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Polymer persistence length characterized as a critical length
for instability caused by a fluctuating twist
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%e establish the identity of the persistence length of an easily bendable polymer with the critical
length for the onset of elastic instability toward bending induced by the root-mean-square twist. For
a polymer of arbitrary bending stiffness the identity remains approximately valid; the ratio of per-
sistence length to critical length is always a ithin 20% of unity.

Bresler and Frenkel were the first to model a polymeric
molecule in solution as a thin elastic rod subject to
thermal bending fiuctuations. ' An equivalent model, the
"wormlike chain, " was later formulated and analyzed by
Kratky and Porod. s' The fundamental parameter of the
behavior of a fluctuating rod is a characteristic length A,

(unfortunately, most often designated as I /2A, in the poly-
mer literature) defined as

&R )~2LL, (2)

where &R
1 ) is the mean-square end-to-end distance of the

fluctuating rod, L is the length of the rod taken along its
axis, and the limit is in an asymptotic sense as L~oo.
The distribution of end-to-end distances obeys the
central-limit theorem for long rods: &R1) becomes pro-
portional to L, the length of a continuous three-
dimensional random walk; and the persistence length A, is
recognized as half the length of an elementary step of the
walk (or, in polymer language, half the length of an
cqlll valcllt scgrQcnt).

From Eq. (1) we see as well that the persistence length
is very long when fluctuations are suppressed (low T}or
when the polymeric material is highly resistant to bend-
ing. In these conditions, the axis of the rod is approxi-
mately straight. %e are led to expect a direct correlation
between A, and the scale of length on which the fluctuat-
ing axis of the rod is approximately straight. In fact, we
have the formula

&cos8) =e-""„ (3)

where 8 is the angle between vectors tangent to the axis of
the rod, one at the point s, along the axis, the other fur-
ther along at s&, with the arc length ss —s, equal to l.
From Eq. (3) we learn that the persistence length is the

A, =8/kit T,
where 8 is the Hooke's I.aw constant for bending and
kttT is Boltzmann's constant times the temperature in
kelvin. Actually, 8 is a bending stiffness averaged over
the principal directions of the generally anisotropic cross
section of the r do, beaut we consider only the elise of a cir-
cular cross section.

A familiar property of the persistence length is embo-
died in the limiting formula

correlation length for the directional correlation function
y(1),

(4)

When I =A,, cos8 has fallen on the average to the fraction
c ' of its initial value unity (assumed, for all intents and
purposes, for contour lengths much less than the per-
sistence length). A related characterization of A, is that it
equals the average projection of the end point of an infin-
itely long fluctuating rod on the direction of the rod at its
starting point.

We show here that the persistence length can be charac-
terized in yet another way. When an elastic rod is subject-
ed to a tloisting moment, the state in which its axis is
straight is always one of equilibrium. But, for a given
twist, a rod of length greater than a critical value is in a
state of unstable equilibrium if its axis is straight. 5 The
equi1ibrium state of lowest elastic energy then has a bent
axis. We will establish that the persistence length is ap-
proximately equal to the critical length for the onset of
elastic instability of a class of thermal twisting fluctua-
tions. Further, the persistence length is exactly equal to
the critical length in the limit 8/C-+0, where C is the
Hooke's Law constant for twisting.

We consider a thin rod with uniform circular cross sec-
tion, bending constant 8, and twisting constant C. In its
undeformed state of zero elastic energy, its axis is
straight. When bent and twisted, the elastic energy U as-
sociated with a segment between two cross sections at s,
and ss is a functional,

sbb l~ 2+ 2+ lg 2 (5)

where pi (s) and yl (s) are angular rotations (bends) about
two orthogonal directions in the cross section, y, (s) is an
angular rotation about the tangent to the axis (twist}, and
primes denote derivatives mth respect to axial contour
length s. The three Euler equations written, respectively,
for the functions yl, p2, and y„establish immediately
that their derivatives are constant in equilibrium states.
The equilibrium curvature tc(s} of the axis is therefore
constant, since

K =Pl ++2 (6)

Thc eqlllllbrlll111 twls't co(s) abollt tllc axis ls also collstallt,
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co(s) being identified with qj. The energy of an equilibrat-
ed deformation may then be written as

TABLE I. The values of I,/A, as a function of 0.

U= ,'8—/tc + 2 Clio

where I =sb —s, .
As a consequence of the identity

r=to —(d/ds)tan '(y~/y2),

the differential-geometric torsion r(s} of the equilibrium
axis is also constant. The equilibrium axis, with constant
curvature and torsion, must be a circular helix. Moreover,
since p'i and q 2 are constants, the constant values of ~ and
to are equal,

(9)

—1.0
—0.9
—0.8
—0.7
—0.6
—0.5
—OA
—0.3

1.000
1.008
1.017
1.026
1.035
1.045
1.054
1.065

—0.2
—0.1

0.0
0.1

0.2
0.3
0.4
0.5

1.075
1.086
1.097
1.108
1.120
1.132
1.145
1.158

We will need the result of an exercise in differential
geometry,

cos8,b ——(2+~ ) '(r +n cos[l(r +x )'/3]),

where tt and r are the constant curvature and torsion,
respectively, of a helical arc of length l. The angle 8~ is
that between the tangent to the arc at s, and the tangent
to the arc at si„with the difference sb —s, equal to l.
When the curvature is zero, the helix is a straight line,
and Eq. (10) gives the correct result, 8~ ——0.

Consider now our thin rod with a defimte constant
twist t0 but with a straight axis. The twist to is induced by
a transient moment M of thermal origin directed along
the axis, hence perpendicular to the cross sections. Sup-
pose that the cross section at ss is then tilted through an
angle 8~. The twisting component of the moment M
drops by a factor cos8~, so the value of twist drops by
the same factor and becomes equal to to cos8~. The ener-

gy associated with twist drops from —,
' Clio to

—,
' Clcoicos28~. The overall elastic energy, formerly equal

to —,
' Clto2, becomes

U= —,
'

Cla) cos 8~+ —,'8ltt

as the axis assumes the shape of a helix with curvature.
We are investigating the onset of instability of the straight
axis and, hence, need consider only small curvatures tt.

With Eqs. (9) and (10), and small tt, Eq. (11) takes the
Orm

1',=(C/ktiT}tcos '[1—(8/2C)]lz . (15)

We procoxl to establish that this quantity equals the per-
sistence length in a limiting case.

The relative values of 8 and C are constrained by the
formula

8/C= 1+o, (16)

where cr is called Poisson's ratio. ' For all known materi-
als (steel, wood, plastics, etc.) it has a positive value less
than 0.5. However, contradictions with physical laws are
encountered only if o falls outside the interval ( —1, —,

'
);

negative values greater than —1 are allowed. In fact,
when a single DNA polymer in solution is modeled as a
thin circular rod, and values of 8 and C are deduced from
current data, the values of cr calculated from Eq. (16) are
as low as —0.7. At any rate, we consider the limit
o~ —1, or 8/C~O.

When e=8/C is a small quantity, we have the follow-
iag estimate:

Note that to, depends on the length of the segment con-
sidered. The longer the segment, the less is the twist (an
intensive quantity) that can be produced in it by available
thermal energy. We consider the critical length 1', for
instability induced by an rms twist. With 1=1', in Eq.
(14), substitution of Eq. (14) into Eq. (13) yields

U= —,
' Clcoi+ —,

' a21[8+2C(cosrol —1)] . (12) cos (1——,e) =sin-'[1 —(1——'e)']'/'

1'=co 'cos '[1—(8/2C)], (13)

The new energy is less than that of the twisted but
straight rod, ', Cite, if the term—in square brackets is neg-
ative. Then, the straight rod is unstable and bends to a
helical arc. For sufficiently small values of 1, the bracket-
ed term in Eq. (12) is clearly positive, but when 1 exceeds
the value 1',

=sin-'[e'"+ O(e3/2)]

el/2+ 0(e3/2)

The square of this quantity equals e+O(e ). The im-
mediate result of substitution into Eq. (15) is

the straight axis is uostable.
lim I', =Jt/k&T=g, (17)

Le«have the root-mean-square of its fluctuating
values, computed in routine fashion from the energy in
Eq. (7),

(14)

as stated. In words, if the rod bends much more easily
than it twists, then its persistence length is the length past
wliich the root-mean-square twist induces instability to-
ward bending.
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We obtain a formula for the ratio I', /A, from Eqs. (1),
(15), and (16),

I', /A, =(1+et) 'Icos '[ —,'(1—tr)]I'. (18)

This ratio depends only on the value of Poisson's ratio.

As cr increases in its allowed range from its smallest value
—1, l, /A, exhibits an unremarkably monotone behavior,
and we merely tabulate it. From TaMe I we see that
1~,/k never exceeds its limiting value of unity by more
than 16%.
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