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The retarded nonrelativistic Schrodinger Green's function for an electron in crossed electric and

magnetic fields is derived here in closed form. The electric and magnetic fields are taken to be spa-

tially uniform but the electric field may have arbitrary time dependence and arbitrary orientation
with respect to the constant magnetic field.

The determination of the Schrodinger Green's function
for an electron in crossed spatially unifarm electric and
magnetic fields was addressed by Schwinger' in a relativ-
istic analysis for time-constant fields using a proper-time
technique. Furthermore, Feynman and Hibbs have also
discussed the equivalent nonrelativistic path integral for
uniform and constant electric fields. More recently such
high electric field Green's functions have been brought to
take an nonlinear transport problems by Thornber and
Jauho and Wilkins with provision for time variation of
the electric field. In seeking to generalize the nonrelativis-
tic retarded Green's function to include uniform magnetic
fields of arbitrary strength and orientation relative to the
electric field, we have found it simpler to rederive the
nonrelativistic Green's function in crossed fields directly
rather than take a nonrelativistic limit of the crossed field
Green's function determined by Schwinger relativistically.
This nonrelativistic derivation is reported here, following
Schwinger's techniques closely, for electric field of arbi-
trary time dependence crossed with a constant magnetic
field.

The nonrelativistic retarded Schrodinger Green s func-
tion for an electron in an externally impressed uniform
electric field E(t) having arbitrary time dependence
crossed with a constant uniform magnetic field 8 of arbi-
trary orientation, is defined to satisfy the equation
(R=c = 1 throughout this report)

[iB/Bt —4 (x, t)]G(x, t;x', t')=5 (x—x')5(t t') —(1)

with A (x,t)=II~/2m —}uotr 8+eV(x, t), where V(x, t)
= —E(t) x and Il= iV eA(—x) w—ith A(x)=-,'BXx.
[tr=(oi, crz, oi) denotes the Pauli spin matrices, and iso is
the Bohr magneton. ] For t & t',

[iB/Bt —M(x, t)]G(x, t;x', t') =0

and the retardation condition is characterized by
G(x, t ~t';x', t') —=0 so that iG(x, t=t'+;x', t')=5 (x—x').
Employing matrix notation anth respect to position space
indices (but not time indices), we have G(x, t;x', t')
=&xI G{t t')

I
x')»d ~(x t}5'{x—x')=&xIH{t) Ix')

and for t) t'

[i8/c}t—H(t)]G(t, t') =0
subject to the retardation condition iG(t =t'+, t')=I.
The formal solution of Eq. (2) is given in terms of the

time development operator

iG(t, t')=U(t, t')= exp i I d—TH(t)

where denotes time ordering. Denoting the time-
developed positional states as

I
x(t})= U(t, 0)

I
x), we

have G(x, t;x', t')=&x(t)
I
x'(t')) and (ia/at)G(x, t;x', t')

= &x{t)
I
H(t)

I
x'(t')) which yields

(8/c)t)[G(x, t;x', t'))/G(x, t;x', t'}

= —i&x(t)
I
H(t)

I
x'(t'))/&x(t)

I

x'(t')),
whence

G(x„t;x',t') =E(x,x', t'}

&x(t)
I
H(t)

I
x'(t'))

&x(t)
I
x'(t')) (3)

where K(x,x', t') is independent of t, and is to be deter-
mined from the initial retardation condition. Following
the techniques of Ref. 1, our program to evaluate Eq. (3)
will employ the Heisenberg operator equations of motion
for %(t) and A(t), and will use the solutions to eliminate
the explicit appearance of ll(t) in favor of x(t) in H(t).
Setting t'~0, one must then commute x(t) to the left of
g(0) factors in H(t) using the canonical commutation re-
lations, and finally the time integrand of Eq. (3) may be
determined explicitly with the use of & x(t)

I
x(t) = & x(t)

I
x

and %(0)
I
x'(0) ) =x'

I
x'(0) ).

Taking 8 along the xi axis and E(t) arbitrarily orient-
ed, we denote vectors as V=(Vi, V~~) where Vi=(V„V2)
and V~~

—Vi. Thus H(t) takes the farm

A0] P()H(t) = + poBtri eEi(t—) xi —eE—(~(t)x(~
2772 2fPl

and the canonical commutation relations are given by

[x(),P((]=i; [xi,Ili„]=i5 „; [II lili„]=ieF „,
where F=iBo.2 and F ' = —i crz/8. Forming the Heisen-
berg equations of motion, we have

dOg dPII

dt '
m

=i [H(t), Ili] = FIIi+eEi, —eE~(, (5)——
dt

d Ri ~ Ili dx)( P~(=i [H(t),xi]=
dt m di m
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The equation for dll&/dt is readily solved by setting
A1(t) =exp[(e/m)Ft]g(t), with the result

(t) e(elm)Ft II (0)+f d t e (el—mF teE

Substituting Eq. (7} into Eq. (6) for dxzldt, one may in-
tegrate directly to obtain the solution for x1(t) in terms of
IIj(0). Alternatively, this result may be used to express
IIj(0}in terms of xj(t) as

II (0)=eF(e"~ ' ' 1—) ' x (t) —x (0)—— dte"r ' ' dte "r ' 'eE (t}
m 0

Using the fact that F =i8oz and noting that o2 is idempotent (crz ——1), we have e xp[+(e/ m)Ft]=e xp(+ia c2o, t)
=cos(co, t)+itr2sin(to, t), where to, =e8/m is the cyclotron frequency. Consequently Eqs. (7) and (8) yield

II (t)= ' ' dt ' 'eE (t)+imto tr e ' '(e ' ' 1) —' x (t)— (0)—— dte ' ' die ' 'eE (t)0" mo" 0"
A corresponding treatment of P~~(t), which does not involve the magnetic field, yields

1 f f

xll 1 xll(0)]+et f dt'E~~(t') e f—d tf d tE~~(t)

In order to proceed with the construction of H(t), we need [IIz(t)+P ~~(t)j/2m. Since we deal with forms such as
~ ~

A 2 A
II1(t)=g(o2)V j it is useful to note that II1=V&g( —o2)g(oz)V& (since o2 is antisymmetric under transposition) whence
we obtain

t f
Ilz(t)= f d t f dt'eE&(t)exp[i1rzco, (t t')]eE—1(t')

m N
+ 2 Ixj(t)+xg(0) —2xi(t) xi(0)+[xi(t) xi(0) —xj(0) x1(t)]]

4sin (co, t/2)

N
2

f f — f
+ 2

t t t' dt eE& t exp i02coc t —t+t' —t" eEj t"
4sin (o1,t/2)

mc f d t eE&(t)exp[ —io2to, (t+t/2)][x1(t) —%1(0)]
8111 ccPqt 2

2

f d t f d teE&(t)exp[ —iozco, (t —t)][xi'(t) —Rj(0)]
2sin (co,t/2)

N f ff dt f dTf d t eE1(t')exp[icr2co, (t t+t' t /—2)]e E&(—t) .
sinto, t 2 o o o

Here

[xi(t)—xi(0)j =xi(t)+xi(0) —2xi(t).xj(0)+[x1(t) xj(0)—xi(0) xi(t)]

and the commutator required to bring x1(t) to the left of x1(0) may be evaluated using Eq. (8) in the form

fa~f f = —IOa fxj(t)=xz(0) — (e ' ' 1) 'II1(—0)+—f d te ' ' f dte ' 'eE&(t)
mn)c m 0

whence the equal time canonical commutation relations yield

[x, (t) x,(0)—x,(0).x, (t)]= — sin(o1, t ) .
mc

The result for II z(t) is

A, 2 f m mc
2 2

IIj(t}=f d t f dt'eE&(t)exp[icr2ro, (t —t')]eE&(t')+
2 X1(t}—xj(0)—2x1(t) x1(0)—

0 0 4sin (co, t/2)
2

CO t f — f t'

+ 2 f d t f d t f dt f dt'eE&(t)exp[icrqco, (t t+t' t")]eE1(t )— —
4sin (o1,t/2)

mco f
d t eE&(t)exp[ ia2co, (t+t/2)]—[xz(t) xj(0)]-

sin co, t/2

(12)

(13)

2l
sin(co&t )
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2mN f
t teE~ t exp —itT2N, t —t x~ t —x~ 0

2sin (co,t/2)

f dt' f d t f d t eE&(t')exp[ictzco, (t t+—t' t/—2)]eE&(t) .
sin(co, t /2)

(14)

A similar treatment of I' ][(t), which does not involve the magnetic field, yields (note that [x]](t),x[[(0)]= it/—m )

2 '
f f 2

&][(t)=m't-' x]]«)+x [](0)-2 [[(t»][(0)-i«m+ ', f d t f 'd «[[(t) — '[x[[(t) x-[[(0)]f d t f 'd «, [{t)

+ xtt(h) —xtt(0) ——f dTf dhE(t(F) f ch Ettth )'+ ef'ch'Ett(h') (15)

H(t) may now be formed from Eq. (4) using Eqs. (14) and (15). The time integrand of Eq. (3) involving

(x(t}
~
H(t)

~

x'(t') ) j(x(t)
~

x'(t') )

may then be determined [using the fact that x(t) has already been systematically commuted to the left of x(0) factors]
employing the relations (x(t} (

x(t)=x(t)
~

x and %(0) j
x'(0)) =x'

~

x'(0)). With this we find the Green's function for
uniform electric field having arbitrary time dependence crossed with a constant magnetic field of arbitrary orientation to
be given as (t ~ 0, set t'~0)

G(x, t;x', t'=0)
f

=E(x,x')h " 'exp —h f dh f d h f dh eEr(T)exp'[hahre(T h )]eE,, (h—)''
2m

2
mNc 2(xi —xi)—

8 sin (c(],t/2)
2l

sin(fd t)
mNc

N
2

f f — f f'
+ f dpf'dr f dh fdh eE, (h)ex'p[hr"rheh, (T+h :h h")]eE'r—(h")

8m sin~(co, t/2)

N~ f
d t Ee(ti)exp[ —to'ONE(t + t/2)](xi —xi )

sin co t 0

N
2

t te z t exp —icr2N t —t xj —xj
4 sin (co,t/2)

N t' t teP.& t exp io2N, t —t+t' —— e
2m sin(c(], t/2) C

+ (x —x' )'+
2t2 II II

'2 .
2e td t t EII t —

@II
—XI'I t t EII t

e+—x[[ —x
j]
—— d t d t g][(t ) dt'g[[(t )+ dt'&[[(t') poacr3 eE(t—) x-

t m 0 27?l 0
e

(16}

Of course the retarded Green's function has G(x, t &0;x', t'=0)=—0. The time-independent constant I[,(x,x') is detei-
~ined by magnetic gauge considerations similar to those of Refs. 1 and 5, with the result

&(x,x') =c exp[(ie/2)x&. BXxi—i4(x)+i/(x')],

where (}}(x)is an arbitrary gauge function. It is to be noted that E(x,x') embodies all of the (xi+ xz) dependence associ-
ated with the lack of spatial translational invariance induced by the magnetic field. Other (xz+xz) dependence arises in
conjunction with the electric field. Finally, the constant c is determined by the initial condition
G(x, t =0+;x', t'=0}=—i5 (x—x').

In the special case of time-independent constant and uniform electric as well as magnetic fields, the Green s function
for arbitrary orientation takes the form (t & 0;t'~0),
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G(x, t;x', t'=0) = c

4srt '~' sin(to, t /2)

XexpI( ie/2) x& 8 XxI —iP( x) +i/( x') —(i e'E'jt/2 mes, )

+(im/2t)(xll &II e +lit /24m + ie/2 E (x+x )

+(ie Ef /2mco, )a(t)+iis08o3t (ie—Ej /Sm)P(t)+(imta, /4)cot(ta, t/2)(x~ —xI )

+[(iet/mca, ) (i—e t/2mca, )cot(ca, t/2)](x~ —xg) Eg XBI,

ct(t)= J dt t cot(co, t/2) and p(t)= I dt t /»n (ca t/2)

For special cases in which either one or the other of the electric and magnetic fields vanishes, this reduces to the
well-known results of Refs. 2—5.
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