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In contrast to the H theorem in information theory, proved by Guia~u and Watansbe, a new

theorem is proposed in this paper and called the I theorem. The I theorem can be used to determine
of which type is the ergodic Markov process characterized by the decrease of entropy; this is useful

for the quantitative study of living systems.

I. INTRODUCTION

Boltzmann's famous H theorem, which gives the in-
crease of the entropy in a thermodynamically isolated sys-
tem, inspired the study of physical processes at the micro-
scopic level, and this in turn introduced the concepts of
Markov chains and Markov processes. ' Does the H
theorem hold in Markov process'? Using Shannon's entro-

py, Guipu and Watanabe3 proved that for a large class
of stochastic evolutions of the Markov type, the H
theorem holds (without reference to the boundary of the
system in which the stochastic evolutions proceed); since
then, in view of the H theorem, Guiasu suspected that
Markov chains would be of use in the study of processes
characterized by a decrease of entropy, but the original
meaning of the sentence quoted from Guia~u's mono-

graph ".. .suspected that Markov chains would be of use
in the study of processes characterized by. . ." is that he
did not recognize Markov chains can be used to study the
processes characterized by a decrease of entropy, so he did
not prove that an anti-8-theorem exists in Markov-type
evolutions. 4 In this paper, in accordance with the
development of nonequilibrium thermodynamics, ' we
shall establish that, for another class of stochastic evolu-
tions of the Markov type, an anti-8-theorem holds, which
we call the I theorem, for evolutions in which the entropy
decreases monotonically.

To clarify the significance of the hitherto-assumed
terms entropy and information, we denote the quantity
Shannon entropy by H, which can be derived from the
Boltzmann equation, and denote the quantity informa-
tion by I, which means negentropy, displacement from
randomness, or decrease of entropy. ' We express this re-
lation as

I= —~= (H, Hp) =Hp —H, , — —

where Hp denotes the initial entropy and H, the final en-
tropy of the system in the transition process.

II. I THEOREM

Let Q be a finite set; an element coGQ represents a
state of an open or closed system. Let

to&t] &&2& ' &~n &tn+] & ' '

be an increasing time sequence. The initial probability
distribution on the set 0 is

Pt, ()&0, +Pi,(ai)=I (a)GQ)

and a transition stochastic matrix family is given as fol-
lows:

(ai'&Q, to&Q; n =0, 1,2, . . . ) . (3}

Here P, (to) represents the probability of the state ai at the
moment tp, while P. . .(to'

~
to) represents the transition

probability from the state ai at the moment t„ into the
state co' at the moment t„+&.

If the successive probabilities of the different states at
different moments are given according to the following
Markov-type evolution:

P, ,
(co') = g P, (to)P, ,, „(to'

~
to) (to' & Q, to & Q)

and if at every moment t„, the entropy on the set Q of the
system's state is given by Shannon's discrete entropy

H, = —gP, (ai)logP, (ai),

where here the logarithms are taken with respect to an ar-
bitrary base greater than unity, then we have the following
theorem.

I theorem. If for every moment t„, the transition prob-
abilities of the matrix P. . .(ai

~
to) satisfy the inequali-

ties

A, ~ gP, (to)[P. . .(cg'
i
to) —5„„]

=A,„[P, ,
(co') —P, (oi')]&0 (co'GQ, coFQ) (6)

and if by relabeling the subscripts of the elements [this
does not change the corresponding value of the entropy
H, (Ref. 9)], the probability distribution at any moment

can be rearranged into the sequence

1&P, =P, (oui) &P, (oi, i)&Pt„(oiJ)

&P, (ai )&0, (7)

H, &H, ,
(n=0, 1,&, . . . ),
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that is, the entropy of the system decreases monotonically
in this evolution.

Here, 5„„is the Kronecker 5 function, defined as

1 1f co =co
5 ~ =

0 1f co +co,

and A,„is a sign factor, defined as

+1 tf co =ciJ~,co2, . . . ,coj
~ r—1 lx CO =Q))~fgPJ+)~. . . ~Q)~

(10)

In the sequence of (7}, P, ,„denotes the maximum of

P~ (~); P~ (~), && (~q), , P, (coJ ~) are those probabil-

ities increased while P, (co&),P, (r0 +&), . . . ,P, (ro ) are

those decreased in the evolution; P, (r0J ) is the maximum
fl

of the decreased probabilities, m is the number of ele-

ments in the set.
Proof. According to (4), (9), and (10},formula (6) may

be expanded into the following expressions: in cases
where co'=co~,coq, . . . ,c0», A,„=+ I, we get

,
(~') = g P, (co)P. . .(co'

~

co) & P, (co'), (1 la)

and in cases where ~'=co~, co~+), . . . ,co, A,„=—1, we

gei

P, ,
(co') = g P, (r0)P. . .(ro'

i
co) & P, (c0') . (11b)

This means that during the transition the state probabili-

ties of a system change as follows: those P, (co') less than

P, (coJ &) get less and less, while the P, (co') greater than

P, (coj ) get larger and larger. Using the symmetric

convex property of Shannon's entropy function
H(P, (co~),P, (co2), . . . ,P, (coj ~),P, (co&), . . . ,P, (co )), we
can prove the I theorem holds. It is well known that
Shannon's entropy function is continuous in each variable
Pt(co) in the interval (0„1), and is a symmetrical, single-
valued function in all variables. The total differential at
any time t is

H, 0,
dH, = dP, (ro))+ + dP, (~,)

P, a,

aH, aH,
+ dP, (~~ )+ + d&, (co ) .

P, ; ' ' P, ( )

Since the probability distribution is subject to the condi-
tion Q„P,(r0) =1, there are only m —1 independent vari-

ables. For the proof of the I theorem, if we select P, (ro, ),
the maximum of the decreased probabilities, as a depen-
dent variable, namely

P, (a)J.}=1 [Pg—(a)(}+ +P, (a) ))

+P, (ro&+&)+ +P, (co )],
then the partial derivative of H, with respect to P, (cok ) is

aH, - aH, ap, (~, )

ap, (col,), , ap, (a);) ap, (cok)

[Pi(rok)logP, (rok)] — [P, (rej )logP~(coJ )]
P~ k

= —[loge +logp, (rok )]+[loge+logP, (co; )]

P~(~k)= —log
P&(r0;)

In cases Nk =Op), c02, . . . ,coj. ), we have

aH, p, (co, )

since P, (co&) & P, (cof),

aH, z, (~,)= —log (0
a, (~2) pt(~, )

since P, (co )&2P, (coj }, and so on up to

aH, p (coj i)= —log Q 0
apt(coj. )) p, (coj )

(15a)

since P, (co& ~) &P,(~J. ); and in cases ~k=~, ~, +»
op, we have

aH, =—log =0,
ap, (coj ) p, (a)J )

aH, P, (a)J+I )= —log &0,
ap, (~,+, ) &,(~; )

since P, (co~+&) (P,(col), and so on, up to

aH, p(co )= —log )0,
ap, (co } p, (coj.}

(15b)
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since P, (a)~ }&Pg(a)g). Let

dP, ,(co)=P, ,(r0) —P, (co),

P, (~)=P, (co)+85P, ,(co) (0&8&1}

and according to (7) we have

(16)

(17}

so the formulas (15a} and (15b) hold for P, (co). On the
other hand, from (1 la) and (1 lb), we get

&Pg, (coi) &O, lLP, ,(co2) &0, . . . ,bP, (~,) &0;
(19a)

bP, ,(col) &0, hP, (col+&) &0, . . . ,~, ,(co ) &0 .

1)P, (c0|)&P, (F02) & )P, (cog)) . &P, (co ) &0,
(18}

(19b)

Hence, according to the mean value theorem, we have

»+
gP ( ) P ( )~tg/i(~ln }5

t Nns '& ss
(20)

That is,

H, &H,

I, ,
=H,,—Hg

Then, inst~~ of (22), we have

(25)

H, &H, , &Hi, & )H,, &H.. .)
Here, the meaning of the bars and subscripts is that after
the differentiations are carried out, we replace P, (r0) by
P, (co) in all terms, namely

H, Pi(~k)= —log
&P,(r0I, ) ~~,(a i P, (coj ) ~i,~k i

Pi, (r0a }
=—log

P,,(~, )
' (23)

and so on up to

which satisfy the inequalities (15a) and (15b). Thus,
we come to the conclusion that the entropy H de-
creases monotonically as the point changes from
[P~,(~i» " P~,(~ }I«[Pi„„(r0i»

According to the definition of information (1), we may
express the information {negentropy} in terms of entropy

This means the information (negentropy), or the order of
the system, increases monotonically during the Markov-
type evolution satisfying the conditions (6) and (7), so we
call it the I theorem, meaning the information-increasing
theorem.

Event||ally, we have a theorem with which we can deal
with a system (open or closed, such as a living system)
changing from the equilibrium state [the corresponding
maximum entropy is H(1/m, 1/m, . . . , l/m)] toward
any nonequilibrium state in Markov-type stochastic evolu-
tion, in which the entropy will decrease monotonically.
However, there is still a practical problem remaining to be
solved, and this will be discussed in the next section.

III. I CRITERION

The important practical problem in studying the
information-processing ability of a living system is of
which type is the ergodic Markov process characterized
by the decrease of entropy and how to determine this
Markov-type process. The answers pvould be clear by
studying the condition that the transition probabilities
P. . .(co'ice) at different moments are all equal and

equal to P(ra'
i
co)—the transition probabilities of an er-
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godic Markov chain. In this case, the inequalities (6) and
(7) would hold when P(co'

~

co) satisfies the following for-
mulas:

we have

,(co;)= gP, (co)P(co;
~
co),

[P(co;
~

co) P—(co;+ i ~
co)] & 0,

~ [P(co'
~
co; ) P(—co'

~
co;+, )]& 0,

[P(co'
~

co ) P, —(co')] &0,
(27)

where co,co'=coi, coz, . ,co, i =1,2, . . . ,m —1. All of
these inequahties are together called the I criterion; here
co or co' will be given as coi, co2, . . . ,co successively; and to
every given co or co', co; will be given as coi,coi, . . . ,co

in a similar way. The I criterion can be used to determine
which type of Markov processes are characterized just by
the decrease of entropy. This may be demonstrated as fol-
lows.

At first, let us consider the inequalities (7). According
to Eq. (4)

, (coI ~i)= +PI (co)P(co;+i
~
co),

inasmuch as the inequalities (26), we get

[Ps ((coi ) PI —(coI + i )]

= +PI (co)[P(co;
~

co) P(co—;+i ~
co)] &0, (30)

that is, the inequality series (7) holds.
Next, for the proof of the inequalities (6), we select the

probability of the last element P, (co ) as a dependent

variable, that is

P, ,
(co')= +PI (co)PI I .(co'

i
co)

= gP, (co)P(co'
i
co),

P, (co~)=1— g P, (co"),
IS

Cd =Co i

and substituting it into (6), we obtain

(31)

k„gP, (co)[P. . .(co'
~

co) 5co'co] =—&„gP, (co)[P(co'
~

co) —&co'co]

gP, (co)P(co'
i
co) P, (co')—

P, (co")P(co'
~

co")+P, (co )P(co'
~

co ) —P, (co')

=A,„g P, (co")P(co'
~

co")+ 1 — g P, (co") P(co'
~

co ) P, (co')—
SS SI

Cd =Ol
~

Cd =Co
1

IS
Cd =Cd'

PI (co")[P(co'
~

co") P(co'
~

co )—]+[P(co'
~

co ) P, (co')]—

=A,„+PI(co)[P(co'
~

co) P(co'
~

co )]+[P—(co'
~

co ) P, (co')] &0 . — (32)

Here, we insert a zero term P, (co )[P(co'
~

co )

—P(co'
~

co )] in the last step. Obviously, if the terms in
the braces satisfy the conditions

A,„[P(co'
/
co;)—P(co' [co;+i)]&0,

A.„[P(co'
~

co ) P,,(co')] &0—
A,„[P(co'

i
co) P(co'

f
co )] &0, —

A,„[P(co'
i

co ) P, (co')] &0, —

the inequalities (32}and then the inequalities (6) hold.
However, according to the conditions (27) and (28)

(33)

(34)

of the I criterion, (34), or (32) hold only for P, (co')

=P,,(co'}. So we have to prove that, if (32) holds for
P, (co')=P,,(co'), they hold automatically for P, (co') of
arbitrary moment. This may be proved in a somewhat
different way.
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According to (4) and (16) we have

b, P, ,
(c0')=P, ,

(co') —Pc (~')

= g Pt (c0)P(c0'
i
c0) P—, (c0')

= g [M, (a))+P, ,
(co)]P(c0'

~

c0) P—, (co')

Taking into account expression (2),

gP, (c0)=1,

we have

g ~,,
(co)=0 .

= gM, (co)P(co'
~
co) .

Hence, we can rewrite inequalities (32) into a new form

A,„gP, (u)[P(co'
i
c0) —Sco'co]

=A,„g[P, ,
(c0') P,—(c0')]

Let us substitute

&P,, (COJ) = [d—d',
, (c0])+ . +M, (c0,)

+~~,(~J+i)+ ' ' +~~~, (~m)l

into the left side of (36) for t„+, t2 —We .get

A,„~,,(c0') =A~ g EPc (a))P(co'
~
co)

EP, ,
(c0')

=A, ~ g d P, (c0)p(co'
i
c0) & 0 . (36)

co"(+re )

M, ,
(c0")[P(c0'

i
a)") P(co'

i

—c0J )]

=& ~ g &P, ,
(co)[P(c0'

(
co) P(a)'

(
—a)J )] .

A,„~,, (c0')=A,„[Pt,(a)') P,,(c0')]—& 0 . (37)

On the basis of (37), we shall prove that (36) holds for any
moment.

We have noticed that, in the case of P, (c0') =P,,(co'}, the

inequality (32), now in a new form, holds:
(39a)

Here the expression co"(&coj) under the sigma denotes the
summation of all the terms with the exception of
~,, (coj), and in the last step we insert a zero term

bP, , (co& )[P(c0'
~
coj ) P(c0'

~
coj—)]. Now, we split Eq. (39a)

into the following expressions:

A,„BP,,(co') =Agdd', ,
,
(c0+ }[P(co'

~

co+ ) P(ra'
~
coj )]+—g b P, ,

(c0' )[P (co'
)

co ) P(co'
~
coj )]—

g hP, ,
(a)+ )A, [P(c0'

(
a)+ ) P(c0

~
c0j—)]+g EP,, (co' )A,„[P(co'

~

c0') P(co'
~

c0—
~ ) ]

/gal
+

(39b)

+Here N =N), Ng, . . . ,N) ), N =NJ', NJ'+)). . . ,N~.
According to (37}

Substituting (40a), (40b), (41a},and (41b) into (39b},we ob-

tain

A,„b,P, ,
(co') &0, A,„M,,(co') &0 . (42)

we have

EP, ,
(co+) &0,

EP, ,
(a)') (0 .

On the other hand, from the conditions (27)

X„[P(~'
~
~, ) P(~'

~
~, +, )]&0-,

we get

A,„[P(a)'
f
co+ ) P(~'

/ co~ )] & 0, —

A,„[Pco'
i
co') P(co'

i coj )](0 . —
(41a)

(41b)

That is, (32) holds for t„+~ t2. Likewise, w—e—can prove
that (32} holds for arbitrary moments t„+,, namely, (6)
holds,

A,„EP, ,
(co') &0 . (43)

Consequently, we have the conclusion thai the I theorem
is true as the inequalities (26), (27), and (28) hold.

Thus, when an erg odic Markovian transition-prob-
ability family P(co

~

co) is known, with the help of I cri-
terion, we can determine whether or not the evolution is a
prcx~ss characterized by the decrease of entropy. Fur-
thermore, for the moment, the Markov-type transition
probabilities cannot yet be determined experimentally and
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theoretically; however, the I criterion sheds light on the
resolution of this key problem in living systems; we dis-

cuss this in the next section.

IV. DISCUSSION

The I theorem is a theorem of phenomenological mi-

croscopic stochastic theory concerned with the processes
characterized by the decrease of entropy; it can be used to
describe the changes of a system from the equilibrium
state toward the study nonequilibrium state in living or-
ganisms, in which the steady-state or homeostatic sys-

tems, perhaps the most characteristic of biological sys-

tems, are not at equilibrium. 'o It is well known in biologi-
cal theory that life is a temporiLry reversal of a universal

trend toward maximum disorder brou ht about by the
production of information mechanisms. ' A good exam-

ple of such an information mechanism is the "Markov
machine, " since it is much more easily constructed and
maintained, and it tends to be less upset by minor in-

jures. '2

An example of such a mechanism is active trans, mrt
across a cell membrane. Ryan, "following Spanner,

'"' in-

troduced a model of it as a completely isolated system, di-
vided into two eqiinl halves A and B, by a semipermeable
membrane C, containing water and a number of solutes.
Suppose that for the system to be in equilibrium that all
of its constituents must be uniformly distributed original-

ly, and then a disturbance in the equilibrium may be
caused by an activity of the membrane which causes a
redistribution of the solutes within the system; in the tran-
sition procesises a solute may be in any of three locations:
side A, side B, or attached to a au'rier located on the
membrane C. If the transition probabilities were known,
the associated entropy of the system in the steady non-

equilibrium state could be calculated from the space of 2-

tuples, denoted as Qz, the corresponding probabilities are

P, (to)P. . .(to'
~

to) =P, (to)P(to'
( to ),

that is,

H, ,
(Q2) =—g g P, (to)P(to'

~
to)log[P, (to)P(to'

~
to)],

Ql 07

(45}

when t„+i——t„,where co,co'=toq, to~, cot-, the elements in
location A,B,C; the corresponding maximum entropy
H,,(Q ), of the original equilibrium state associated with

this system may be determined when all P,,(to) and

P(oi'~to) are equiprobable, and the information of the
system processed by the membrane activity is

I, ,(Q ) =H,,(Q ) H—, ,(Q ) . (46)

Thus, we could calculate the average rate of the fiow of
information in such an active transport model and use it
to estimate the information-processing capacity of a living
cell if the H, (Q ) were known.

A main problem involved in this process is that, though
the final distribution of solutes, namely, the P, (co), can

be determined experimentally, " the transition probabili-
ties P (to'

~
to) so far can neither be determined experimen-

tally nor theoretically.
In theory, according to the properties of ergodic Mar-

kov chains, we have'

P, (co')= QPt (to)P(to'
i
to),

QPt (to')=1 .
CO

(48)

For the known experimentally P, (co'}, the expression (47}

denotes m simultaneous equations with m(rn —1} un-
known quantities P(to'

~
to) in Eq. (3)

QP(to'~ co)=l . (49)
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Now, in the light of I criterion, we can determine the
Markovian transition probabilities P(to'

~
to) by trial and

error method from expression (47). This way, the set of
transition probabilities satisfying the expression (47) is not
unique, however, it is sufficient to evaluate the infor-
mation-processing capacity of a living cell.
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