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Degenerate four-wave mixing is examined for arbitrarily strong pump field interactions using a
liquid suspension of Brownian microparticles as the active medium. It is sho~n that pump-

generated interactions act to modulate the field-induced translational particle gratings in a novel

way ~hich greatly modifies both the steady-state and the transient properties of such media. Of
particular interest is the fact that four-wave mixing in suspensions is radially different for the case
of an attractive versus repulsive electrostrictive coupling between the microparticles and the pump
radiation.

The macroscopic electrodynamics of liquid suspensions
of microparticles has long been of interest to the physics
community. ' Of particular interest to us is their use as
active media to produce phase-conjugate radiation via de-
generate four-wave mixing, s For media composed of
liquid suspensions of microspheres, electrostrictive forces
redistribute the particle density in such a way that two
orthogonal translational gratings are created. Coherent
scattering of pump radiation from these gratings gives rise
to the formation of the conjugate wave. A key feature of
this process is that translational gratings arising from the
interaction of the microparticles with the pump radiation
alone play no direct role in phase conjugation. Neverthe-
less, in this Rapid Communication„we demonstrate that if
the pump beams are sufficiently intense, these gratings can
vastly alter the four-wave mixing characteristics of the
suspension through a nonlinear modulation of the orthogo-
nal gratings. Specifically, the pump-generated grating
beats with and modulates the gratings formed by the pump
and probe beams to produce two additional gratings that
can generate phase-conjugate radiation. This feature of
grating electrodynamics gives rise to a rather novel
behavior of the four-wave mixing coefficient tr and of the
nonequilibrium statistical mechanics of the suspension.
Depending on the sign of the particle-field electrostrictive
coupling constant, these additional gratings can either
emit in or out of phase with respect to the original grat-
ings. Specifically, if the gratings emit out of phase, the
four-wave mixing coefficient asymptotically approaches a
value that is independent of pump intensity. However, if
the gratings emit in phase, the four-wave mixing coeffi-
cient asymptotically exhibits a linear dependence on pump
intensity and in fact approaches a value that is twice the
weak-field form. The transient behavior of the suspension
is also significantly modified by the formation of intense
pump gratings. Response times for grating formation in
the weak-field regime are set by A /D, where D is the dif-
fusion constant for particles in the suspension, and A is the
grating spacing. In general, there are two spacings for the
orthogonal gratings and therefore two grating response
times in this regime. %e find, however, that if the pump
radiation is sufficiently intense, there is only one grating

response time and this is a consequence of the locking, via
modulation with the pump grating, of these two additional
gratings. Furthermore, if the electrostrictive coupling be-
tween the pump and the microparticles is attractive, the
gratings that emit conjugate waves are formed on a much
shorter time scale than A2/D, even in the limit of an arbi-
trarily weak probe wave. Alternatively, if the coupling is
repulsive, these gratings are created predominantly by par-
ticle diffusion, and steady-state conjugate radiation ap-
pears on a time scale set by A2/D. We refer to this class of
phenomena as pump grating modulation effects.

To understand the origin of pump grating modulation
effects, consider the interaction of a collection of identical
microspheres, with two intense counterpropagating pump
waves, E~ cos(K r —tat ) and E2cos(K r+ rot ), and a
weak probe beam, s~(r, t) = ,' F~e't0' "'1+c—.c. Then,
the electrostrictive coupling between the radiation fields
and microparticles is

U(r) —,' a(ro) —g(E; E,'. )expl. i(K; —K, ) rj+c.c. ,
fWJ

= —,
' g U;, cos[(K;—K, ) rl Uocos(2K r) + SU(r).

Here, Uocos(2K r) is the electrostrictive coupling be-
tween the microparticles and the pump beams, BU(r) is
the coupling between a pump beam, the particles and ei-
ther the probe or conjugate wave. The coupling between
the particles and the probe and conjugate waves is neglect-
ed. In Eq. (1), U;, is an electrostrictive coupling constant
and a(ro) is the polarizability of a given microparticle.
The grating pattern defined by Eq. (I) orders the micro-
particles such that in steady state the particle density n (r)
is given by the Maxwell-Boltzmann distribution.

If we limit the analysis to situations in which the probe
wave is weak, the electrostrictive coupling between the mi-
eroparticles and the pump and probe ~aves can be treated
with first-order perturbation theory. However, the in-
teraction between the microparticles and the pump waves
alone is large and must be treated exactly. Accordingly,
we may write the steady-state distribution as, with no the
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microparticle density in the absence of radiation,

I II(vo/kgT)
n (r) -no 1+2 g ( —1)' cos(2I K r)

av(r)
kBT

where Ii(z ) is the 1th order modified Bessel of argument
z.6 The first bracketed term on the right-hand side of Eq.
(2) represents spatial gratings of spacing Al x/l ( I(:

~
due

to the electrostrictive interaction between the microparti-

cles and the pump radiation alone. The strength of each
grating is of order II(UO/kg T)/Io(UO/kgT), so that grat-
ings of order I (Uo/k~T are substantially occupied. Note
that a single microparticle can reside in more than one
grating, a fact that greatly influences the strong-field
behavior of these media.

An examination of Eq. (2) reveals that two sets of terms
contribute to phase conjugation. These are the terms con-
tributing to only that part of the density distribution which
varies spatially as K+'Q. The first of these, which we
denote by bn~(r), consists of particles which are in the
gratings set up by the probe or conjugate wave and one of
the pump beams:

bn((r) - no-av(r)
kgT

no Re[E~ E'exp[i(K-Q) r]+E2 E*exp[ i (—K+Q) r]
a(co)
2k' T P

+E~ E,'exp[i(K+Q) r]+E2 E;exp[ —i(K —Q) r]], (3)

where the conjugate wave e, (r, t ) —,E, exp[ —i (Q r+ rot )]+c.c. Equation (3) describes the gratings which exist in the
weak pump field regime. At higher pump intensities the I 1 term in Eq. (2) introduces the second set of translational
gratings which contribute to phase conjugation:

I i (Vo/ka T ) bU(r)BII2(l) 2 llo cos(2((.' I))
I)(UO/kgT) g(r0)no— , Re[E~E'exp[ —i(K+Q) r]+E2E'expb(K —Q) r]P

+E~E,*exp [—i (K —Q) r] +E2E,' exp [i (K+Q) r]j,
where the angle brackets imply that we extract from the
product only those terms which vary spatially as K+ Q.
Physically, the bn2 contribution arises from modulation of
the weak-field grating (Bn)) with the first-order grating
generated by the intense pump waves. As a manifestation
of the nonlinear response of the medium, this term is seen
to mix the K+Q and K —Q components of the density
distribution.

Associated with each of these two sets of microparticle
gratings is a third-order polarization capable of generating
phase-conjugate radiation, as well as amplifying the probe
beam. If the polarization of the pump waves is parallel
with E~ E2, we find for the four-wave mixing coefficients
from Eqs. (2)-(4),

3f s„—1 U() I ) (Uo/kg T )
K' 8It 1—

2~ a„+2 k, T Io(vgk T)

I i (Uolkg T)
x'o 1—

I,(vo/k, T)

In Eq. (5), )ro is the four-wave mixing coefficient in the
diffusive limit, f is the volume fraction of microspheres, sq
the dielectric constant of the host fluid at m, a„ the ratio of
the dielectric constant of the microparticles to al„and A, is
the laser wavelength. The bracketed factor corrects for
nonlinearity in the presence of arbitrarily strong pump

I

field intensities and gives rise to different behavior depend-
ing on the sign of Uo. In particular, if Uo&0, a'

=3f/4&a&[(s, —1)/(a„+2)], and the four-wave mixing
coefficient is independent of pump intensity. On the other
hand, if Uo & 0, then x. 2vo, and the four-wave mixing
coefficient increases linearly with pump power.

In calculations involving intense laser radiation, it is
convenient to introduce a saturation intensity I~ defined
here by ~

Uo (/k&T=I/Iq, with I the pump intensity. For
1000-A ZnSe microspheres suspended in liquid N2 at 77
K, the saturation intensity at CO2 wavelengths is 1.59
k/cm2. Figure 1 depicts the dependence of the four-
wave mixing coefficient on the pump intensity of a suspen-
sion of ZnSe microspheres with f 10 for Uo& 0 (la-
beled )~ ) and Uo(0 (labeled x'+). An examination of
the x curve reveals that the four-wave mixing coefficient
is initially a linear function of pump power, corresponding
to the suspension being in the diffusive region. However,
once I/Ig~ —,', grating modulation effects begin to mani-
fest themselves and x no longer increases linearly with I.
Note that the four-wave mixing coefficient for this case
peaks when I/Iv 1.68. Further increases in pump power
first decrease the size of the four-wave mixing coefficient
which eventually saturates to x, . Fixing our attention on
the x+ curve, we see that the four-wave mixing coefficient
departs from a linear pump intensity dependence when
I/Iv- ,'. lt then displays —a greater than linear depen-
dence on I, eventually achieving a limiting value of 2'.
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governed by the Planck-Nernst equation

n(r, r) =DV. Vn(r, r) — n(r, r), (6)8 F(r)
r 8

where F(r) - —VU(r) is the electrostrictive force acting
on a particle at position r in the suspension. It is con-
venient to transform Eq. (6) by introducing a new quanti-
ty, g(r, t) of order BU(r)/k~T:

n (r, r) =—n (r,O) I + q(r, r )—hU(r) (7)

Setting F(r) Fp(r)+SF(r), with Fp(r) —%Up(r) and
bF(r) —VBU(r), we have to first order in small quanti-
ties

rl(r, r ) D v'rl(r, r )+ V rl(r, t ), (8)
Fp(r)

r
' ' kgT

with q(r, t 0) bU(r)/kqT and g(r, t ~) 0. Equa-
tion (8) can be solved numerically by decomposing the
particle density into grating functions
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FIG. 1. Four-~ave mixing coefficient vs pump intensity for
1000-A ZnSe microspheres suspended in liquid N2 at 77 K and
irradiated by CO2 1aser beams.

with the boundary conditions mp(0) &K+Q ~
bU(r)/

kBT&, m —i(o) -&K —Q I bU(r)/kaT), and mI(0) 0 oth-
erwise. At long times ml(t ) approaches zero for all I.

At intermediate times, the gratings of order I-Up/kgT
are significantly populated and may influence the electro-

These features of microparticle electrodynamics can be
understood as follows. As noted above, the intense pump
waves generate a translational grating of the form
cos(2K r). Through the nonlinearities of the medium,
this grating beats with either of the translational gratings
cos[(K+Q) r] or cos[(K-Q) r] created by the pump
and probe fields to produce a translational grating
cos [(K—Q) r] or cos[(K+Q) r], respectively, which
also emits phase-conjugate radiation. If Up&0, these
gratings are out of phase with the initial gratings and the
four-wave mixing coefficient decreases in size relative to
its weak pump field behavior. Alternately, if Up & 0, they
are in phase and r increases relative to its weak-field
value, depicted by the dotted curve. In particular,

2' reflects the fact that two sets of translational
gratings are now contributing to the emission of phase-
conjugate radiation.

Next, we examine the transient dynamics for this sys-
tem. %e shall assume that the pump wave fields remain
constant in intensity throughout the experiment and that
the pump wave gratings have already been formed when,
at time t 0, the weak probe field is switched on. Then
the initial particle density is
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The subsequent evolution of the particle density n (r, r ) is

FIG. 2. Transient behavior of the
~
K+ Ql gratings for the

cases UolkaT 5, UolksT +5 compared to the diffusive
limit.
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dynamic characteristics of the suspension. In practice we
obtain the time-dependent density response for the system
by first solving the eigenvalue problem associated with
zi(r, t ) and then using Eq. (7).

To study the novel transient behavior arising from pump
grating modulation we examine the evolution of the grat-
ing components [Ct(t) &(2I+1)K+Q(n(r, t))], both in
presence of strong pump fields and in the diffusive limit.
Figure 2 depicts the evolution of the orthogonal gratings
l 0(K+Q) and l —1(K—Q) for I/I, 5.0 and a
pump-probe angle of 60' as a function of t t/zD, where

(DK2) ' is the time scale set by diffusion. In the dif-
fusive limit, the figure shows two distinct grating forma-
tion times proportional to the squares of the corresponding
grating spacings (upper dashed curve l 0, lower dashed
curve l —1). The strong-field behavior is shown by the
solid curves (superimposed on the scale of the figure) for
Uo —5ktt T and by the dashed-dotted curves for
Uo SkttT (upper curve l 0, lower curve I —I). The
saturation limits of these curves are in correspondence
with the curves of Fig. 1 evaluated at I/I, 5.0.

Differences between the dashed curves and the remain-
ing curves of Fig. 2 arise from pump grating modulation.
These differences include a locking together of the time
response for the K+Q and K-Q gratings, dependence on
the sign of Uo, s and a response time component, on a scale

set by zD(l, /I), which can be much faster than that re-
quired for diffusive motion over distances comparable to
the grating spacing.

Rapid response to the weak probe signal may be under-
stood physically by considering the strong pump limit
(I/1, ))1). In this limit the eigenfunctions of Eq. (8) ap-
proach the Hermite-Gaussian functions with eigenvalues

—(sin2e+ 4n t Uo I
/'ka T )/zD (10)

independent of the sign of Uo. The lowest eigenvalue A,o

describes diffusive motion in the direction perpendicular to
the pump propagation and is responsible for the long-time
approach to steady state for the Uo )0 curves of Fig. 2. In
the strong pump limit, particles tend to be localized near
their potential energy minima and n (r,0) can be approxi-
mated as a periodic set of Gaussian density peaks of width

A/2tz(kttT/( Uo~ )'t, where A=tz/[ K ). The inverse
time for particles to diffuse over this much sllorter distance
is D/tJ 4(~ Uo(/kttT)DK which is comparable to the
time scale of the rapid resonse set by l~. Although this
simple argument ignores the proper weighting by the
eigenvector components, which is included in Fig. 2, it
does serve to suggest a mechanism for the rapid response
even under those conditions where the probe field is too
weak for particle drift motion to be significant.
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