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Entropy production in coherence-vector formulation for N-level systems
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If the time evolution of an irreversible process is described by a completely positive quantum-
dynamical semigroup a systematic formulation in terms of coherence vectors is of particular advan-

tage since the time change of their length and relative scalar product determines, to a large extent,
the relative entropy with respect to a unique final state and, ultimately, the total entropy production.
As examples, general exact formulas for two-level systems are given and, in arbitrary dimensions,
for a weakly irreversible process close to the central state, a first-principles derivation of the
phenomenological Onsager coefficients is outlined.

equation p, =Sp„where Z is the time-independent in-
finitesimal generator of a completely positive quantum-
dynamical semigroup. ' By the decomposition (1) one
finds the correspondent dynamical equation

p, =~p, vr =Gvt+k

all details of derivation being available in Refs. 6—9. If
W is taken in Kossakowski-normal form ' it contains,
apart from a Hamiltonian H, an (M XM) relaxation ma-
trix A with

Thus, the (M X M) evolution matrix G also depends upon
the matrix-elements of H and of A but, somewhat unusu-

ally, it acquires a general structure with nontrivial Jordan
canonical form, i.e., it may not be completely diagonaliz-
able. ' The constant vector k depends only on the imag-
inary part of A. Time evolution p, =A, po with
A, = exp(Wt ) is then translated into the vector picture by

v, =I,(x—y)+y, I,= exp(Gt),

with initial condition vo—=x and final state

A quantum theory of irreversible processes is expected
to provide more theoretical insight as well as a reliable
basis for computations from first principles of details of
important and useful quantities of the phenomenological
theory as, e.g., entropy production. 'z In particular, the
theory of quantum Markovian master equations3' allows
for a concise quantitative treatment not only in the linear
Onsager regime of so-called weakly irreversible processes
close to equilibrium but also for more general processes
starting far from equilibrium but ending in a unique
asymptotically stationary state.

For many applications concerning N-level systems, par-
ticularly for problems of optical or magnetic resonance
spectroscopy, a convenient formulation of master equa-
tions is provided in terms of a coherence vector and an as-
sociated evolution matrix and it is worthwhile to dis-
cuss entropy production under this aspect. The coherence
vector v, =[U, (t),u2(t), . . . , UM(t)] with M =N 1—
real-valued functions of time as components is then given
through the decomposition of a time-dependent (N XN)-
Pensity matrix p, in terms of the M Hermitian infmi-
tesimal generators of SU(N), denoted by
F—(F Fz F~ )T

M

p, =—lN+ g Uk(t)Fk= —liv+(v, F) .
N

Due to trace normalization and theyositiveness of p, its
Frobenius norm ~)p, )[=[Tr{p,)]' is bounded by
0 & [ [p, ( [ ( 1 and this, in turn, implies for the length of the
coherence vector the bounds

0& i)v, i[ &(1—1/N)', t) 0

as directly obtained from Tr(F, )=0 and Tr{F~Fk)=5;k
(1(i,k &M). Since the minimum in (2) is attained for
the central state g=(1/N)l~ of maximum von Neumann
entropy s, = —Tr(p, lnp, )= lnN and the maximum for
pure states with s, =O, one is tempted to conjecture that
entropy production can be related directly to the time
change of the length of the coherence vector but, unfor-
tunately, the details are more complicated, in general. In
any case, v, must be obtained from the original master

y= lim v, = —G 'k.

This is true for so-called uniquely relaxing semigroups
since y is uniquely determined by the pair I G,k), or else

by W irrespective of initial conditions, as obviously
guaranteed if and only if det(G )&0. We will only consid-
er this type of semigroup which is certainly of most phys-
ical interest since it comprises also the situation where the
final destination state of the open system describes ther-
modynamic equilibrium with the reservoir as obtained in
the weak couphng limit by use of the Kubo-Martin-
Schwinger (KMS) condition for the reservoir correlation
functions. Let us rewrite (5) as v, =v', +y and intro-
duce the equivalent decomposition

pt=II+cot, Il=g+(y F), co, =(v', '.F),
where g=(1/N)ltt and, again, lim, p, =Q. For a
meaningful definition of entropy production the von Neu-
mann entropy is not well suited but the relative entropy
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tT(po /0) = ——S(p, /0)
&=0

and, again, we will write tr(x/y).
To emphasize the usefulness of the coherence-vector

concept for a calculation of tr we are going to work out
two examples. Consider first the case of two-level sys-
tems where closed formulas can be obtained for the most
general dynamics compatible with (5) and (6}. We use the
abbreviations v, =

~ ~
v,

~ ~

and y =
~ ~ y ~ ~

and find for the rela-
tive entropy

1 —4Ug
S(v, /y) = —,

'
ln i +2v, arctanh(2v, )

1 —4y

2——(v, y) arctanh(2y) . (10)

This shows that not only the length but also the scalar
product between the coherence vectors determines S. The
evolution matrix 6 can always be decomposed into Ham-
iltonian (Q) and non-Hamiltonian (R) contributions, '

G=Q+R, where Q = —Q and (for %=2) R r=R. In
terms of these quantities and with po

———,
' lz+(x F},

x =
~

~x~ (, where F are the normalized Pauli matrices, the
entropy production is given by

tr(x/y) =2[(x.Rx)+(x k)]

——arctanh(2x )
2 1

1 —2x x

+—[(y Gx)+(y k)] arctanh(2y) . (11)
2

Note that this formula does not involve any app«»ma-
tions and holds for any initial condition x arbitrarily far
from the stationary state y. Of course, by series expan-
sions for x~y one can get a quadratic form in the com-
ponents of (x—y) of Onsager type. This will be done in
the second example for arbitrary N but we need some ad-

S(pt /0) of a state pt with respect to the unique final state
0,

S(p, /0) =.Tr[p, (lnio, —lnQ)] & 0, t & 0

has the desired convexity properties [we will also write
S(v, /y)]. It has been shown by Spohn' that the entropy
production in an irreversible process starting from state po
and ending in state 0 is then given by

ditional assumptions to avoid too complicated formulas.
Consider then a weakly irreversible process in the vicinity
of the central state characterized by

(12)

o(x/0) = ———Tr(co, )
N d
2 dt

N d
2 dt

Thus, in this simple example entropy production is entire-
ly given by the time change of the length of the coherence
vector as conjectured in the introductory remarks. Fur-
thermore, k=O implies for the matrix A in the original
Kossakowski generators 9 A=A and as a consequence
for the relaxation part R of G the symmetry R =RT.
This allows one to rewrite (14) in Onsager form,

M
cr(x/0) = g L,~x,x

s, m =1

where the symmetric Onsager coefficients L, =L~ can
be expressed in terms of the matrix elements a;k of A and
the completely antisymmetric structure constants" f;kt of
the I.ie algebra of SU( N) through

M

(2 —(iik)a.k(f t.fkt +fkt f 1
i,k, l = 1

(i gk)

(16)

Thus, in (15) the vector coordinates of the initial state
play the role of the generalized forces introduced in the
phenomenological theory which drive the system back to
its equilibrium state. It must be emphasized that (16) can
be considered a quantum-theoretic calculation from first
principles of the phenomenological Onsager coefficients
since relating the Kossakowski generator W to the Davies
theory of the weak-coupling limit for the open system
plus reservoir ' makes it possible to express the elements
a;k as one-sided Fourier transforms of reservoir cross-
correlation functions if the reservoir is appropriately
modeled as infinite quantum system. For further details
concerning this point the reader is referred to the forth-
coming lecture notes.

implying y =0 and k =0 [again det(G )&0]. Since
[Q,to, ]=0, condition (12) allows one to approximate

lap, —lnQ=-%co, ——,
' X co, ,

and, consequently, to second order in ~, one has
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