(4.2a)

at=24=ip
=

In this section, ® denotes a conveniently chosen natural
frequency. Please do not confuse it with pseudoenergy.
The annihilation and the creation operators obey the
quantization rule

[a,af]=1. 4.3)

(4.2b)

The eigenvalue a is complex,

a=a1+ia2 . (4.4)

In (4.2), we assume that p and ¢ have the range — «
to oo.

By comparing (4.2) and (4.4), we may identify naively
the real part a; as ¢V /27 and the imaginary part a, as
p/V2%w. Since p and g do not commute, these identifi-
cations are necessarily imprecise.

To understand the coherent state precisely, we compute
its g- and p-space wave functions (g |a) and {p | @), ob-
taining

1/4
(q|a)= % e=1al?2+8 2 expl (Vi /2hg —a )]
14
=[T—i’ﬁ— e “exp[ —(Vw/2hg —a,)?
+2ia,Vw/2fq], (4.5a)
1/4
(pla)= ——] e~ lal?ri—a'r2
2
Xexp | — [\_/Li;ﬁ—w—_Ha
. 1/4 2
- iaa, _ _E____
tml ¢ l\/% %
2iap
- 4.5b)
V2% (

Equations (4.5) indicate that the coherent state gives a
Gaussian distribution in both ¢ and p space, is centered at
(V2#/wa,,V 2#fwa,), and has widths V#/20 and
V'#w/2, respectively. This wave packet has a minimal
combined width ApAq =#/2.

The coherent states are overcomplete. Two coherent
states |a) and |B) with eigenvalues a and B are not
orthogonal, but obey

(a|B)=expla*B—1 |a|?’~T|B|D, 4.6)
| (@|B)|*=exp(— |a—B|?) . 4.7)

In spite of its overcompleteness, the coherent states form
a natural basis. We can expand an arbitrary state {¢’| (or
|¥)) in terms of {(a | (or |a)) as

i—fdza]a>(a| =1, 4.8)

(¢|=%fd2a(¢rla)(a| , (4.9a)

(W)= [ dala)(al$), (4.9b)
where

(Y]|a)=e~12’2f(a), (4.10)

d’a=dada,, (4.11)

and f(a) is an analytic function of a=a;+ia,. Of
course, the physical amplitude is (¢ | @), not f(a).

In our model, we encounter a periodic g. The momen-
tum operator produces only discrete eigenstates. We shall
modify the coherent-state basis to take this periodic boun-
dary condition into account. We need to modify Egs.
(4.5) and (4.8) to
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1/4
(q|a>= i __‘2_} e—|a|2/2+a2/2
n=—cw
xexp{ —[Vw/2hg+n)—al’}, (4.12)
1/4
(m|a)= e—|a12/z—a2/2
172 2
Xexp {— —2-? m+ia l, (4.13)
1 f(m/zmlfzd fw day|a)(a| =I 4.14)
7 Jo aq o a|ayla| =1, .
where the momentum eigenvalue in (4.12) is
p =2mfim . (4.15)

The periodicity in q imgli&s that we only need to integrate
a, in (4.13) from 0 to Vw /24.

The coherent-state amplitude for an arbitrary state (|
is

Wla)y=3(¢|m)(m|a), (4.16)
where
m={m | ) @.17)

is the momentum state wave function.
In Sec. VI, we shall plot some typical | (¢|a) | Zasa
function of

q¢'=V2#/wa, and p'=V2%wa,, (4.18)
where ¢’ and p' are analogs of classical ¢ and p.
Under the resonance condition described in (3.4),
2rfi=M/N , (4.19)
with NM =even, the eigenstate wave function obeys
Gmsn=€ " . (4.20)

It is straightforward to show that

(m+N |a+iM/ Vi) =e MY 10y 2D
Substituting (4.19) and (4.20) into (4.15), we have
(¢ |a+iM/V2hw)

=3 (¢|m+N)(m+N |a+iM/V2Hw)

=3 (¢|m)e% —ia‘M/@(m la)

_elemeMNV I (o 4.22)
Hence, for an eigenstate (¢ |, we have

[{¢|a+iM/V2iw) |*=|(¢|a)]|?. 4.23)

Note that the displacement a-—>a+iM/V'2#fiw corre-
sponds to

q9—q, (4.242)

Thus for 2mi=M /N with even NM, the coherent-state
graph of | (¢ |a) |? for an eigenstate (¢ | is periodic in
p' with period M. In particular, for 2mfi=1/N (M =1),
the coherent state graph of | (¢ |a) |2 is periodic in both
q' and p’ with period 1.

B. Wigner functions and coarse-grained Wigner functions

It has been suggested that Wigner functions play an im-
portant role in the corres%)ondence between a quantum
and a classical system.!""!? We wish to point out that
|{¢¥|a)|? in the coherent-state representation is a
coarse-grained Wigner function. The process of coarse
graining?® appears to be necessary to obtain a smooth
quantum to classical transition.'*

The Wigner function for a quantum state |¢) may be
defined from its g-space wave function via

i
———p-x

_ 1
lpw(q'p):—\/fw_ﬁ fdx exp | —

X{q+x/72| )Y |q—x/2)

X{q—=x/2|YX{Y|q+x/2) .

(4.25)

It is easy to see that vy, is always real. The Wigner func-
tion contains both parameters p and g, which provides a
natural association with the classical system. We can also
express the Wigner function in terms of the momentum-
space wave function, and obtain a similar expression.

We cannot directly interpret ¢y as a probability distri-
bution. Even though ¢y is real, it is not always positive.
Indeed, if the original wave function is localized in x, the
Wigner function is oscillatory in sign. We wish to have
an alternative expression which is both positive-definite
and having a proper classical limit. A properly coarse-
grained Wigner function appears to be the solution.

To introduce the coarse graining, we need to consider
two Wigner functions ¥ and ¢, with

1 i
¢W(q’p)=‘/77r—ﬁ fdx exp —ﬁ_p.x

X{(qg—x/2|d){d|qg+x/2) .

(4.26)

Then, it is easy to show that
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[ dpdgvwia.p)éwia.p)

=ﬁ f dxdx'dpdge="PP X=X g L x /2 | Y)Y |q—x/2){q—x"/2|$)(|q +x'/2)

=ﬁ fdxdx'qu*rrﬁS(x —x'Nq+x/72|P) Y |q—x/2){q—x"/2|d){(d|q+x'/2)

= [axdg(q+x/2|¥)¥|qg—x/2){q—x/2|$)($|q+x/2) .

In terms of
E=q+x/2, n=q—x/2, (4.28)
we obtain
[ dpdqvwia.p)owiq.p)
= [dedn(s|EXEI) (P n)(n|d)
=|<(s1¥)|?, (4.29)

which is always positive. If we choose ¢ as a physical
state localized at (p’,q’), then, we call (4.29) a coarse-
grained Wigner function. It describes a Wigner function
éw coarse grained by the state iy. We shall use (p’,q’) as
its new momentum and coordinate labels.

In this paper, we choose the localized state 1, as the
coherent state centered at (p’,q’). The position-space
wave functions are given in (4.5a) and (4.12). The relation
between p’,q¢’ and a;,a, are described by (4.18). The
coarse-grained Wigner function of any |¢) by the
coherent state 1, is precisely the coherent-state amplitude
squared, | (¢ |a) |2 described in Sec. IV A.

V. NUMERICAL RESULTS

In this section, we study the eigenstates associated with
the quantum Chirikov map for rational 27#%. We begin
with a quick review of the classical Chirikov map. We
then present the results of pseudoenergies and eigenstates
for the quantum system. We describe the eigenstates in
the coherent-state representation.

A. Classical Chirikov map

The classical Chirikov map is described by

k .
Pn+1=Pn+~é—7;sm(21rq,,) , (5.1)
Gn+1=9n+Pn+1(mod 1) . (5.2)

This map has been studied thoroughly by Chirikov,
Greene, and others.! We refer the readers to the above
references for details. We wish to point out a few impor-
tant features relevant to our discussions.

(i) For k =0, the nature of the orbit is determined com-
pletely by p. If p=M/N is a rational number with M
and N being relatively prime, then, any initial point (p,q)
leads to an N cycle under iterations. If p is an irrational
number, then, any initial point (p,q) leads to a continuous
horizontal line. [See Fig. 3(a).]

(ii) For k540, we introduce a winding number w of an

(4.27)

N-cycle orbit as follows: First we ignore temporarily
(mod 1) in Eq. (5.2) and let g vary from — o to . If
during N iterations the value of g changes by M, then, we
define the winding number w =M /N, a rational. We de-
fine an orbit with an irrational winding number as the
limit of a sequence of orbits with rational winding num-
bers. For most fixed irrational numbers and for a suffi-
ciently small k, KAM theorem tells us that such an orbit
exists in the form of a continuous curve. This curve
wraps around the g direction and is known as a horizontal
KAM curve. If we iterate a point on this KAM curve N
times, and denote gy—gqo as M, the ratio M/N ap-
proaches the given irrational number as N — «. [See Fig.
3(b).]

(iii) As the control parameter k in Eq. (5.1) increases,
many of the horizontal KAM curves disappear. At
k =k.=0.971635..., the last horizontal KAM curves
begin to disappear. These last KAM curves have the
winding numbers

V-1

wy=

=0.618034 (5.3a)

and
wy;=1—w;=0.381966 . (5.3b)

For k <k,, the momentum p is bounded by these KAM
curves, and cannot change by more than one under any
number of iterations. However, for k >k, p can increase
or decrease indefinitely. [See Fig. 3(c).]

(iv) There are additional cycles and KAM curves
around elliptical fixed points and cycles such as p =0,
qg= %, and p =5, ¢ =0, and 5. These KAM curves per-
sist beyond k.. However, at sufficiently large k, most of
these KAM curves also disappear. The iteration of a sin-
gle point can generate points all over the pg plane. [See
Figs. 3(d)-3(f).]

B. Pseudoenergies

We consider the quantum Chirikov map with a rational
21,

2rfi=M/N . (5.4)

We choose NM =even. The N XN matrix is given in
(3.24),

Ula)y= Tb—exp[ —i2ms*i+i(s'—s)a /N]

N
X Y exp{i2m(s'—s)j /N —iz cos[(2mj +a)/N]},
j=1

(5.5)
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1 T N\ K L{//&:j,’_f:'_q

N N . ,J‘., —
'\‘\‘ \\‘/ Sl

(f)
(e)

FIG. 3. The invariant trajectories generated by the iterations of Chirikov map from a small number of initial points. These graphs
all plotted in the region 0<g<1,0<p<1. If p > 1, we plot [g, p(mod 1)]. The parameter k associated with these graphs are (a)
k =0, (b) k=0.5, (c) k=1, (d) k=2, (¢) k=5, and (f) k =10. Several initial points are needed to generate (c). However, a single
point is sufficient to produce (f).
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with
z=k/(4°H) .

For simple cases such as N =2 or 4, we can find the
eigenvalues analytically. However, for a large N, this is
not always feasible. We only present the numerical results
here.

The eigenvalues of U(a) are of the form e ~'‘®’ where
w(a) is the pseudoenergy. For 2m#fi=M /N, there are N
eigenvalues for each a. The variation of w as a function
of a gives rise to the energy band. In Fig. 4, we plot w’s
as functions of a for a fixed 27#i=+, but for several dif-
ferent values of k. At k <1 [Fig. 4(a)], there are practi-
cally no a dependences. At k =5 [Fig. 4(b)], there are
significant a dependences which lead to a (barely) non-
overlapping band structure. At k =10 [Fig. 4(c)], the
bands definitely overlap.

(5.6)

0.6
(a)
(23]
2m O
—0.6
0 _a 1.0
21
(b)
/’—-\\\\‘\,
/

FIG. 4. Pseudoenergies as functions of a for 2m#i=+, and

for several values of k. The parameters used are (a) k =1, (b)
k =5, and (c) kK =10.

In Fig. 5, we illustrate how the pseudoenergies w vary
as functions of a for equivalent fractions. All graphs in
Fig. 5 have kK =10 and the same 27 represented by dif-
ferent reducible fractions. In graphs (a), (b), and (c), they
are represented by (27fi=) %, %, and —Z— We can obtain
Figs. 5(b) and 5(c) from 5(a) by cutting the graph 5(a) into
two or three parts, and then overlay these parts on top of
each other. These graphs always give the same band
structure.

In Fig. 6, we plot the pseudoenergies as functions of k
for 2m#i=+, and for a =0 and 0.382. At a =0 [Fig.
6(a)], the parity is a good quantum number. The trajec-
tories with different parity can cross each other. Howev-
er, for @ =0.382, no such crossings are observed.?!

In Fig. 7, we illustrate the pseudoenergies as functions
of a (band structures) for 27# being several of the Fi-
bonacci ratios, 5,+,+,+. We have chosen not to plot

0.6

Se

_06 I |

(c)

FIG. 5. Pseudoenergies as functions of parameter a for
k =10, and for different fractional representations of 27#.
These fractions are (a) 7, (b) 3, and (c) 3.
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0.6

Y B

—

L

FIG. 6. Pseudoenergies as functions of k for 2m#i=1 and
a =0 and 0.382. (a) a =0. Parity is a good quantum number.
Energy levels of states with different parity can cross each oth-
er, but those of states with same parity repel each other. (b)
a =0.382. Parity is no longer a good quantum number. All en-
ergy levels repel each other and no crossings are observed.

the graph associated with & because + is an odd/odd
fraction. This odd fraction leads to 10 bands (3 =5
which does not fit in well with the other fractions. As we
can see, as the number of bands increase, the widths of
each band go to zero rapidly as we approach the golden
ratio. Even though the numerical values of 27# have not
changed much, the band width changes drastically de-
pending on whether it can be represented by a simple ratio
or not. A large width is always associated with a simple
ratio. This feature is very similar to that of the solvable
model discussed in Refs. 7 and 8.

There are indications that the energy spectrum for a
certain irrational 27# may form a Cantor set. First,
Grempel and Prange showed that a quantum Chirikov
map is equivalent to a one-dimensional tight-binding
model.” For an irrational 27#, this leads to an almost-
periodic tight-binding system. For certain simple classes
of such models, there are rigorous results that the spec-
trum must contain a Cantor set.??> Unfortunately, the
generalized quantum Chirikov map does not fall into the
category specified in Ref. 22. In a companion paper, we
shall investigate this problem and its implications more
thoroughly.’?

0.6

-06 e

(b)

(c)

(d)

FIG. 7. The pseudoenergies as functions of a for k =10 and
for 21 being the Fibonacci ratios (a) +, (b) Z, (¢) 3, and (d) 5.
The odd/odd ratio + does not fit well with the rest, and has not
been included here.
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C. Coherent-state pictures

Using (4.15) and (4.16), we can express any state in the
coherent-state representation. As we have shown in Sec.
IV and in the Appendix, when (27#)~! is an even integer,
the coherent-state amplitude squared, | (¢ |a) |2, for an
eigenstate (¢ | is periodic in p with periodicity 1. When
(27#)~! is an odd integer, the period in p is 2. For the
general case 2mfi=M /N, the periodicity is M when MN
is even, and 2M when MN is odd. In this section, we con-
centrate on the simple case when (2774) ! is an integer.

As discussed in Sec. IV, the coherent-state representa-
tion is a coarsely-grained Wigner function. We first begin
with a Wigner function without coarse graining. In Fig.
8(a), we plot the Wigner function for a eigenstate at
(2m#)~'=10. This eigenstate corresponds to the classical
fixed point at (p =0, ¢ =+ ). Because of the periodicity
in p and g, the Wigner function is represented by 2N X 2N
§ functions. The coefficients of these § functions can be
both positive and negative. If we increase N, we en-
counter more & functions which do not make it any
smoother.

In Fig. 8(b), we plot the same eigenstate in the
coherent-state representation. This is equivalent to
averaging the 8 functions in Fig. 8(a) by Gaussians. Note
that the & functions in the center region and in the four
corners of Fig. 8(a) have alternative signs on even and odd
lattice sites. They are practically averaged out to zero in
Fig. 8(b). Only those regions of Fig. 8(a) whose 6 func-

(b)

FIG. 8. Wigner functions and the coarsely-grained Wigner
function for an eigenstate with k =1, 2mfi=5, @ =0. (a) The
full Wigner function with spikes representing & functions. (b)
After coarse-graining the Wigner function in (a), we obtain this
coherent-state | |2 picture.

tions on even and odd sites have the same sign contribute.
As we increase N, we arrive at a structure which is very
close to a classical invariant orbit. In other words, coarse
grainings are crucial for achieving smoother transitions to
classical results.!*?3

In Fig. 9 we compare analogous eigenstates with the
same k=1 and 21rﬁ=3%, but with different a. We find
that their coherent-state pictures are practically indistin-
guishable. As we increase N, the distinction in different a
becomes even smaller.

For an odd integer N, we expect the coherent-state
graph has a period 2 in p. We plot a few eigenstates in
Fig. 10 to illustrate this behavior. For 2mfi=M /N, the
natural periodicity of the eigenstate is M in variable p if
NM is even, and is 2M in variable p if MN is odd. In
Figs. 10(a) and 10(b), 27rfi= 2% = +, the natural periodici-
ty in p is 1. Thus, we see the repetition as p varies from 0
to 2. In Figs. 10(c) and 10(d), 2mfi=+;, the natural
periodicity in p is 2. In Figs. 10(e) and 10(f), we have
2mfi= 4 =5. Since both 1 and 35 are odd numbers, the
natural periodicity of the eigenstate is again 2, as shown

= —
= SRR
—— SRR S K55S
SR XN
N
|

FIG. 9. The a dependence as appeared in the quantum eigen-
states |4 |2 in the coherent-state representation. The parame-
ters used are k =1, 2m#i=+, and (a) @ =0, (b) @ =0.372, and
(c) a =0.5.
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FIG. 10. The quantum eigenstates |4 | in the coherent-state representation. The parameters used are k =1, a =0, and (a) and (b)

2mfi= 45, () and (d) 27fi= 2, and (¢) and () 2rfi= ..

in Figs. 10(e) and 10(f). In Fig. 11, we choose k =1 and
(2m#)~'=N =102, and plot several eigenstates in the
coherent-state representation. By comparing Fig. 11 with
the classical map Fig. 3(c), we can identify clearly each of
these quantum states with the classical analog. In partic-
ular, the classical cycles are represented in the quantum
map by isolated peaks of width V'#/2=1/v4rN and the
KAM curves are represented in the quantum map by
walls with width 1/V'47N. The chaotic regions are
represented in the quantum map by ripples which no
longer have well-defined wall structure. To see the quali-
tative transition in quantum maps from a KAM region to
a chaotic region, we vary k from k =0 to k =10 in Fig.
12. In Figs. 12(a) and 12(b) (k =0 and 1), we see well-
defined KAM walls. In Fig. 12(c) (k =35), we encounter
an eigenstate which has no well-defined peaks or walls. In
Fig. 12(d) (k =10), we arrive at a quantum map whose
classical map [Fig. 3(f)] is chaotic. Both Figs. 12(c) and
12(d) look similar to snapshots of ocean waves.

To conclude this section, we include the coherent-state
pictures for states with different 2n#’s. Figures
13(a)—13(c) and 11(b) describe the quantum analogs of the
same classical KAM curve. All these states describe
quantum KAM walls with widths ~O (V'#/2).

VI. DISCUSSIONS

In this paper, we develop a coherent-state method for
analyzing a resonance quantum map. In a separate paper,
we shall consider the real time evolution of states initially
localized in both p and gq. We shall illustrate the effect of
KAM curves on the propagation of these states.

We have seen in Sec. III that the quantum resonance in
the Chirikov map follows from a classical-resonance con-
dition. It is important to know whether this correspon-
dence is a general feature of the quantum resonance or
not. In deriving the classical Chirikov map from a
periodically kicked rotor, if the kicks have a small but fi-
nite duration, we arrive at a slightly modified iterative
system. The modified system is no longer invariant under
the (resonance) symmetry p—p +1. If a classical reso-
nance is indeed a prerequisite of a quantum resonance,
then, the quantum resonance will be a rare phenomena.

Another related and active research area is quantum
chaos.® At the moment, there are no generally accepted
definitions of quantum chaos, but there are many indica-
tions of quantum-chaotic phenomena.?* One important
indication of quantum chaos is the energy-level distribu-
tion. It has been suggested that the spectral statistics of
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FIG. 11. The quantum eigenstate |4 |? in the coherent-state representation. Each of the eigenstates is closely related to al KAM
curve or other classical orbits generated by appropriate initial points in Fig. 3(c). The parameters used are k =1, 27fi= 357, and

a=0.

the quantum system are related to the stochasticity of a
classical system. In particular, the level fluctuations of a
chaotic quantum system may follow that of the Gaussian
ensemble of random matrices.?! This random matrix
description also leads to the avoided level crossings (level
repulsions) as one varies the interaction strength. Recent-
ly, Izrailev studied extensively the quasienergy level statis-

tics for quantum Chirikov map.?®* At k =0, the level dis-
tribution obeys Poisson distribution which describes an in-
dependent level distribution. For very large k, the level
distribution indeed resembles that of Gaussian ensemble
of random unitary matrices. Other indications of quan-
tum chaos include nonvanishing of quantum Kolmogorov
entropy, erratic nodal pattern, and vanishing of spatial
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tum eigenstates | |2 in the coherent-state representation. Pa-
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Classically, the system is integrable at k =0, and appears to be
completely chaotic at k =10.

correlation function.?® Our approach offers a different
prospect of quantum chaos.
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APPENDIX: 27# AS A REDUCIBLE FRACTION

In this appendix we consider 27# as a reducible frac-
tion. One reason for studying a reducible fraction is to
consider

= = S,
W
=i SN0 =
e AN ==
= N
S AN
=

=
eSS —

FIG. 13. The 27 dependence of quantum eigenstate | |2 as
appeared in the coherent-state picture. We fix the parameters
k=1, a =0, and vary 2n# from (a) 2mi= 1, (b) 2mfi= 15, to (c)

2mfi=—;. Figure 11(b) describes a similar picture with
2= 15
2rti=M/N (A1)

when both M and N are odd. Then, we have from Eq.
(3.6) in Sec. III,

Um +N,m'+N= — Um,m' ’ (A2)
which implies
Un +2N,m'+2N = Um,m’ . (A3)

In other words, U,,, is periodic in indices (m,m') with
period 2N. This is equivalent to study a reducible frac-
tion

2mfi=2M/(2N) , (A4)

where 2M and 2N are even. Another reason for studying
reducible 277 is for analyzing an irrational 27%. We ap-
proximate an irrational 27# as a sequence of rationals. It
is very important to see how the reducibility of the ration-
als affects the behavior of the system.
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We consider the general situation
2mfi=nM /(nN) , (A5)

where M /N is irreducible, and n is an integer common
factor. We begin with the simple case of n=2,
MN =odd.

1. n=2, MN =odd

In analogy to (3.11), we construct from U, a set of
2N X 2N unitary matrices Ul(a)y, 1<s,s'<2N, as fol-
lows:

U@)y= 3 Uyiame 2. (A6)
l=—w
Note that we have chosen the phase in (A6) as e %@
From (A2) and (A6), we obtain
US +N,s'+N= — st’ ’ (A7)
U, +Ns'=—¢€ —2a Us,s’+N (A8)

for 1<s,s'<N. We can express these 2N X 2N matrices
in terms of block matrices as

u, eu,

Ula)= (A9)

_e—l‘auz

where u,; and u, are N XN matrices. The unitary condi-
tion

I 0
Ula)U(a)=

oIl (A10)

leads to

u{ul +u§u2=I s (Alla)

uluy+ulu,=0. (A11b)
Equation (A9) implies that both

u,=u;+u, (A12a)
and

U_=u;—u, (A12b)

are N X N unitary matrices. We also decompose the 2 N-
component eigenvector ¢(a)s, 1 <s <2N, as the direct sum
of two N-component vectors ¢, and e ~**¢,,

u b +urpr=e "¢y, (A15a)

—uyb—u b=, . (A15b)
From ¢, and ¢,, we can construct

br=¢1x¢;. (A16)

It is straightforward to show that ¢ are eigenstates of the
N X N unitary matrices ¥ _u and u  u_,

(u_u+ )¢+=e—2iw¢+ ,
(uju_)p_=e 4% _ .

The converse is also true. From the N XN unitary ma-
trices u_u and u_,u_, we can construct via (A17) the
eigenvalues e ~%%@ and the eigenvectors ¢.. From these
¢+, we can construct ¢(a); and consequently eigensolu-
tions to the original o X o unitary matrix U,,,. Note
that ¢, and ¢_ are simply related by

u+¢+=e—l’m¢_ ,
u-—¢—=e_iw¢+ .

As mentioned in Sec. IV, another important conse-
quence of 2mfi=M /N with odd M and N is that the
coherent state (amplitude)’ has a natural period 2M in

variable p instead of the usual period M when
MN =even.

(Al7a)
(A17b)

(A18a)
(A18b)

2. MN =even, arbitrary n

For the present case

2mfi=nM /(nM), MN =even , (A19)
we consider an nN X nN finite unitary matrix

Ula)w= 21', Uss'mve ™ ", (A20)
with

1<s,s'<nN (A21)
The U, obeys

Ula)s yns+n=Ula)y . (A22)

When either s +N or s’+ N becomes larger than nN, we
have

1
¢la)= e=iap, | - (A13) U(a)H"N’S,:e—"MU(a)”, , (A23a)
The eigenequati i
genequation » U(a)s,s‘+n1v=emaU(a)ss’ . (A23b)
U a = —lola
(a)g(a)=e $(a) (Al4) Using (A22) and (A23), we can express this nN XnN ma-
leads to | trix U into a block matrix made of n X n submatrices,
u, eiauz eZiau3 ei(n—l)aun
e—-iaun u, eiauz e ei(n«Z)au”_l
U= (A24)
e-—i(‘n--l)a“2 e—i(u—Z)au3 e .. u,
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where each submatrix u; is an N X N matrix. The condi-
tion that U is unitary implies

S u)l =8l (A25)

r=1

where I is the N XN identity matrix, and the index r in
u, is treated cyclically,

Up +r=unu:+r=u: . (A26)

It is easy to see that U is a unitary transformation of a
simpler matrix ¥,

U=pPvp, (A27)
with
u, 125) M u,
Up u Up
V=1{... ... ... ... (A28)
uy w3
and
e'? 0 0
0 e¥* - 90
P=|_ . .. ... .. (A29)
0 0 -+ e

From (A27), we can obtain an eigenstate of U from an
eigenstate of V. The two matrices have the same eigen-
values.

We can reduce the eigenvalue problem of V to that of
diagonalizing N X N matrices as follows. We define an
N X N matrix

u(@)= 3 ue, (A30)
with 0 obeyir:gl

eMf=1. (A31)
Let ¢(0) be the eigenstate of u (8),

u(0)p(0)=e~"“9¢(0) . (A32)

Then, the eigenstate of ¥ and U for the same eigenvalue

e —iw(8) are
e
o —2i0
Yy= #(0), (A33)
e —‘inO
e—i6+a)
e —2i(6+a)
Yy= #(6) , (A34)
e —in'(6+a)
respectively.

We can generalize our reduction method straightfor-
wardly to cover the remaining case of MN =odd and
n>2.
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