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Evolution and exact eigenstates of a resonant quantum system
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%'e consider the generalized quantum Chirikov map under a resonance condition 2m6=M/N.
This is the quantum-resonance condition discovered by Casati et a/. At the resonance, the quantum

system reduces to a set of independent X)&X unitary matrix eigenequations. We can reduce the
evolution operator of the original system as a direct sum of these N XN unitary matrices. We then
obtain the eigenstates and eigenenergies (the pseudoenergies) of the quantum map and illustrate their
dependences on a number of parameters. We plot these eigenstates in the coherent-state representa-
tion and show that they follow closely the Kolmogorov-Arnol'd-Moser curves and other classical or-
bits.

I. INTRODUCTION

One of the most studied area-preserving iterative sys-
tems is the Chirikov (standard) map. ' We may obtain this
map from a periodically kicked free rotor with the ampli-
tude of the kick being a periodic function of the rotation
angle. When the kick ampHtude is zero, the system is in-
tegrable. For small but finite kicks, the system is a mix-
ture of quasiperiodic solutions and chaotic regions. These
quasiperiodic solutions are the well-known Kolmogorov-
Arnol'd-Moser (KAM) trajectories. 2 For strong kicks and
based on numerical studies, the system appears to be er-
godic. This standard map has served as a testing ground
for many theoretical ideas.

The introduction of quantum mechanics into a Chiri-
kov map leads to many additional features. The quantum
Chirikov map describes the qualitative behavior of atoms
and molecules under the radiation of a laser beam. It may
also predict the quantum stability of particle beams in an
accelerator.

Casati, Chirikov, Izraelev, and Ford made an important
discovery of quantum resonance in the quantum Chirikov
map. e 6 When the external frequency and natural quan-
tum frequency have simple rational ratios, they discovered
numerically that the average energy of the system in-
creases quadratically in time. This quadratic increment in
energy is true for all coupling strength k, while the energy
of the classical system is bounded for small k. Based on
an analogy to Anderson localization, Grempel et al. sug-
gested that the irrational cases should lead to states local-
ized in p space and hence must have bounded energies. '

Recently, Casati and Guarneri made an important
discovery of the existence of nonresonant and nonre-
current behavior of kicked quantum rotors. Up to the
time of their discovery, it was a general belief that there
are no possibilities for a periodically driven quantum sys-
tern to be anything other than resonance and recurrence. '

Casati and Guarneri showed rigorously that there is a
third possibility: For a generic choice of the potential
V(q) there is a nonempty set of nonresonant values of the
external frequency, sufficiently close to the rationals, such
that the quasienergy spectrum still has a continuous com-
ponent.

II. EVOLUTION OPERATOR

The model that we shall study is the quantum Chirikov
map and its generalization. We consider both the classi-
cal and the quantum map generated by a periodically
kicked f'ree rotor with the Hamiltonian

2

H = + V(q) g 5(t —n),
2

(2.1)

~here the potential is periodic in q,

V(q+1)= V(q) . (2.2)

There are many other studies about how a quantum
system should behave. Using semiclassical method, Barry
et al. concluded that the Wigner function" of a quantum
eigenstate must lie on a classical invariant manifold. ' As
we shall see, a coarse graining of the Wigner functions is
necessary to achieve the quantum-to-classical transition.

The evolution operator under the quantum-resonance
condition can be reduced into a set of finite matrix eigene-
quations. We then diagonalize these matrix equations,
and obtain the eigenvalues (pseudoenergies) and eigen-
functions of the original problem. In a separate paper, we
shall work out the propagation of a localized state, and
study a nonresonance condition as a sequence of reso-
nance conditions. ' A brief summary of our results is
presented in Ref. 14.

This paper is organized as follows. In Sec. II, we study
the evolution operator and its matrix elements for a gen-
eralized quantum Chirikov map. In Sec. III, we impose
the resonance condition, and reduce the evolution operator
into a set of E)&N unitary matrices. These two sections
contain a short survey of essentially the same mathemati-
cal treatment as given by Izrailev and Shepelyanskii in
Ref. 5. We include some detailed formulas which are
necessary for our apphcations. In Sec. IV, we introduce
the coherent-state representation and show that they are
the coarse-grained Wigner functions. In Sec. V, we obtain
the pseudoenergies and eigenfunctions by diagonalizing
these N XN matrices numerically. We describe the pseu-
doenergies and eigenfunctions for reducible fractions in an
Appendix.
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p. + i=p. —I'(q. » (2.3)

qn+1 =qn +pa+ 1(mod 1) . (2.4)

If we choose V(q) to be k [cos(2mq)]/(2m ), then, Eq.
(2.3) reduces to

We denote the coordinate at the kick t =n as q„,and the
momentum just before and after the kick as p„and p„+&,

respectively. (See Fig. 1.) The p„and q„obey the discrete
equations

U (t =e (2.11)

with

e
—l27P Nl e( t}Ill —mJ (z) (2.12)

where P~ is the wave function in p space, and U~ is the
matrix element of U in p space.

For the Chirikov map, Izrailev and Shepelyanskii have
worked out U ~ explicitly as

kp„+&
——p„+ sin(2mq„) .n n (2.5)

(2n} fi
(2.13)

Equations (2.5) and (2.4) are the familiar Chirikov equa-
tions.

To describe a quantum system, we need to impose the
quantization rule. The quantization rule for the discrete
system (2.3),(2.4) is' III. REDUCTION OF U

[pniqn I = —t& ~ (2.6) A. Resonance condition

—(i/24)p„—(,i/A) V(q„)U=e "e (2.7)

It is straightforward to show that

To relate (p,q} from time t to t+1, we introduce a uni-

tary evolution operator
As a classical iterative system,

pn+ & =pn —V (qn ) ~

q„+~——q„+p„+~(mod1)

are invariant under the transformation

S.+i=U 'S.U a.+~=U (2.8)
p —+@+M, (3.1)

Indeed, Eqs. (2.7) and (2.8) and the quantization relation
(2.6) imply the equations of motion (2.3) and (2.4}.

We introduce the eigenstate of the evolution operator
by

(2.9)

Since U is unitary, its eigenvalues are pure phases as indi-
cated in (2.9). The factor e '" is the analog of e
The quantity co (or more precisely fau) is known as the
pseudoenergy, and is only determined up to mod(2n ).

Since q is periodic, the eigenvalues for the momentum

p are discrete. %'e denote the momentum eigenstates by
(m i

which obeys

where M is an integer. If such a symmetry also exists in
the quantum system, ' it corresponds to a transformation
in the momentum eigenvalue m by

(32)

Since the eigenvalue m is an integer, Eq. (3.2) can be valid
only if

(3.3)

is an integer, or equivalently, only if

(m ip=2Wm(m
i

.

Multiplying Eq. (2.9) by (m i, we have

(2.10)
(3.4)

is a rational number. The condition that 2m%' is a rational
number is the resonance condition discussed in Ref. 4. In
our convention, 2M is the ratio of the natural quantum
frequency co =4HR and the driving frequency 0=2m. '7

Under (3.4), the symmetry condition (3.2}becomes

t =n+ I) q= qn+( (3.5)

t=ll) q= qn

It is straightforward to show that the matrix element for
the displaced m's obeys

—inM(2m+X) g y=e-
NlNl

t= n-l, q=q„~ =( —1) U (3.6}

FIG. 1. The coordinate at the kick at t =n is q„,and the mo-

menta just before and after the kick are p„andp„+&, respective-

ay.

There are two possibilities: (1) At least one of M and N is
even. (2) Both M and N are odd. We consider the first
case here. %e shall leave the second case in the Appen-
dix.
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Um+N, m'+N Umm' .

Introducing

(3.7)

8. Reduction to N XX matrices

In case (1) mentioned above, we have MN =even, and

2sr a(Us(+yr= J e "'[(((a)s(a)], ,

(U"g), +Nl = f e "'[U"(a)f(a)], ,

(3.13)

(3.14)

m =s+XI, 1&s(X, —Oc &I & ao

we have the general form of an eigenfunction as

(I), ~Nl
——e "l[(I)(a)]„0& a & 2m'

where (() obeys

(3.8)

(3.9)

[ir'(a)], = g4 „,e'",

+ dQ
PspNi= f, 2

e "'[0(a)], .

(3.15}

(3.16)

4 +N
—e (3.10}

The variable a (0&a & 2m) is the analog of the wave vec-
tor k in Bloch wave. In terms of the N XN matrix 2n'

Us +Nl, s'+ Nl'
—ia (l —l')

e [U(a}]~ .
2m'

(3.17)

Thus we can obtain the iterative property of
—Do & m & ao, from the iterative property of f(a)„
1 &s &¹ Note that we can invert (3.11) to give

[U(a)] = g U„+Nle
1'

we can show that

X[U(a)] (I)«). =e ' "'[(t](a)], .

(3.1 1)

(3.12)

C. Explicit evaluation of U(a)

From Eqs. (2.7), we obtain

r r —i 2e m ~A a —(i/R) V(q) —i2+ m —m ')q~mm'=e dq e e
0

Under the condition

(3.18)

In other words, ())(a) is the eigenvector of the N XN ma-
trix U(a) with the same eigenvalue e '""'. It is straight-
forward to show that U(a} is unitary in the N XN space.

Thus, the original problem of finding the eigenvalues
and eigenstates of an (s() X 00 matrix U is reduced to that
of finding the eigenvalues and eigenstates of N XN ma-
trices U(a}.

We can express the transformation property of an arbi-
trary wave function under U in terms of the transforma-
tion properties of N XN matrices as

2M=M/N and MN =even,

we obtain

Us+Nl, s'+Nl' e dq e
—(i/l]) V(Q)e i2%s ——s')(l

0

—i 2& l —l')Nqwe

Now, we are ready to compute U(a ),

(3.19)

(3.20)

U(a) ~ U e
—i(sl' e i2ss s (]] f d

—
e

—(i/ii)V(q)e i2ss(s —s—')(] g e
—ial+i2sslNq~ ss' ~ s,s'+Nl'e

01' l = —co

(3.21)

To simplify (3.21), we make use of the Poisson summation
formula"

I

where

e "('= g 5((()—j),
l= —ao J =—oo

and obtain

[U(a)]„
=e e—i2m st i(s' —s)o/N

(3.22)
k

(2m) fi
(3.25)

The finite N XN matrix U(a) involves only elementary
functions. From (3.23}, we note that U(a) depends only
on V(q) at

i a ~ i 2n(s' sj)—
2mq= —+, j =1,2, . . . ,X.a 2' (3.26)

In particular, for a Chirikov map, we have
(3.23)

X +exp i 2m(s' s)j . 2srj+a-—Ez cos

(3.24)

U(a)~ =—exp[ i 2m s A+—i (s' s}a/N]—1

Since 2~q describe angles, we can represent them as points
on a unit circle. They form N equally-spaced points with
the initial point 2mqo ( =2srq„)located at a/N, as shown
in Fig. 2. Under the operation of U and for a fixed a,
only N discrete values of q are involved and map into
each other. The q's associated with different a's never
IDn.
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(q Ia&= e
—~u~ l2+a /2exp[ (V ~/2Q a)2]

$7T q = 27Tq N

' 1/4

e ' 'exp[ —(&co/2' —a) )

+2i a2v'co/2Rq], (4.5a)

&pIa&=
1

' 1/4

e
—

I
a

I
~/2 —a~/2

FIG. 2. The XXN unitary matrix U(c) depends only on

V(q) at S equally-spaced points with the initial point

qo=—a/2m%, and spacing 1/¹ They are represented here as N
points on a unit circle.

)(exp

ia~a2
e exp

2lCXg

v'2%co
(4.5b)

IV. COHERENT-STATE REPRESENTATION
AND COARSE-GRAINED %SIGNER FUNCTIONS

a Ia)=aIa),
where the annihilation and the creation operators are

(4 1)

A. Coherent-state representation

To compare the quantum states with the classical
states, we describe the quantum states in the coherent-
state representation. ' In the following, we review briefiy
several important results of the coherent-state representa-
tion.

A coherent state
I
a) is an eigenstate of the annihila-

tion operator a,

Equations (4.5) indicate that the coherent state gives a
Gaussian distribution in both q and p space, is centered at
( t/2'/coa &, v'2fuua2 }, and has widths v'%/2co and
v'tao/2, respectively. This wave packet has a minimal

combined width bp b,q =R/2.
The coherent states are overcomplete. Two coherent

states Ia) and IP) with eigenvalues a and P are not

orthogonal, but obey

(a
I P )=exp(a'P ——,

'
I
a

I

——,
'

I P I ), (4.6)

l(alP& I
=exp(- la &I ) ~- (4.7)

In spite of its overcompleteness, the coherent states form

a natural basis. We can expand an arbitrary state (p I
(or

I 1( ) ) in terms of (a
I

(or
I
a ) ) as

COg +lP
v'&co

Q)g —lP
v'2 Ace

(4.2a}

(4.2b)

—f d'aIa&&aI =I,1
(4.8)

(4.9a)
In this section, co denotes a conveniently chosen natural
frequency. Please do not confuse it with pseudoenergy.
The annihilation and the creation operators obey the
quantization rule

[a,at]=1 . (4.3)

The eigenvalue a is complex,

where

(PIa)—:e ' ' ~ f(a)

(4.9b)

(4.10)

Q!=tX1+ lCK2 .
In (4.2), we assume that p and q have the range —oo

to m.
By comparing (4.2} and (4.4), we may identify naively

the real part a& as qv'c0/2A' and the imaginary part a2 as
p/V'21m. Since p and q do not commute, these identifi-
cations are necessarily imprecise.

To understand the coherent state precisely, ~e compute
its q- and p-space wave functions (q I

a ) and (p I a), ob-
talQlng

d 0!=dO, '1dCX2, (4.11)

and f(a) is an analytic function of a=a&+ia2 —Of.
course, the physical amplitude is ( g I

a ), not f(a }.
In our model, me encounter a periodic q. The mornen-

tum operator produces only discrete eigenstates. %e shall
modify the coherent-state basis to take this periodic boun-
dary condition into account. We need to modify Eqs.
(4.5) and (4.8) to
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]/4

e
—)a)2/2+a /2

p' —+p'+M .

(4.24a)

(4.24b)

&m ia&=

XexpI —[v'c0/2A(q+n) —a] I, (4.12)
Thus for 2M=M/N with even NM, the coherent-state
graph of [ (P(a) )

for an eigenstate (P~ is periodic in
p' with period M. In particular, for 2mB=1/N (M =1),
the coherent state graph of ) (P ~

a) ( is periodic in both
q* and p' with period 1.

)(exp

' 1/2
2m, 2A

Nl +lA (4.13) S. Wigner functions and coarse-grained Wigner functions

a& a2 a u =I, (4.14)

where the momentum eigenvalue in (4.12) is

p =2M7tl (4.15)

The periodicity in q implies that we only need to integra«
a& in (4.13) from 0 to &c0/2i}l.

The coherent-state amplitude for an arbitrary state (g ~

18

It has been suggested that Wigner functions play an im-
portant role in the correspondence between a quantum
and a classical system. "' We wish to point out that

( (f ~

a ) ) in the coherent-state representation is a
coarse-grained Wigner function. The process of coarse
graining2 appears to be necessary to obtain a smooth
quantum to classical transition. '

The Wigner function for a quantum state
~
f) may be

defined from its q-space wave function via

&1(~a&=g(1( ~m&&m (a&,

where

(4.16)

(4.17)

1 l
4~(q p)=-

&2M
coax exp — p'x

iii

X (q +x/2
~
g) ( P ~ q —x/2)

is the momentum state wave function.
In Sec. VI, we shall plot some typical ) (g

~
a)

~
as a

function of 1 l
dx exp —p x

q'=—v'2'/coai and p'—=P2Acoa2,

where q' and p' are analogs of classical q and p.
Under the resonance condition described in (3.4),

2M=M/N,

(4.18)

(4.19)

X (q —x/2
~
g) (f

~
q+x/2) .

(4.25)

with NM =even, the eigenstate wave function obeys

0 +N=e "0m (4.20)

mee'mo;

It is straightforward to show that

(m+N ~a+iM/v'2%co)=e ' (m ~a) . (4.21)

Substituting (4.19) and (4.20) into (4.1S), we have

(p ~

a+iM/v'2%co)

=g(y~m+N)(m+X ~a+cM/v'2+ &

It is easy to see that g& is always real. The Wigner func-
tion contains both parameters p and q, which provides a
natural association with the classical system. We can also
express the Wigner function in terms of the momentum-
space wave function, and obtain a similar expression.

We cannot directly interpret 1(ii as a probability distri-
bution. Even though gs is real, it is not always positive.
Indeed, if the original wave function is localized in x, the
Wigner function is oscillatory in sign. We wish to have
an alternative expression which is both positive-definite
and having a proper classical limit. A properly coarse-
grained Wigner function appears to be the solution.

To introduce the coarse graining, we need to consider
two Wigner functions gs and Ps with

i(a —a &MW24v)
&

Hence, for an eigenstate (P ~, we have

+ M/&2a ) [
'=

J (y ~
a &

~

' .

(4.22) 1 l
Pg (q,p)= dx exp —p x

2M

X(q- /2~4&&y~q+ /2&.

Note that the displacement a~a+iM /&2%co corre-
sponds to Then, it is easy to show that

(4.26)



SHAU-SIN CHANG AND KANG-JIE SHI

P 9 w i~P w q~p

= 1

2' f dxdx'diidqe ' "' '" "'&q+«/2~&&&It ~q x—/2&&q —x'/2~&&&p~q+x'/2&

f dx d«'dq 2~(» «—') &q+»210& &@ I q «—2& &q «—'/2
I 0& &4{q+»'/2&27'

= f dx dq(q+x/2
~ f) (P

~ q —x/2) (q —x/2 { P) (P { q+x/2) . (4.27)

In terms of

g=q +x/2p 7/=q —x/2,
we obtain

Jp 9 w 9'~P w Q~P

= f dkdri&414&&414&&fl ri&&n I 0&

= I&~i ~&{',

(4.28)

(4.29)

which is always positive. If we choose p as a physical
state localized at (p', q'), then, we call (4.29) a coarse-
graincd Wigner function. It describes a Wigner function
P~ coarse grained by the state P. We shall use (p', q') as
its new momentum and coordinate labels.

In this paper, we choose the localized state P as the
coherent state centered at (p', q'). The position-space
wave functions are given in (4.5a) and (4.12). The relation
between p', q' and ai, nz are described by (4.18). The
coarse-grained Wigner function of any

~ P ) by the
coherent state g~ is precisely the coherent-state amplitude
squared, { (P

~
a) {

I, described in Sec. IV A.

I

N-cycle orbit as follows: First we ignore temporarily
(mod 1) in Eq. (5.2) and let q vary from —00 to oo. If
during N iterations the value of q changes by M, then, we
define the winding number 10 =I/N, a rational. We de-
fine an orbit with an irrational winding number as the
limit of a sequence of orbits with rational winding num-
bers. For most fixed irrational numbers and for a suffi-
ciently small k, KAM theorem tells us that such an orbit
exists in the form of a continuous curve. This curve
wraps around the q direction and is known as a horizontal
KAM curve. If we iterate a point on this KAM curve N
times, and denote qz —qo as M, the ratio M/N ap-
proaches the given irrational number as N~ ao. [See Fig.
3(b).]

(iii) As the control parameter k in Eq. (5.1) increases,
many of the horizontal KAM curves disappear. At
k =k, =0.971635. . . , the last horizontal KAM curves
begin to disappear. These last KAM curves have the
winding numbers

t, = =0.618034
vs —1

2
(5.3a)

V. NUMERICAL RESULTS
w2 ——1 —mi ——0.381966 . (5.3b)

A. Classical Chirikov map

The classical Chirikov map is described by

k
p„+1——p„+ sin(2Irq„),

2m

q„+1——q„+p„+I(mod1) .

(5.1)

(5.2)

This map has been studied thoroughly by Chirikov,
Greene, and others. ' We refer the readers to the above
references for details. We wish to point out a few impor-
tant features relevant to our discussions.

(i) For k =0, the nature of the orbit is determined com-
pletely by p. If p =M/N is a rational number with M
aIld N bclilg rcital vl cyprlmc, thcll, aIly 11lltlal polllt (p, q)
leads to an X cycle under iterations. If p is an irrational
number, then, any initial point (p, q) leads to a continuous
horizontal line. [See Fig. 3(a).]

(ii) For k&0, we introduce a winding number w of an

In this section, we study the eigenstates associated with
the quantum Chirikov map for rational 2IrIII. We begin
with a quick review of the classical Chirikov map. We
then present the results of pseudoenergies and eigenstates
for the quantum system. We describe the eigenstates in
the coherent-state representation.

For k g k„the momentum p is bounded by these KAM
curves, and cannot change by more than one under any
number of iterations. However, for k ~ k„pcan increase
or decrease indefinitely. [See Fig. 3(c).]

(iv) There are additional cycles and KAM curves
around elliptical fixed points and cycles such as p =0,
q = —,, and p = —, , q =0, and —,. These KAM curves per-
sist beyond k, . However, at sufficiently large k, most of
these KAM curves also disappear. The iteration of a sin-
gle point can generate points all over the pq plane. [See
Figs. 3(d)—3(f).]

B. Pseudoenerlies

We consider the quantum Chirikov map with a rational
2mri

(5.4)

We choose NM =even. The X)&X matrix is given in
(3.24),

U(a)~ =—exp[ i 2&s 1+i (—s' s)a/N]—

X g exp {i 2Ir(s' s)j /N i—z cos[(2I—rj +a )/N] J,

(5.5)
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FIG. 3. The invariant trajectories generated by the iterations of Chiril{:ov map from a small number of initial points. These graphs
all plotted in the region 0(q (1,0(p ( l. If p ~ 1, we plot [q, p(mod I)]. The parameter k associated with these graphs are {a)
k =0, (b) k =O.S, (c) k =1, (d) k =2, {e) k =S, and (f) k =10. Several initial points are needed to generate (c). However, a single

point is sufficient to produce (f).
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z =k/(4HA) . (5.6)

For simple cases such as N =2 or 4, we can find the
eigenvalues analytically. However, for a large E, this is
not always feasible. We only present the numerical results
here.

The eigenvalues of U(a) are of the form e '~"' where
co(a) is the pseudoenergy. For 2M=M/N, there are N
eigenvalues for each a. The variation of co as a function
of a gives rise to the energy band. In Fig. 4, we plot co's

as functions of a for a fixed 2irti= —,', but for several dif-

ferent values of k. At k & 1 [Fig. 4(a)], there are practi-
cally no a dependences. At k =5 [Fig. 4(b)], there are
significant a dependences which lead to a (barely} non-
overlapping band structure. At k =10 [Fig. 4(c)], the
bands definitely overlap.

In Fig. S, we illustrate how the pseudoenergies ~ vary
as functions of a for equivalent fractions. All graphs in
Fig. 5 have k =10 and the same 2m% represented by dif-
ferent reducible fractions. In graphs (a), (b), and (c), they
are represented by (2+iri=) —,', —,', and —,'. We can obtain
Figs. 5(b) and 5(c) from 5(a) by cutting the graph 5(a) into
two or three parts, and then overlay these parts on top of
each other. These graphs always give the same band
structure.

In Fig. 6, we plot the pseudoenergies as functions of k
for 2mB= —,', and for a =0 and 0.382. At a =0 [Fig.
6(a}], the parity is a good quantum number. The trajec-
tories with different parity can cross each other. Howev-
er, for a =0.382, no such crossings are observed. '

In Fig. 7, we illustrate the pseudoenergies as functions
of a (band structures} for 2mb being several of the Fi-
bonacci ratios, —,', —,', —,', —,', . We have chosen not to plot

0.6

O6
0

(c)

(c)

FIG. 4. Pseudoenergies as functions of a for 2M= —,, and

for several values of k. The parameters used are (a) k =1, (b)
k =5, and (c) k = 10.

FIG. 5. Pseudoenergies as functions of parameter a for
k =10, and for different fractional representations of 2'.
These fractions are (a) —,', (b) ~, and (c) 6 .
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C. Coherent-state pictures

Using (4.15) and (4.16), we can express any state in the
coherent-state representation. As we have shown in Sec.
IV and in the Appendix, when (2M) is an even integer,
the coherent-state amplitude squared, ) {P ~

a) ), for an
eigenstate (P

~

is periodic in p with periodicity l. When
(2M) ' is an odd integer, the period in p is 2. For the
general case 2M=M/N, the periodicity is M when MN
1s cvcn, and 234 when MN 1s odd. In th1s scctloQ, wc coIl-
centrate on the simple case when (2M) ' is an integer.

As discussed in Sec. IV, the coherent-state representa-
tion is a coarsely-grained Wigner function. We first begin
with a Wigner function without coarse graining. In Fig.
8(a}, we plot the Wigner function for a eigenstate at
(2irR) '=10. This eigenstate corresponds to the classical
fixed point at (p =0, q = —, ). Because of the periodicity
in p and q, the Wigner function is represented by 2N X 2N
5 functions. The coefficients of these 5 functions can be
both positive and negative. If we increase N, we en-

counter more 5 functions which do not make it any
smoother.

In Fig. 8(b), we plot the same eigenstate in the
coherent-state representation. This is equivalent to
averaging the 5 functions in Fig. 8(a) by Gaussians. Note
that the 5 functions in the center region and in the four
corners of Fig. 8(a) have alternative signs on even and odd
lattice sites. They are practically averaged out to zero in

Fig. 8(b). Only those regions of Fig. 8(a) whose 5 func-

tions on even and odd sites have the same sign contribute.
As we increase N, we arrive at a structure which is very
close to a classical invariant orbit. In other words, coarse
grainings are crucial for achieving smoother transitions to
classical results. ' '

In Fig. 9 we compare analogous eigenstates with the
same k =1 and 2M= —,', , but with different a. We find
that their coherent-state pictures are practically indistin-
guishable. As we increase N, the distinction in different a
becomes even smaller.

For an odd integer X, we expect the coherent-state
graph has a period 2 in p. We plot a few eigenstates in
Fig. 10 to illustrate this behavior. For 2irirt=M/N, the
natural periodicity of the eigenstate is M in variable p if
NM is even, and is 2M in variable p if MN is odd. In
Figs. 10(a} and 10(b), 2m'= —,', = ~, the natural periodici-
ty in p is 1. Thus, we see the repetition as

p
varies from 0

to 2. In Figs. 10(c) and 10(d), 2M= —„,the natural
periodicity in p is 2. In Figs. 10(e) and 10(f), we have
2m%'= —,', = —,', . Since both 1 and 35 are odd numbers, the
natural periodicity of the eigenstate is again 2, as shown

FIG. 8. %'igner functions and the coarsely-grained %igner
function for an eigenstate with k =1, 2m'= —,'0, a =0. (a) The

full %'igner function with spikes representing 5 functions. (1)
After coarse-graining the %igner function in (a}, we obtain this
coherent-state

~ f ~

~ picture.

FIG. 9. The a dependence as appeared in the quantum eigen-
states

~ g~ in the coherent-state representation. The parame-
ters used are k =1, 2m%= ~, and (a) a =0, (b) a =0.372, and

(c) a =0.5.
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FIG. 11. The quantum eigenstate
~ f ~

~ in the coherent-state representation. Each of the eigenstates is closely related to a KAM

curve or other classical orbits generated by appropriate initial points in Fig. 3(c). The parameters used are k =1, 2M=, O, , and

a =O.

the quantum system are related to the stochasticity of a
classical system. In particular, the level fluctuations of a
chaotic quantum system may follow that of the Gaussian
ensemble of random matrices. ' This random matrix
description also leads to the avoided level crossings (level
repulsions) as one varies the interaction strength. Recent-
ly, Izrailev studied extensively the quasienergy level statis-

ties for quantum Chirikov map. At k =0, the level dis-
tribution obeys Poisson distribution which describes an in-
dependent level distribution. For very large k, the level
distribution indeed resembles that of Gaussian ensemble
of random unitary matrices. Other indications of quan-
tum chaos include nonvanishing of quantum Kolmogorov
entropy, erratic nodal pattern, and vanishing of spatial
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We consider the general situation

(A5)

where M/N is irreducible, and n is an integer common
factor. We begin with the simple case of n =2,
MN =odd.

uIPI+uzkz=e

u241 ul((I e 02

From QI and pz, we can construct

(A15a)

(A15b)

(A16)

U(a)~ = -2ialU..+2We (A6)

Note that we have chosen the phase in (A6) as e
From {A2) and (A6), we obtain

Us+~, g +x = —U~
—2iag T

Us+N, s' e ~s,s'+N

(A7}

(A8}

for 1 &s,s' &N. We can express these 2N X2N matrices
in tlmns of block matrices as

U{a)=
e Q

—ia—8 Q2 —Q1
(A9)

where uI and u2 are NXN matrices. The unitary condi-
tion

1. n =2, MN =odd

In analogy to (3.11), we construct from U~ ~ a set of
2NX2N unitary matrices U(a)„,1&s,s'&2N, as fol-
lows:

It is straightforward to show that P+ are eigenstates of the
NXN unitary matrices u Q+ and u+Q

(u u+ )((t+ =e

(u+u )P =e
(A17a)

(A17b)

u+P+ =e

u P =e '"P+ .

(A18a)

(A18b)

As mentioned in Sec. IV, another important conse-
quence of 2M=M/N with odd M and N is that the
coherent state (amplitude} has a natural period 2M in
variable p instead of the usual period M when
MX =even.

The converse is also true. From the N XN unitary ma-
trices u u+ and u+u, we can construct via (A17) the
eigenvalues e ' "and the eigenvectors P+. From these
P+, we can construct P(a), and consequently eigensolu-
tions to the original 00 X ao unitary matrix U . Note
that P+ and (() are simply related by

I 0
U (a)U(a)= ()

leads to

(A10) 2. MN =even, arbitrary n

For the present case

Q 1Q1+Q2Q2 =I ~

Q &Q2+Q2Q1=0 .

Equation (A9) implies that both

2mfi=nM/(nM), MN =even,

(Al lb) we consider an nN XnN finite unitary matrix

U{a) = g U;s+nINe
'""

(A12a)
wit

(A19)

(A20)

1 4$,$ CnX .
(A12b)

The U~ obeys
are N XN unitary matrices. We also decompose the 2N-
component eigenvector P(a)„1& s & 2N, as the direct sum
of two N-colllpollellt vectors (()I and e

U(a}, , = U(a) ~ . (A22)

When either s +N or s'+N becomes larger than nN, we
have

(A13} U(a), ~„N,=e i™U(a)~, (A23a)

The eigenequation
U(a), , +„N el™U(——)~a (A23b)

leads to

(A14)
Using (A22) and (A23), we can express this nN XnN ma-
trix U into a block matrix made of n & n submatrices,

8 Q2

e Q2 e Q3
-itn -1)a -i(n -2)a

4

e 2laQ
3

8 Q2

~i (,n —1)aQ

&i (,n —2)a
Qn —1

(A24)



34 EVOLUTION AND EXACT EIGENSTATES OF A RESONANT. . .

where each submatrix u; is an N X1))' matrix. The condi-
tion that U is unitary implies

We can reduce the eigenvalue problem of V to that of
diagonalizing N)&N matrices as follows. We define an
N )&X matrix

g ur+kur=4of ~ (A25)

where I is the X)&X identity matrix, and the index r in

u, is treated cyclically,

u(8)—:g u, e
r=l

with 0 obeying

i88

(A30)

(A31)
up+a =up, uJg+p =up

It is easy to see that U is a unitary transformation of a
simpler matrix V,

U=a'VS, (A27)

l.et P(8) be the eigenstate of u (8),

u(8)P(8)=e '"' '(()(8) .

Then, the eigenstate of V and U for the same eigenvalue
e t~('8) are

u2 u3

un —1

u)

—8

e —2i8

e
—in8

P(8), (A33)

ia 0 0

(A29)

8
—i (,8+a)

e
—2i (8+a)

e
—in (8+a)

(()(8), (A34)

0 0

From (A27), we can obtain an eigenstate of U from an
eigenstate of V. The two matrices have the same eigen-
values.

respectively.
We can generalize our reduction method straightfor-

wardly to cover the remaining case of MN =odd and
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