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Persistent breather excitations in an ac-driven sine-Gordon system with loss
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In a sine-Gordon system with loss and applied ac driver, a breather can be maintained as a per-

sistent entrained oscillation if the driver is strong enough. The threshold field is determined by a
perturbation method and compared to numerical experiments. Excellent agreement is found.

I. INTRODUCTION

Soliton solutions to the sine-Gordon equation model
many physical phenomena. The 2n-kink soliton models
the motion of dislocations in crystals, domain walls in fer-
romagnets, flux quanta, and fluxons in Josephson
transmission lines. The other type of soliton solution, the
breather (an oscillating bound kink-antikink pair), will in
real physical systems decay away because of dissipation.
If an ac force is added to the sine-Gordon system it can
compensate for the losses and maintain a stationary
breather —er even excite a breather —with a frequency
equal to the applied frequency.

It is the purpose of this paper to present a perturbation
calculation of the threshold for the applied force to keep
the breather alive. Several perturbation treatments of
sine-Gordon breathers have been presented, used in
different contexts, ' and compared to numerical experi-
ments. ' '4 The difficulty in using perturbation methods
on breathers subjected to general perturbations, is that
even small perturbations of the sine-Gordon equation
yield drastic variations of the breathers parameters within
one breather period. This problem does not seem to exist
in the case of a steady-state oscillating breather, which is
considered here.

The method used first divides the solution into two
parts, a breather part Pb'(x, t), and a homogeneous part
P""(t),which is the solution at x =+ oo, or the solution if
no breather is present; second, we use the energy con-
siderations. The only approximation made consists of
choosing the pure sine-Gordon breather for P '(x, t),

ls
For the pure sine-Gordon breather [Eq. (1)] this energy

Ho =16(1—boa')'"

In the general case time differentiation of Eq. (3) and
the use of Eq. (2) yields

x+g sin cot

The integration is over the length L of the system and the
following boundary condition has to be fulfilled

I. I.

The condition is fulfilled if P„(+Lj2, t)=0, or with
periodic boundary conditions and breather symmetry, or
if L=a).

The change in energy in a given time interval may be
found by integrating Eq. (5) over this time interval

hH = —a f f P, dx dt+ri f sin(cot) f P, dx dt .

P„=—sinP+aP, —ri sin(tot),

where a is the loss parameter, ri the amplitude of the
external ac force, and to/2' its frequency. We define the
energy as

8= —,
' „+—,', + 1 —co x . (3)

Po'(x, t) =4 arctan
(1 roti )

'~ cos—(topi t +8b, )

cosh[(1 toit)'i x]—
In a stationary case this change in energy is zero for one

period.

The method we use is first to divide the solution to Eq.
(2) into two parts

The same kind of method has given excellent results for
the 2n-kink motion with' and without' applied forces.

The outline of the paper is as follows. In Sec. II we
develop the perturbation result and compare it with nu-
merical simulations in Sec. IH. Finally in Sec. IV we
summarize a11d conclude.

II. ANALYSIS

p(x, t)=p"(x,t)+p""(t),
where P" (t) is the solution for x=+ op. P""(t) does not
depend on the presence of the breather. P '(x, t) is the lo-

calized breather [P '(+0o, t)=0] Next we .insert Eq. (8)
into Eq. (7) and get

AH =I) +I2+I3+I4+I5,

The equation considered here is a perturbed sine-
Gordon equation Ii ———a f f (P, ') dx dt,
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I2 ———~ ~' x t,

I3 = —2a f dt {{},
""f dx p, ',

I4 ——v] f dt sin(a)t) f dx P,',

Iz ——g f f sin(cot)P,""dxdt .

Breather

Loss

Vacuum

Each of the five terms in Eq. (9) can be given a very sim-
ple physical interpretation as shown in Fig. 1. The losses
from the breather part and the homogeneous part are
given by I

&
and I2, respectively. The drivers energy input

to the breather and the homogeneous part is given by I&
and Iz, respectively. I3 represents the energy fiow from
the homogeneous part to the breather part. Far away
from the breather only I2 and I5 are different from zero,
therefore these two divergent terms will cancel.

Until now no approximation has been made. Only in
the small signal hmit can we give a closed solution for the
homogeneous part The. n it is just a forced damped har-
monic oscillator:

FIG. 1. A schematical representation of the energy flour
given by the different terms in Eq. (9).

P""(t)=
2 2 2 2, sin(cot —8),

[(1 ~2)2+&22]1/2

This approximation is easy to estimate (1—c0 p aco).
The energy input to the breather part, I3 and Iq in Eq.

(9), now adds up to

I3+I4 ——g t sin mt — cos cot — x, =g tsin cot —2 x2 )2 +&22 ]1/2

(12)

We notice that Eq. (11)—except for the phase angle 28—
is the same as term 4 in Eq. (9). This means that for the
perturbation result we could as well neglect I3 in Eq. (9)
(the interaction between the breather part and the homo-
geneous part), but to get the best initial conditions for the
numerical simulation it was crucial to keep the phase an-
gle 28 in Eq. (11).

Close to the threshold we should have the maximum
energy input from Eq. (11),i.e.,

{{),'- sin(cot —28)

I3+Iq —
i [E(—l —ai }—E(l —a) )]

16m' 2 2

1 —N

aisinh (1—co )'/2—
2

(14)

or

(()"'-cos(cot+a —28) .
Therefore close to the threshold the phase of the breather
should be m —28. The phases of the applied force
[sin(cot}], the homogeneous part P""(t), and the breather
part are shown in Fig. 2. The breather loss [I&

in Eq. (9)]
is independent of the breather phase. The threshold force
q, h is determined when Eq. (11) (Ii+I4) and Ii cancel.
For larger forces the terms still cancel because the breath-
er phase adjusts accordingly.

The main approximation we make is to choose the
sine-Gordon breather of Eq. (1) for P (x,t) with cos ——co.
We now do the integrals for the time over one period
(2m/ai) and for the spatial variable from —L/2 to L/2.
The integral [Eq. (11}]for the energy input to the breather
can only be done exactly for L = oo. For large L we find
(co&0 and 1)

FIG. 2. A diagram shouting the selective phases of the ap-
plied force [sin{cot)j, the homogeneous part P" {t), and the
breather part Pb'{x,t) of the solution close to the threshold for
a=0.2 and ~=0.6.
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where K and E are complete elHptic integrals of the first and the second kind, respectively. '7

The integrals for the breather energy loss Ii can be carried through. The result is (to~0 and 1}

2 1/2~Ii ———32nasin ' [(1—tfi )' ]sin tan ' sinh (1—to )'
2

I.

-=—32~a sin [(1—co ) ]+ 16M
N

(1 ~2)i/2

sinh (1—t0 )'~—I.
2

(15)

Therefore we find, for a long sine-Gordon system with

driving frequencies not too close to co=1 [Eq. (10)] and

ei =0, the following expression for the force threshold:

2a(1 —co )sin '[(1—to )'~ ] (16)
E(1 co —} E(—l —to )

9th

Equation (16) is shown in Fig. 3 as the solid curve.
In the next section we will compare the perturbation re-

sult Eq. (16) with numerical simulations where the com-
bination of a, to, and L is such that the linearization in

Eq. (10) is vahd and the length corrections in Eqs. (14)
and (15) can be neglected.

III. NUMj! RICAI. SIMULATIONS

'9+ 2 2 2 2,&2
sin(cot —e),

[(1—to ) +u t0 ]

tane= au
1 —QP

then our initial conditions are

(18)

Numerical simulations of the perturbed sine-Gordon

equation [Eq. (2)] have been performed for a system of
length L =24 and periodic boundary conditions. For this

length the corrections in Eqs. (14) and (15) are negligible

and high-frequency breathers (to=0.9}are well accommo-
dated. As an initial condition we have chosen Eq. (8}with

Eq. (10) for P""(t) and $0'(x, t) of Eq. (1) for Pb'(x, t) with

eb, [Eqs. (1) and (13}]determined by

e„=~—2e.
If we define P ( x, t) as

(1—c0 )'i cos(cot+ n 2e)—
x, t =4arctan

cosh[(1 —ro )'i x]

For ri » i}2 the breather gained so much energy that
it broke up into a kink-antikink pair. This scenario (with
three basins of attraction} has been followed for co=0.2,
0.4, 0.6, 0.8, and 0.9 with a=0.04, 0.1, and 0.2. The re-

sults are shown in Fig. 3 as bars, with heights determined

by rI i and F12. The numerical results agree very well with
the perturbation results [Eq. (16)]. There is only one devi-

ation and that occurs where expected: large damping
(a=0.2) and frequency (to=0.9). For medium frequencies
we find that the breather survived for a relatively wide
range of ri values (&ri,h), while for co=0.2 the breather
survived only in a narrow range of g values, and for
co=0. 1 we were not able to maintain the breather at all.

We note that the numerical result depends critically on
the initial condition Eq. (19). For instance for a =0.2 and
to=0.6, we find rt, h ——0.33 both from perturbation theory
and from numerical simulation as is also found in Ref. 14.
In Refs. 2 and 3 2},h

——0.57 is found numerically from a
slightly different initial condition. For smaller frequen-
cies the sensitivity to the initial condition becomes even

stronger.
The reason for the high sensitivity to the initial condi-

tion is that the energy fiow per period —along the dif-
ferent channels in Fig. 1—are comparable to the energy of
the breather or the binding energy of the kink-antikink
pair 16-Ho [see Eq. (4)]. For instance for a=0.2 and
co=0.6, the loss (and therefore energy input) for the
breather in one period is 18.81. A little imbalance in the
initial conditions could therefore cause the breather to de-
cay or break up into a kink-antikink pair in the first
perj, od.

Another observation from the numerical experiment
was that for co=0.8 and to=0.9, just a little above ri,h two
breathers instead of the initial one breather were main-
tained. This spatial period halving was also observed in
Refs. 2 and 3.

P(x,O)=$0(x,O) and P, (x,O)=P, (x,O) . (19) IV. CONCLUDING REMARKS

In all numerical experiments the breather and the vacuum
were found to lock to the driving frequency consistent
with the choice of c0 in Eq. (18). The time evolution was
followed for as long a time as necessary to decide whether
the breather survived or decayed. For q ~ q& the breather
decayed into a spatially hoinogeneous flat state. For
g & rt2 the breather was maintained as a persistent oscillat-
ing structure quite similar to the analytical solution [Eq.
(1)] of the unperturbed sine-Gordon equation. iIi and rt2
indicate the uncertainty on the numerically determined

%e have used a perturbation method based on energy
flow to predict the threshold value of an ac driver for
maintaining persistent breather oscillations. We find very

good agreement with numerical simulations. %'e have not
been able to extend our energy-flow perturbation method
to predict other interesting transitions known to exist for
the damped ac-driven sine-Gordon system. ' This
scenario includes spatial period halving and quartering,
intermittency, and low-dimensional chaos. It is clear that
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