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We report studies of Nusselt number N versus Rayleigh number R for a normal liquid *He-*He
mixture with *He mass concentration ¢ =0.038, confined in cylindrical containers with aspect ra-
tios, I' (radius/height) of 5.5=<I'<10.2. These data were obtained for separation ratios y of
—0.2Sy<0.1. For y>0, the data are consistent with predictions that the slope RdN/dR is
small just above the onset of convection and then increases with R. For y=0, N is a concave

function of R with N«(R — R)'2.

Contrary to predictions for a horizontally infinite layer, no

oscillations at onset were found for y <0. Above the onset of convection when y <0, we ob-
served additional transitions which are beyond the scope of current theory.

Rayleigh-Benard convection in a pure fluid has received
considerable attention because it provides a useful system
for testing theories of nonlinear dynamics.!?> Recently,
there has been interest in the corresponding problem in a
binary mixture.>~! A number of phenomena which do not
apply to a pure fluid are predicted®=® to occur in a binary
mixture; these phenomena include an analog to a thermo-
dynamic tricritical point and a codimension-two bifurca-
tion. Both mixtures in a porous medium and unconfined
or bulk mixtures are predicted to show these features.
Here, we report a test of these predictions by means of
heat-transport measurements on bulk convecting layers.
The fluid was a normal *He-*He mixture with a *He mass
concentration of ¢ =0.038. Although we find some quali-
tative agreement with theory, there remain important
differences between our measurements and recent predic-
tions.® In addition, we have found a set of transitions
occurring after the onset of convection which are beyond
the scope of recent theory.

In the normal phase, where the temperature 7 is greater
than the superfluid temperature 7, (c), a *He-*He mixture
is a Newtonian fluid. During the present experiments, a
normal mixture layer was confined by cylindrical sidewalls
in an apparatus'' which allowed us to vary in situ the as-
pect ratio I' =§/2d, with & the diameter and d the height of
the layer. Several other parameters describe the flow
state,® among them the Rayleigh number R =p,gd>AT/
kv, the separation ratio y = —krB,/T B, the Lewis num-
ber L =D/x, and the Prandtl number P =v/k. These
quantities are formed from By=—p ' (8p/8T)p.; B2
=—p~'(3p/dc)p r;v, the kinematic viscosity; x, the
thermal diffusivity; D, the mass diffusion coefficient; and
kr, the thermal diffusion ratio.'? Here, g is the accelera-
tion of gravity, and AT is the temperature difference
across the layer. We present our heat-transport measure-
ments in the form of a Nusselt number, N. N is defined as
the actual heat-flux Q carried by the layer normalized by
the heat flux needed to sustain the same R in the absence
of convection.

The Lewis and Prandt! numbers vary relatively slowly
with 7 and ¢, except near T,.'? In these experiments
P =0.63, and L varies between 3x10~2 and 51072, The
quantities contained in y vary significantly and have high
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uncertainties near 7,.!> Near 7,+0.1 K we expect that
kr=w=0. For temperatures higher than this, y> 0; for
lower temperatures y <0, and y approaches —oo for T
approaching 7;,+0.01 K from above. In the present work,
the mean temperature is varied near the point where y is
expected to be zero, and the experiments included the
range —0.25y<0.1.

When a mixture layer is heated from below, as in the
present experiments, several phenomena are predicted®~®
to occur near the onset of convection, depending on the
value of y. If the equations of motion are linearized about
the purely conductive state, two types of instabilities may
occur: one to a steady convective state with a critical Ray-
leigh number R, and the other to an oscillatory convec-
tive state with a critical Rayleigh number R,,. R¢ < R
when y < ypc <O0; the reverse is true when y > yp.. The
two curves Re(y) and Re,(y) intersect at yp, the po-
lycritical value of . This intersection yields a
codimension-two bifurcation point,G’14 and a number of in-
teresting phenomena are predicted to occur in its vicinity.
The bifurcation to stationary convection is predicted to
change from a forward to a backward bifurcation at y,,
with y,c <y, <0, and at y, a hydrodynamic analog of a
tricritical point®7 is to occur.

We note that many theoretical predictions, in particular
those regarding the tricritical point and codimension-two
phenomena, have been obtained using boundary conditions
(such as slip boundaries) at the horizontal surfaces which
simplify calculations, but do not rigorously apply to experi-
ments.'> The effects of using unphysical boundary condi-
tions are not easily determined, in general, but an indica-
tion can be obtained by comparing values of R obtained
using rigid boundary conditions versus the slip conditions
often imposed in the calculations. For example, when
v =0, rigid boundary conditions applied to a horizontally
infinite bulk layer yield R, =1708, whereas the slip condi-
tions yield R, =658. These two results differ by a factor
of 2.6.

Although calculations using slip boundry conditions are
not quantitatively applicable to experiments, they provide
a framework for discussing laboratory results. One such
calculation by Brand, Hohenberg, and Steinberg® (BHS)
which is wuseful here is that for bulk mixtures
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y,=—L3(+L+L?>+L?. For L=0.04, as in our ex-
periments, y, for this prediction is quite close to zero:
v, =—6x10"°. BHS® also predict ¥y for slip boundary
conditions:'? Ype=—L*(1+P)/IL2+L)(1+P)+P].
For L =0.04 and P =0.63, this yields yp.=—3.7x1073.
Again using slip boundary conditions, BHS® predict that
just above the onset of steady convection /V should vary to
lowest order in £, =(R —R)/R¢, as N =1+ N g, with

Nis=20—y/y, —yL™)/U0—yly,) . )

This result is to hold, provided that the stationary instabili-
ty leads to a forward bifurcation. Equation (1) is the re-
sult of a relation for the convective amplitude'® B:
B=¢,B—aB*—bB>, in the long time limit when
B =dB/dt — 0, and under the conditions a,b > 0, with b
negligible. At y=y,, a =0, and the b term must be in-
cluded. The quantity NV —1 is proportional to the steady-
state value of B2 so that well above y,, N — l g, but for
wi, N —lag!’2 As y, is approached from above, the slope
of the Nusselt curve diverges. Equation (1) implies that
for — y/w,> 1, a situation which hold for v > 0, excluding
perhaps a narrow band near y =0, N;=2L (0.1 for our
experiments). Calculations using a five-mode model' in-
dicate, for w> y, (except very near y,) and small L, that
the Nusselt number will qualitatively change from the re-
sult of Eq. (1) as R is increased above R . As in Fig.
1(b), when R exceeds

Ro,=0+y(+L DIR=R(y=0) , (2

the Nusselt number increases much more rapidly with R
than Eq. (1) indicates, and to within corrections of O (L),
N =RdN /dR approaches y-independent values. When
v =0, the Nusselt number will be that of a pure fluid.

A summary of the predictions discussed above includes
(1) oscillatory convection at onset for y<—4x1073; (2) a
weak initial rise in /V, starting at R, for positive y not too
close to zero; (3) an approach of the slope V| to a value
which is y independent with corrections of O (L), above
R, and for the same y’s as (2); (4) tricritical behavior in
the very narrow range —6x 10~ °>Sy <0, where the slope
of the Nusselt number varies from infinity to its pure-fluid
value. Of these expectations, (2) and to a certain extent
(3) are observed in these experiments. Given the small
range over which tricritical behavior is predicted for L
small, it is questionable whether (4) is experimentally
detectable in liquid helium. In the following paragraphs
we detail our observations.

We present in Figs. 1(a) and 2 the Nusselt number N as
a function of R. Figs. 1(a) and 2 have I'=8.56 and a
number of different values of 7, the mean temperature of
the layer. Values of y cannot be assigned with great accu-
racy.!> However, we estimate that for w>0, dy/dT
=3x10"* (mK) ~!, and we assume, as discussed below,
that y=0 for the temperature T, with T, — T, =86.9
mK.

We obtained these Nusselt data by increasing the heat
flux Q in small steps starting below Q., the value of Q at
the onset of convection. Typical step sizes are 0.015Q,.
Between steps the system was allowed to equilibrate, a
process which required up to 20 thermal diffusion times
t, =d?*/x in the vicinity of a transition. The values of R

1 v T
1 LI I P
)
-
[RE 3 = (0) o
L7 d
2
ab
ade
o o
110 |~ ,-:: -1
a4y
[ ‘A.
",
N . :o
Si
« &
1.OS P~ o Ao -
Si
- A‘ °
"‘. ‘AA .
/ &yt
1.00is s mencens P ieoh o™ ®
1 1 1 1 | 1
08 Lo 12
R/Re,

T T 1 | |

LIS

LIO

.05

.00

0.8 1.0

FIG. 1. (a) Values of the Nusselt number N vs R/R., for a
3He mass concentration ¢ =0.038 and I"=8.56. Different sym-
bols correspond to different values of T and, hence, different
values of y. They are the following: squares, 7 — T, =187.0
mK; triangles, T — 7T, =109.6 mK; circles, T —7,=91.2 mK.
The estimated values of y for these temperatures are 3.0x1072,
6.8%1073, and 1.3x1073, respectively. (b) Model calculations
(see main text and Ref. 17) showing N vs R/R, for L =0.04
and the estimated y’s of (a). Specifically, from left to right the
curves correspond to y=3.0x10"2 6.8x1073 and 1.3x1073,
respectively.

throughout this work have been presented in the form
R/Rp, where R, for each y has been chosen so that the
experimental Nusselt numbers resemble model calcula-
tions,!” as in Fig. 1(b). For Fig. 1(b) we have used the
five-mode model to calculate the Nusselt number for the
same values of y as those which we estimate for the data
of Fig. 1(a). However, unlike the five-mode model, the ex-
perimental results V(R ) become increasingly concave as
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T approaches T, from above. At T, the data can be fit-
ted to the form N — 1 =(g/f)%3 with f =4.68, as shown in
Fig. 2(a). That N(R) is found to be concave is somewhat
surprising, since the model calculations indicate that con-
cave behavior should occur over only an extremely narrow
range of operating temperatures for the values of L typical
of our experiments. Thus, if the system were to undergo a
transition from pure-fluid-like behavior to tricritical
behavior as y goes from 0 to —6x107°, N(R) would be
concave over a range of operating temperatures less than
0.2 mK wide. This conclusion is based on our estimate
that near y =0, d y/dT=3%10"* (mK) ~'.

If y is made more negative than the value yy of y at T,
as, for example, in Fig. 2(b), the first visible transition is a
backward bifurcation. This transition, which corresponds
to the lowest arrow in Fig. 2(b) is also signaled by long re-
laxation times. The hysteresis at the transition is quite
small, about 0.1% of AT, and does not increase with de-
creasing .

Time-dependent flow first occurs at the upper terminus
of the Nusselt curves of Figs. 1(a) and 2. This time depen-
dence is in many ways similar to what we have observed in
pure *He confined in cylindrical containers'! and is associ-
ated with a secondary instability (skewed varicose instabil-
ity in a pure fluid). It is striking that we do not observe os-
cillations at onset which are expected for values of
y<—L?*=—2x10"3. Indeed, for y as low as —0.2, no
oscillations were seen at the onset of convection. In this
regard, we note that Rehberg and Ahlers'® have recently
reported results on convection in a *He-*He mixture con-
fined in a rectangular layer of a porous medium which
showed periodic flow and behavior consistent with a
codimension-two bifurcation.® The temperature resolution

[ T T T T ] "_ T T a
125 (O) (b) {I
120 1t —> 4
115 |- 1t ‘f~

- A
N :
110} 4k “ |
>,
I
2
2
105 4t 4
{
f] "»>[
| lplnul,/; , —,,—..p.“.‘.‘.k .
08 1.0 12 o8 10
R/Rep

FIG. 2. Values of N vs R/R., for ¢ =0.38 and I'=8.56. (a)
Data for Tx with Tx — T, =86.9 mK; the solid curve satisfies
N —1=(£,/4.86)%5. (b) Data for a temperature less than Tx:
T —T,=47.2 mK (y=—0.2). The filled circles in (b) corre-
spond to increasing heat flux and the filled triangles correspond
to decreasing heat flux. The arrows indicate transition points.

in both the experiments of Rehberg and Ahlers and our
own is comparable. If periodic flow existed with a similar
amplitude in our experiments we would have observed it.
Ahlers and Rehberg'® have made subsequent measure-
ments on bulk *He-*He mixtures confined in a rectangular
geometry. They too find that there is no Hopf bifurcation
in the vicinity of the expected polycritical value of v, al-
though they do see oscillations at the onset of convection
for y < —0.015. It is interesting that these experimenters
see behavior for y near zero which resembles non-
Boussinesq convection in a pure fluid.

For v <y, we see a number of secondary transitions
above the onset of convection which are beyond the scope
of present theory. Some of these are clearly hysteretic; in
other cases the presence of hysteresis is not so strongly es-
tablished. The transition marked by the second to lowest
arrow in Fig. 2(b) first occurs at a value of y, which is just
slightly less than y,. The last transition before the onset
of time-dependence when y < y, typically is hysteretic, is
followed at higher IV by a section of nearly infinite slope,
and then a section of relatively smaller slope.

It is interesting to see if the critical Raleigh numbers
which we obtain experimentally for y > y, are in agree-
ment with relevant predictions. In Fig. 3 we compare ex-
perimental values of R, defined by the start of the initial
rise of N (R), and experimental values of R, with predic-
tions>® for R, which apply for rigid boundaries and a hor-
izontally infinite layer. We also show experimental values
of the critical Rayleigh number for y < y,. For the pur-
pose of comparing to theory, we assume that the value of y
at Ty is zero. At T, we find an onset Rayleigh number of
1.4%x10°+0.4x10% in acceptable agreement with the ex-
pected value 1708. We have then uniformly normalized
our values of R to yield 1708 at 7 — T, =86.9 mK in or-
der to remove most of the systematic uncertainty associat-
ed with the parameters By, d, v, and x contained in R. A
comparison of our data and calculations for R at larger
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FIG. 3. Critical values of R as a function of 7 — T',. The tem-
perature Tx with Tx —7,=86.9 mK lies at the cross. For
T — T less than this value, the onset to convection occurs as a
discontinuous transition. Values of R which are predicted for
rigid boundaries are shown as a solid line, using the best estimate
of y. Experimental values of R, (filled circles) and R (filled
squares) have been normalized by a common factor so that
Ryp=R=1708 at T — T, =86.9 mK.
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values of y is difficult because for the small y’s involved,
the uncertainties in v are at least 100%;'* experimental
data for the parameters in y extend up to 7 — T, =100
mK at best, and errors in y are amplified by factors of
L ! in the expressions for R.;. With this caveat, we show
as a solid line the calculated values of R vs T based on
our estimates of y; the temperature 7 — T, =86.9 mK is
indicated by the cross. We find that the temperature vari-
ation of the experimental determinations of R, is in ac-
ceptable agreement with predictions. Results for Rp
shown in Fig. 3 are also interesting. The values we show in
Fig. 3 were obtained by requiring qualitative agreement
between the five-mode model and the data. Our results for
R, tend to decrease with y, in contrast to model results,
but we do not see this as a major problem in light of the
limited nature of the model.

We have made additional measurements at other aspect
ratios in order to test for the possibility of non-Boussinesq
effects. That is, we wanted to see if variations of the fluid
properties throughout the layer could affect the resulting
flow. This is particularly important because typical exper-
imental temperature differences across a layer may often
be large enough that the accompanying variations in y
may be comparable to |y, | and/or |y, |. This applies to
both the present experiments and those of Refs. 10 and 18.
It is possible to test experimentally for departures from the
Boussinesq approximation by performing measurements
on layers of different heights 4. The value of AT at onset
varies as d ~3, when all other parameters are unchanged.
If d is decreased, any departure from the Boussinesq ap-
proximation will grow. In the present experiments we
could vary d at fixed 8, hence changing I'. We made addi-
tional measurements with I'=5.51 and I'=10.16, so that
AT at onset varied by a factor of about 6.3. These mea-
surements reproduced the same features found for
I' =8.56, and non-Boussinesq effects were not detected.

Previous experiments by Lee, Lucas, and Tyler’ have
been made on bulk *He-*He mixtures in cylindrical con-
tainers. These authors reported results for critical values
of R, but they did not present results for the Nusselt num-
ber, and consequently they did not report any of the
behavior which we observe.

To conclude, we note that these experiments have shown
qualitative similarities to predictions, but also some differ-
ences. The data for y> 0 show the weak initial rise ex-
pected near the onset of convection and a qualitative
resemblance to calculations. However, for y=0, NV is a
concave function of R over a much broader range of y
than in model calculations. We have not observed the
predicted oscillations at the onset of convection for y <O.
Experiments'® made on a similar mixture contained in a
rectangular geometry are significantly different from ours.
This result is surprising because in pure *He flow the onset
of convection, as manifested in heat-flow experiments, is
not particularly sensitive to differences between cylindircal
and rectangular geometry. Several theoretical and experi-
mental issues must be confronted if this puzzle is to be
solved. These issues include an understanding of the effect
of variations of y throughout the layer, a knowledge of the
patterns formed by the convection rolls with their relation
to the sidewall geometry, better data for the fluid parame-
ters, particularly y, and an understanding of the effect of
nonslip boundaries on calculations.
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