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The solution of various diffusion problems, in both continuous and discrete systems, can be ex-
pressed in terms of a Laplace transform of the exponential function of a fractional power. In this
Brief Report the need for a complete asymptotic analysis of these functions is discussed in the con-
text of one-dimensional diffusion with random trapping sites and the necessary asymptotic analysis

is carried out.

Much attention'~° has been recently directed to the
determination of the asymptotic behavior at long times of
the survival probability and the probability of returning to
the origin in the problem of dlffuswn with random traps.
In the one-dimensional case,®° these quantities can be
written down as integrals, whose asymptotic behavior is
easily determined by the saddle-point approximation.
This approximation may often be very poor at finite
times.” A complete asymptotic expansion is therefore
desirable. This is possible since the above-mentioned in-
tegrals are of a type which admits such an expansion.!'°

In Ref. 8 the complete asymptotic expansion for the
survival probability has been obtained as an approxima-
tion for the solution of the discrete random walk problem.
Here we derive the asymptotic expansion for integrals
ansmg as solutions of the continuous diffusion prob-
lem.*’ The solutions for both survival and return proba-
bilities are special cases of a family of integrals which
were encountered some 50 years ago in the problem of ab-
sorption of thermal neutrons.!! Although the coefficients
obtained in Ref. 11(a) are wrong, we will use the observa-
tion made there, that these integrals are a solution of a
certain differential equation, to obtain a general recursion
relation for the coefficients.

The integrals we wish to consider are of the type'!

o, (x)= fowy"exp[—(y +x/V'y)ldy
=2 fow wHlexp[ —(w?4x /w)]ldw , (1)
where v is real. This integral can also be written as
b, (x)=2x 2v+ 173 fo‘*’ e
xexp[ —x?u+1/u®)]du , ()
|

l)a(v) ——1+(2,V__3)a(v)z

xg,(x)=5z"t V[ (2v+1)+(2v—

x2gl(x)=

where u=x!7y~!2 Since u+1/u’ has a single

minimum (at u =2!/3), the above integral is of the type
considered already by Laplace. It admits an asymptotic
expansion”

¢(x)~2(m/3)" "%z /6)"*+ ' 2exp( — z/2){1+20("’ -k
k=1

(3)

with z=3(2x?2)!/3. The first term in the expansion is the
well-known steepest descent approximation.

To find a recursion relation for the coefficients a,”, we
note that!! ¢,(x) is a solution of the differential equation

#0241+ 2 4,00=0. @
For v=m /2, m integer, it is possible to solve (4) for
do(x), and obtain the other integrals from!'!®

GUx)=—dy_1(x) . (5)
The same effort is required for obtaining the coefficients

for an arbitrary real v, as we show below. Define

g (x)=z"*12 |14 2 az~

k=1

By substituting Egs. (3) and (6) in (4) we find that

(6)

x3g) (x)—(2v+2)x’g "(x)+~(4v+1+z)xgv(x)

—g[(ZV—}-1)(1+z)+1/3]g.,(x)=0. 7

Inserting the derivatives of g(x),

—2+ PR ] s (Sa)
T2V 2v+ D2y =2)4+2v—1D2v—4)a V2 "+ (2v—3)2v—6)ayz "2+ - -+ ], (8b)

X%} ()= 372" (2v+ 1)(2v—2)(2v—5)+ (2v— 1)(2v—4)2v—T)a "z =" +(2v—3)(2v— 6)(2v—9)as"z 24 - - - ] ,

(8¢c)
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in Eq. (7), which should hold for every power of z, we finally get
3k +2)a), =[6vP+9v—6k(k +3)— 2 Jai*), —[8v' —6(2k — 1WA —9(2k + 1)v+4k*k +3)+3k —S5]ay” . 9)

With a8’ =1 and a'”, =0, Eq. (9) is valid for k > —1.
We write down the first few coefficients explicitly:

6a“1V) = 12V2+ 18V+5 ’
725" =144v*+ 336V’ + 8417 — 144v 35,

1296a 5 =1728v°+4320v° — 4320v* — 13 3200° — 288v* + 6210v+ 665 ,
31104ay =20736v8+41472v7 —217 728v5—411264v° + 577 584v* + 993 888+° — 341 11212 — 488 016v+9625 .

(10a)
(10b)
(10c)
(10d)

In Ref. 11(a) the first two coefficients were calculated by a less direct route (which did not yield a recursion formula).

Unfortunately, the second coefficient there is incorrect.

It should be pointed out that ¢,(x) is in fact a known special function. By taking the Mellin transform of (1) and ap-

plying the Mellin inversion formula, we obtain the Barnes integral representation for a Meijer G function,

x?

by(x)=7""'2G}3 0,,v+1

1

12

(11)

If v is not an integer or — 7, then this can be further simplified to an expression in terms of the hypergeometric function
oF2. In its character, therefore, ¢, is similar to the product of two Bessel functions. More than merely giving the in-
tegral another name this places at one’s disposal the variety of functional relations known for the G function, including
series expansions and asymptotic expansions. In this way we find

_ e (DR 3
¢—1/2(X)—‘/;+‘/;k§1 (2k — 12K =,

where ¥(x)=d[InI'(x)]/dx. The integer values of the psi
(digamma) function are given by'?

m—1
P()=—vy, ¢Ym=—y+ 3 k', (13)
k=1

v being Euler’s constant. This together with (5), extends
the results in Ref. 11(b).

For the problem of one-dimensional diffusion with ran-
dom traps of concentration ¢ (and a diffusion constant of
unity), the average (over all trap distributions) survival
probability up to time ¢ is®”*°

8c?

y=3¢ S (2j +1)2
(Q 3 j§0 j

X fow exp

p 2
_<_2,z+l_§>ﬁ_c,],d,_

(14)

Its asymptotic behavior is determined by the j=0 term.
By substituting u =(c /7*t)'/?l, Eq. (14) is brought to the
form of Eq. (2) with v=—2. The asymptotic expansion is
therefore

(QMt)~16¢(t/3m)'/?
xexp(—z/2) |1+ 3 ax~2/z% |, (15)
k=1
where z=3(27%2)'? and a\7¥=1, &y V=%,
a7 V=38 7Y=L .. The improvement

over the saddle-point approximation at a finite ¢, obtained

[Inx —(2k +2)— 9p(k +1)]x 3 +!

+2 3 (—DF

K12k + 1)1 ’ (12)

[

by taking into account the first few terms in the expan-
sion, is considerable. This is demonstrated in Fig. 1.

The expansion (15) has also been derived in Ref. 8 for a
different integral, obtained as a solution for the discrete
random walk problem. (Substitute n/2 there by ¢ and
—Inp there by c.) The fact that the two integrals have
the same asymptotic expansion is physically clear. The
continuous diffusion problem approximates the discrete
case for small concentrations. But at long times the only
random walkers to survive are those who were born on
long trap-vacant intervals. The ensemble of all such seg-
ments corresponds to a small trap concentration.
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FIG. 1. Average survival probability for one-dimensional dif-
fusion with random traps. Full solid line, exact value for the
Jj=O0 integral in Eq. (14). Dashed curves, partial sums up to
k =m in the asymptotic expansion, Eq. (15). m is denoted in
the figure. Compare with Fig. 3(a) of Ref. 9.
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Mathematically, it is seen that the integral (5) in Ref. 8
is proportional to 2¢,—¢,, while the asymptotic expan-
sion (15) is that of ¢_,. The recursion relation for é,,
which is easily obtained from integration by parts!'!®

dUAx)=vd,_1(x)+ TXby_3/2(x) (16)

does not connect the indices 1, 0, and —2. It is therefore
implied that there is another relation between the asymp-
totic expansions

g1(x)—=3go(x)=2%g_,(x), (17)

where g and z are defined as in (6). The coefficients must
therefore obey

a7 V=ai" 342, . (18)

That this is so can be verified directly from Eq. (10).
For the average probability of return to the origin one
obtains®’

(Py=c? [[" 3 expl—jmt /P —cldl . (19)
j=1

Taking the j=1 term and using the same substitution as
in (14) brings Eq. (19) to the form (2) with v=—3. The
asymptotic expansion is therefore

(P)(t)~5c(2mz)"exp(—2/2)

o0
1+ 3 af=22 2k
k=1

(20)

—3/2) _ 35

with z defined as above and a{ > =2, a =—3,

(—3/2) __ _665 (—3/72) __ 9625
as =T296> %4 =3T1040 - - -

NN

We believe this demonstrates the convenience of using
the continuous diffusion approach over the discrete ran-
dom walk treatment® for discussing the asymptotic
behavior. Firstly, both integrals (14) and (19) turn out to
be special cases of the same integral (2). Secondly, the
fact that this integral obeys the differential equation (4)
makes it easy to derive the recursion relation (9) for the
coefficients.

Finally, we note that the asymptotic expansion of the
integral (1) may appear in many other physical situations.
For example, the Schwartz, Slawsky, and Herzfeld (SSH)
expression'? for the probability of vibrational to transla-
tional energy transfer (in the collision of a Morse oscilla-
tor with gas molecules) contains the integral

falx)=x? fowe’ysinh“z(xy‘l/l)dy . (21)

In the limit of large x this integral behaves as 4x 2g(2x).
Therefore

1+ 2 a](CO)/zk
k=1

fz(X)=8(1T/3)1/2x7/3CXp( _3x2/3)

(22)

2/3 5 0) __ 35

where z=6x“/ and a(lo’:;, a, =—37, etc. This ex-
tends the results of Ref. 13, where only the steepest des-
cent approximation is derived.
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