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A recently introduced algebraic approach to scattering is recast in the language of group con-

tractions and expansions. The expansion describes the deformation of the physical states from one

kind of symmetry to another and allovrs the algebraic derivation of an S matrix. The method is

illustrated for scattering models in n-dimensional space of the type SO(n, l) and SO(n, m) with

lpga ~ 2.

Algebraic methods, which were proven to be useful in a
variety of bound-state models in nuclear' and molecular2
physics have recently been extended to the continuum. 3 s

In a first step, 3 we have shown that certain one-di-
mensional scattering problems can be described algebrai-
cally by using noncompact groups which possess continu-
ous representations, in particular, SU(1,1)=SO(2, 1).
The next major step was the development of an algebraic
technique to calculate the S matrix. This was first accom-
plished for a particular potential using a coordinate real-
ization, 4 and was then cast into purely algebraic form by
introducing the concept of an "Euclidean connection. "5

Recently, we have been able to generalize these techniques
to a higher number of dimensions for problems with
orthogonal dynamical symmetries. This led us to consider
realistic models related to modified Coulomb problems
which can be useful for the study of heavy-ion reactions. 6

The construction of the S matrix is achieved by connect-
ing the dynamical algebra which describes the scattering
problem with a corresponding Euclidean algebra which de-
scribes the symmetry of the undistorted waves in the
asymptotic regime. Of special importance is the connec-
tion formula which expresses the genet'ators of the scatter-
ing algebra as a function of those of its Euclidean partner.
The formula was constructed to satisfy the appropriate
commutation rules of the scattering'algebra. However, the
relation between the dynamical algebra and the algebra
describing the asymptotic symmetry, as well as the general
structure of such connection formulas, have not been fully
investigated up to now. The purpose of this Rapid Com-
munication is to show that these algebras are closely relat-
ed by the group-theoretical mechanisms known as contrac-
tion and expansion. By means of this procedure, connec-
tion formulas can then be studied in a systematic fashion
and more general scattering theories can be investigated.
As an example, we shall derive an S matrix for scattering

problems associated with general orthogonal symmetries.
To illustrate our procedure we shall first analyze prob-

lems with SO(n, l) as their symmetry group. These
describe Coulomb-type scattering problems in n dimen-
sions. s We shall denote the generators of SO(n, l) by
K,~(1»a, P~ n+ 1; aWP), describing a rotation in the
x,-xo plane. 9 In the following, we shall use Latin indices
i,j, . . to .denote the spatial range 1, . . . ,n and the stan-
dard SO(n, l) metric gj b;l, g„+~,„y~ —1. In the n

dimensional Coulomb problem this algebra is generated by
the angular momentum tensor L;J in the n-dimensional
space, and the Runge Lenz vector A; measured in units of
the momentum k. The latter plays the role of the (non-
compact) rotation K; „+t A;. The Coulomb Hamiltonian

2 p'p;+p/(x'xt) /, where p; and x; are the physical
momenta and coordinates, is then related to the SO(n, l)
Casimir invariant

The physical states ( to,l, (m)) are characterized by

C21 to,i, (m)& -to(co+n —1 ) I co,i, (m)&

(2)

L'
) lto, (m)& l (I +n —2) ) lto, ( )m&,

where l is the n-dimensional angular momentum
(L2=+;JL,.z) and (m) is any additional set of angular
momentum projection quantum numbers required for a
complete labeling of the O(n) states. We are interested
here in the scattering eigenstates &which belong to a con-
tinuous principal series representation to —(n —1)/2
+i P/k derived from (2). In a general Coulomb-type prob-
lem the relation (2) between the Hamiltonian and the
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Casimir operator C2 can be generalized, in which case

Pl 1
to — +if(k),

2

where f(k) is some real function of k. In the asymptotic
region the waves are undistorted and the space symmetry
algebra is the Euclidean algebra9 E(n). For n 2 we have
shown that the asymptotic algebra E(2) is obtained from
the scattering algebra O(2, 1) by contraction. The concept
of contractions of a Lie algebra goes back to the work of
Inonu and Wigner'o and of Saletan, "who introduced it as
a formal way to study the properties of nonsemisimple
groups, from those of the better known semisimple groups.
Contraction of a Lie algebra arises when we analyze the
effect of a linear change of basis which becomes singular
in a certain limit. If the transformed structure constants
approach a well defined limit as the transformation be-
comes singular, a new Lie algebra is found. In the O(n, l)
scattering problem, we make the transformation

P,' sE; „+]
for a small e, while the L;J are left unchanged. In the limit
e 0 the P; (we have dropped the superscript e) become
an Abelian invariant subalgebra, namely,

[P;,Pj] 0, [L;J,Pk] -ig;kP, —i', P; .

In fact, according to (6) P; transforms as a vector under
Q(n) Thu. s, a new algebra [L;J;Pk] is obtained in that
limit which is the n-dimensional Euclidean algebra E(n).
In the physical application the P; are just the linear mo-
menta of the scattered particle. While the rotational in-
variance is left unchanged in the asymptotic region, the
system also possesses translational symmetry in that limit,
generated by the P~. In the contraction process the
SO(n, 1 ) Casimir operator

e C2 —P'P;—= —C2

and becomes the Casimir invariant C2 of E(n), whose
eigenvalue is the energy k . The eigenstates of the E(n)
algebra,

one replaces some of the generators of the nonsemisimple
group by nonlinear functions of the generators of that
group. If these generators, together with the unaltered
ones, close under commutation, we say that we have "ex-
panded" the original group.

Thc general problem of an expansion is an unsolved one,
but several cases have been studied and a good overview
can be found in the book by Gilmore. This nonlinear pro-
cess of expansion is crucial to our scattering theory since it
gives rise to the connection formulas.

We shall explain a systematic way to expand which
works in the case of E(n). The generators that need to be
replaced are the momenta P;. The Casimir invariant
C2(SO(n) ) L'JL;J of the compact subalgebra O(n)
(which was not modified in the contraction process) disap-
pears in the contracted O(n, l ) Casimir invariant (7). We
should therefore use it if we want to reconstruct the origi-
nal scattering algebra. Since C2(SO(n) ) is a scalar under
O(n) rotations and P; is a vector, we can easily construct a
new SO(n) vector which is nonlinear in the E(n) genera-
tors by means of the algorithm

l
K;„—.[C (SO(n)),P;]+pP; (p real) . (10)

Since E; „+~ is an SO(n) vector it automatically satis-
fies the correct (O(n, 1 ) ) commutation relations with L;,.

Consider now the commutators [K; „+&,K, ,„+&]. They
form an antisymmetric tensor of SO(n) (with respect to
their indices i,j). Since they are at most quadratic in P
and linear in L, the only possible antisymmetric tensor to
this power is L;,P P . Since P P k, it follows that
K; „+~ K; „+~/k must close under commutation with L;~.
In fact, we get precisely the O(n, l) algebra. By calculat-
ing its Casimir invariant we find that

p—= +f(k) .

The expansion (10) coincides with the connection for-
mula derived in Refs. 5 and 6 for n 2,3. The sign in (11)
depends on whether we work in the +k or —k representa-
tion of E(n). It leads (by the same method explained in
Ref. 5) to an S matrix of the form

C, i
+ k,l, (m)) -k'

i
+ k, l, (m)),

L'~ ~k, l(rn)) f(l+n —2) )
+ k, l, (m)&,

(8)
r[l+—,

' (n —1)+if(k)]
S,(k)- eiy(k)

[l1+' (n —1) if(k)]— (12)

describe incoming ( —k) and outgoing (+k) free spheri-
cal waves. The S matrix in the partial-wave basis is ob-
tained from

S (k) -(—)'+'" ""a,(k)/a (k),
where

,l, ( )&-&(k)
I k,l, ( )&+4(k) I—+k,l, ( )& (9)

and is (m) independent due to O(n) rotational invariance.
As explained in Ref. 5, thc algebraic calculation of this S
matrix is made feasible by the "Euclidean connection, "
which expresses the generators of SO(n, l ) in terms of
those of its contraction E(n). In the theory of Lie groups,
this process, which is the opposite of contraction, is known
as expansion or deformation. In an expansion process,

where p(k) is an arbitrary phase. Equation (12) describes
Coulomb-type S matrices in n dimensions.

To illustrate further the interplay between contractions
and expansions within the algebraic theory of scattering,
we now analyze a scattering problem of the type SO(n, m)
DSO(n) &&SO(m) with m ~2. Such scattering models
with m 2 and n =1,2,3 were discussed in Ref. 6. Here
SO(n, m) plays the role of a potential algebra ' (rather
than just a symmetry algebra). The subalgebra with
SO(m) with generators M,p is used to label the interac-
tion parameters of the model, and they can be raised or
lowered (together with the angular momentum l) by the
noncompact generators E;, of SO(n, m) Here and. in the
following we shall use Latin letters i,j,. . . to denote the
range 1, . . . , n and Greek letters a,P, . . . , to denote the
range n + 1, . . . , n +m. The subgroup SO(n) is still the
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rotational algebra L;j in the n-dimensional physical space.
The scattering eigenstates

~
ro, l, (m); v, (v)) now con-

tain additional labels u, (v) which denote the interaction
strength (see Ref. 6) such that v (u+m —2) is the eigen-
value of M2=—M'&M

p and (v) labels a complete set of
projections in SO(m). The angular momentum labels
i, (m ) are as before, but now the eigenvalue of the
SO(n, m ) Casimir invariant

C2= —QK,.,+L +M
i,a

is rv(ru+n+m —2).
In the contraction process we leave L and M unaltered

while aK;, P;, and a C2 P"P;a=Cd. Now C2 is the
Casimir operator of the contracted algebra [L;j,M, ji,P„]
known in the literature as ISO(n, m ) (the inhomogeneous
special orthogonal group'3). It is obtained by comple-
menting the algebra SO(n) X SO(m) with an Abelian ten-
sor (double vector) P;, of SO(n) x SO(m), where i is the
SO(n ) index and a is the SO(m) index

P;,=P;U, . (IS)

It then follows that C2-v'v, P'P; k and the incoming
( —k ) and outgoing (+k ) free waves are

~

+ k, l,
(m), u, (v)), where all other quantum numbers are as be-
fore.

To calculate an S matrixs we must be able to expand
ISO(n, m) back to SO(n, m). In particular, we try to re-
cover the "lost" operators K;, by using the Casimir invari-
ant of the unmodified part SO(n)XSO(m). In analogy
with (11)we define'

K;.- —,[C (SO(n))+C (SO(m)),P;,]+f(k)P;, '/k
l

l

vector P; (the linear momentum) of length PiP; k, and
to the potential O(m) an Abelian vector v, of length
v'U, l, to obtain an asymptotic symmetry group
E (n ) XE (m ). The generators P;, of the above ISO(n, m )
are given by

[Lij Pmy] &gimPjy igjmPiy

[Maii~Pm y] &gayPmp ~gpyPma

=(L;jPjv, —M, jiv jiP;
—i rou, P;)/k, (i6)

Note that when m 1 (i.e., we "freeze" the potential
degree of freedom) there is no index a, and we are back to
the Coulomb-type problems where ISO(n, 1 ) E (n).

The contracted algebra ISO(n, m) describes the undis-
torted waves in the asymptotic region of the scattering
problem. To make contact with the methods of Ref. 6 we
note that one can add to the space group O(n) an Abelian

I

where rv - —(n +m —2)/2+ if (k ) denotes the (most de-
generate) principal series unitary representation of
SO(n, m ). In analogy with the case m =1 it can be shown
that relation (16) defines an expansion into SO(n, m).

The connection formula (16) leads to an S matrix which
is independent of (m ) and (v) [due to the SO(n) & SO(m)
symmetry]:

I (—,
' [i+u+(n+m —2)/2+if (k)])I (& [i —v+(n+m —2)/2+if(k)])Si(k)- ei'y(k )

I (—,
' [i+v+ (n+m —2)/2 if (k)])I—(—,

' [I —u+(n+m —2)/2 —if(k)1) (17)

It can be shown that for angular momentum i large com-
pared with u and f(k ), the phase shifts in (17) approach
the Coulomb-type ones in (12). Thus, (17) corresponds to
a second class of modified Coulomb-type potentials.

To conclude, the algebriac theory of scattering [in par-
ticular that of the SO(n, m) scattering models] has been
recast in a general mathematical framework by means of
the group-theoretical concepts of contraction and expan-
sion. This formulation can be applied to the systematic
study of other types of dynamical symmetries in scattering
problems and their associated S matrices. Modification in
the dynamical groups is necessary when one includes spin
(and isospin) degrees of freedom and more complicated in-
teractions which can depend on these new dynamical vari-
ables. Other interesting generalizations occur when the
asymptotic symmetry is not necessarily that of a free parti-
cle, but describes distorted ~aves in some potential for

l

which the problem is solvable. The calculation of the addi-
tional phase shift caused by adding another potential can
then be solved (in principle) by a deformation (contraction
or expansion) of a group G into another O'. We note that
expansions analogous to the ones studied here, have been
analyzed in a different context for the U(n, m )
& U (n ) x U (m ) and Sp(n, m ) D Sp(n ) x Sp(m ), '3 as well
as for the contraction Sp(6,R )~ W(6) AU(3), '" where A

indicates a semidirect product. These may prove useful for
the derivation of S matrices for other classes of dynamic
symmetry.
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