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%hen a quantum system has a chaotic classical analog, its matrix elements in the energy represen-
tation are closely related to various microcanonical averages of the classical system. The diagonal
matrix elements cluster around the classical expectation values, with fluctuations similar to the
values of the off diag-onal matrix elements. The latter in turn are related to the classical autocorrela-
tions. These results imply that quantum perturbation theory must fail, for chaotic systems, in the
semiclassical limit A~O: T~o arbitrarily close Hamiltonians have, in general, completely different
sets of eigenvectors.

I. INTRODUCTION AND THEORETICAL
PREDICTIONS

If a qu;mtum system has a chaotic classical analog,
then, in the semiclassical limit R~O, all the energy eigen-
functions

I E) have roughly the same aspect: their
Wigner distributions' fill the entire available phase space
(namely, an "energy shell" with thickness &R of order fi)
with an amplitude which fluctuates around the classical
microcanonical phase-space density. It follows that the

expectation value &E
I

A
I E) of a "reasonable" operator

A [that is, an operator having a well-behaved classical
limit A(p, q) as A~O] ' tends to the microcanonical
phase-space average~'s's

Apq E —Hpq p q
&E

I
A IE&=[A(E)I =

E —Hp, g p

(In this paper, I I denote the classical microcanonical
average. ) It is thus possible to obtain purely classical esti-
mates of diagonal matrix elements. The purpose of this
paper is to extend our previous work to off-diagonal ma-
trix elements and to evaluate the deviation of the quantum
results from the classical ones.

Our theoretical predictions are listed below, in the
present section. It is shown that although indiuidual ma-
trix elements, in the energy representation, can be con-
sidered as pseudorandom, their statistica! behavior fol-
lows well-defined rules governed by classical statistical
mechanics. Section II reports the results of numerical

I

simulations, which are in good agreement arith our predic-
tions. Section III discusses some implications of these re-
sults for the range of validity of perturbation theory.

The fundamental formula which is proved below is

y (E. E )2"
I
A.k I

trt "I(d"A/dt") ) (2)

where

QAjkAk ——&E IA IE )={A I, (4)

A A
as explained above. We now replace A by [iH, A ] so that

Ajk~ &E, I
[iH, A ] I

Ek & =t (E, Ek )'Ajk-

However, [iH, A ]=dA /dt, whence it follows that

g(Ej Ek)
I Ajk I

=trt j—(dA/dt) I .

Here dA/dt may be expressed by the classical Poisson
bracket [A,H]pB, if one wishes so. Replacing again and

again A by [iH, A ], we finally obtain (2).
We have thereby obtained a semiclassical approxima-

tion for all the moments of the off-diagonal matrix ele-
ments, from which one can derive, in principle, the distri-
bution of the

I Ajk I
themselves. This can, however, be

done more directly as follows. Consider

and the right-hand side (rhs) of (2) is the microcanonical
average at energy EJ. Equation (2) can be proved by in-
duction, as follows. For n =0, we have

g exp[t «, —Ek)«%
I

A k I

'= g &E, I
exp(iEjt/&)A

I Ek &exp( —iEk«&) &Ek
I

A
I E, &

k k

=&E, Ie' ' "Ae ' ' "A IE, )=&E, IA(t)A(0) IE, ),

where A(t) and A(0) are now given in the Heisenberg pic-
ture. In the semiclassical limit, this ought to tend to

T
C(t) =

I A (t)A (0) I = lim —f A (t +~)A (r)d~,
T ~ T

because, for an ergodic system, the microcanonical aver-
age is the same as the time average Here, C(t)=. C( t)—
is the autocorreiation of the classical dynamical variable
A. Its Fourier transform

S(ro) = f C(t)e '"'dt, -
(9)
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is called the power spectrum of A.
There is, however, a difficulty. Equation (7) contains a

constant tenn Ajj IA j2. If this does not vanish, C{t)
tends to IA jz as t~m, so that S(ro) is singular for

A ~ A,
co=0. We must therefore replace A by A —diag(A) or,
more simply, if we deal with a tM]tmw energy range, by
A —(A j. This is equivalent to subtracting Ajj from Eq.
(7), or t A j from Eq. (8). We obtain

g'exp[i(Ej E )tlat]
~ Ajk ~

t~C(t) —IA j2 . (10)
k

where g' excludes the term with k =j. The rhs of (10)
falls off for t~ ce and its Fourier transform gives a well-

defined power spectrum S(ai). We shall henceforth as-

sume that we have subtracted t A j from A, so that the

new A satisfies I A j =0. We may now return to Eq. (9),
from which we obtain

I Ajk I
'~((Ej Ek)/&)/2~P«»

p(E)=jt f5(E —H(p, q))d pd q, (12)

is the coarse-grained density of states. The latter must
appear here because when we perform the Fourier
transform from t to r0, we must replace the discrete sum
in (7) by an integral:

f tt(Et)dEt 3
k

It does not matter whether one uses Ej or Ek in Eq. (12)

A

since both must coincide in the semiclassical limit fi-+0,
as otherwise S{(EJ —Ek)/A) tends to zero.

Unfortunately, it is extremely tedious to compute the
rhs of (8) and (9). However, a reasonable approximation
to (9) may be obtained from the periodogr am'

1 T
S (co, T) =—I A (t)e'"'dt

0
(14)

Although S(oi, T) itself does not converge to a well-
defined limit for T~oo, ' and may even be a Cantor
set, " a suitable ensemble average {S(to,T) ), taken over a
family of classical orbits, does converge ]t

lim (S(a],T)) =S(a)) .
T~ oo

(Here, the angular brackets ( ) do not denote a quantum
average, but a classical ensemble average, such as one ob-
tained by randomizing initial conditions. )

The limit a]~0 ought to be considered carefully:

S(0)= f [C(t)—[Aft]dt, (16)
T 2= lim

( f [A(t) —(A[]dt T), (17)

where we have returned to the original definition of A.
This expression thus gt'ves

~ Ajk ~
for

~ EJ Ek
~

~—0, but
not of course the diagonal element itself, Ajj-IA j, which
has been subtracted from it We .shall now argue that (16)
is related to the deuiatt'on of Ajj from I A j.

It was suggested long ago by Pechukas~ that the jltdc-
ttdations of the diagonal matrix elements should be of the
same order of magnitude as the elements near the diago-

FIG. 1. Diagonal matrix elements Ajj (crosses) and their semiclassical value I A j (solid lines). The three solid lines represent I A j
and f A j plus and minus the expected quantum fluctuations, as functions of the energy E. There is good agreement for low E, in the
classically chaotic domain, but not for large E, in the classically regular domain, where the quantum fluctuations turn out smaller
than expected. Negative values of E correspond to opposite values of Ajj and t A j.
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nal. This prediction is supported by the following argu-
ment. Consider two energy levels EJ and Ek which are
close to each other (but not necessarily consecutive) and
define two new orthonormal states

I
+ & =2 '"(

I EJ &+
I Ek &»

so that

(18)

FJ —
Aij —IA)—.

We have from (20}

(F Fk—)~Aik .—1

(21)

Assuming that the various F~ are statistically indepen-
dent, we obtain, as a rms average,

(23)

where ( ) now denote a statistical average over a set of
neighboring levels.

H ~+)= ,'(EJ—+Ek)~+)+ ,'(Ef-Ek—) ~+) . (19)

Since
~ Ei Ek —

~
is very small (of order fi") we see that

~

+ ) are "almost eigenstates" of H, with energy
(E&+Et,)/2. We therefore expect that these two func-
tions are qualitatively similar to

~
EJ) and

~
Ek): name-

ly, they fill the entire energy shell with a probability dis-
tribution fluctuating around the classical micrmumonical
phase-space density.

It follows that &+ ~A (+&=&—~A
~

—)=fAJ and,
moreover, that ( —

~
A

~
+ ) is roughly of the same order

of magnitude as Ajk. Thus

Ap ( —
~

A
~
+ ) = —,(AJ —Akt, +Amok

—Akj) . (20)

The last two terms in the rhs mutually cancel, if Aik is a
real matrix (at most, their difference has the same arder
of magnitude as the lhs of the equation}. Now define the
"fluctuation" of A as

+
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A plot comparing Aij and I A I is given in Fig. 1, where
the three solid lines represent I A ) and jA I+(Fi )'
The quantum fluctuations (FJ ) can be predicted with
various levels of reliability and (difficulty) as explained
below. Before we da this, it ls good to have a look at Fig.
2, which shaws the "thickness" && of the energy shell
where the Wigner distribution' is appreciably different
from zero:

Xk IAJt I'(~g —Ek}' +IlH, A/41(AR)2= (26)g'
~ A,k ~' IA'I —IA I'

k

Note that this ~& depends on Ei and also on the choice
of the dynamical variable A. Figure 2 compares both ex-

pressions far &E, with A given by (25) and EJ——0. (Note
that EJ 0 is——an eigenvalue of H, lying in the chaotic re-
gion of phase space. }' 's The agreement is quite satis-
factory, up to quantum fluctuations similar to those of
Fig. i.

We now turn our attention to these qutuitum fluctua-
tions. Their most reliable estimate is given by Eqs. (11)
and (23):

H. NUMERICAL SIMULATION

To test the validity of these various predictions, we
have used the double-rotatar model which was extensively
discussed in previous publications. " ' The Hamiltoni-
an 1s

0.2-

8=L,+M, +I.„M„, (24)

~here L and M are independent angular momenta. Since
L =A l (l + 1) and M =A rn (m + 1) are constants of the
motion, the Hamiltonian is, for given I and m, a finite-
dimensional matrix. Therefore all our calculations are ex-
act (there is no need of truncation) except for numerical
noise, such as round-off errors. We take 0

0
A =L,+M, , (25}

FIG. 2. Thickness of the "energy shell" ~ for each energy
level EJ. The crosses are given by the quantum expression, and
the solid line by the classical expression in Eq. (26}. The Wigner
distribution in the classical phase space is appreciably different
from zero for

~
H(p, q} Ej ~

&LEE. Note t—hat Fig. 1 involves
only the diagonal matrix elements, while Fig. 2 involves only the
off-diagonal ones.

and use the same numerical data as in our preceding
work, namely I =m=20 and %=0.1707825, so that
L =M=3.5. An investigation of the corresponding clas
sical problem' shows that low energies (say

~
E

~
&5)

correspond to mostly chaotic orbits, while high energies
(

~
E

~
& 8) involve mostly regular orbits.
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FIG. 3. Numerical test of Eq. (11). Each cross represents the value of an off-diagonal matrix element; each error bar is, on the
same scale, the value of the rhs of (11),as approximated by the periodogram (14). The agreement deteriorates for larger values of Ek
because of round-off errors in the computer.

~
(S,') ( =S(0)/~p(E, ) . (27)

However, in practice, it is extremely tedious to compute
S(c0) from its definition in Eqs. (8) and (9} and one re-
places it by the approximation (15), which is based on an
ensemble average. s'~ We have performed this ensemble
average for a single energy, EJ ——0, by choosing in a ran-
dom way 30 classical orbits of duration T=6694.07
(about 1000 oscillations of the double rotator}. All these
orbits had I.=M=3.5 and E=O. The result is shown in
Fig. 3 where we plot, on a logarithmic scale, the lhs and
rhs of Eq. (11) for EJ ——0 and for various k. The average
results for the 30 classical orbits are represented by error
bars in the standard way. The agreement of the quantum
results and the semiclassical approximation is excellent.

We also see in Fig. 3 that ln
~

Aok
~

is roughly parabol-
ic in Ek. In other words,

~
Aok

~

can be approximated by
a Gaussian distribution. There is no theoretical justifica-
tion for this result and it should not be expected to hold
for other models. However, if we have reasons to believe
that, for some model, it is a good approximation to take

/ Ajk /

a exp[ b(EJ Ek—) j, —

(pa ) = ( I A 2
j —

I A J ) /2iri)i I [A, H]pn J . (30)

This gives, for A =I.,+M, and E=O, a result a=0.10,
in good agreement with the data on Fig. 3. It is therefore
Eq. (30) which we used to draw the upper and lower lines
in Fig. 1.

On the other hand, the value of b obtained in the same
way is too low by about a factor of 2. The lack of agree-
ment should not be a matter of concern, because the ma-
trix elements for Ek ~ 1, which are those giving the "para-
bolic" aspect to the plot of Fig. 3, have a negligible weight
in the sum (29).

In fact, Eq. (30) could also be derived, except for the
factor 2n, by simple dimensional analysis: from the defi-

then the constants a and b can be readily evaluated,
without going through the tedious calculation of (8) and
(9), or (14). We simply substitute

g(EJ Ek) "~AJk
~

—pa JE "e dE, (29)
k

whence we obtain, after an elementary calculation using
Eq. (2),
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nition (28), the lhs of (30) must have the dimensions of
(A /energy), it must be multiplied by c if A~cA, for
any constant c, and it must be invariant under A ~A +c
Then, if only A, j A j, j A j, and powers of [A,H]pa are
admitted in the rhs of (30), this detertnines this rhs com-
pletely, except for the numerical factor 2n

III. IMPLICATIONS FOR PER'I'URSATION
THEORY

Consider a Hnmiltonian H =Ho+ V. Let EJ,Ek, . . . be
eigenvalues of Ho. As is well known, elementary pertur-
bation theory fails if these eigenvalues are degenerate or,
more precisely if

I EJ—Ek I & I
V'h

I
Indeed a neces-

sary (but not a sufficient) condition for the eigenvectors of
H to be close to those of Hc is that

I Vjk I
« IEJ—Ek I

.

For regular systems, having selection rules, most Vih
vanish so that (31) is trivially satisfied. On the other
hand, in a chaotic system, the Vik are psetsdorandom.
For neighboring levels, I

E —Ek I p and Eq. (31)
reduces to pea «1, with a defined by (28). Thus, by vir-
tue of (12) and (30) we obtain the condition'6

2f S(E—H)d"pd"q (I V'j —
I vj')'

gN+2 {32)
[V,Hc]pa

The rhs of this equation involves only classical quantities.
Therefore perturbation theory can neuer be valid in the
semiclassical limit R~O: for an arbitrarily small but fi-
nite perturbation, the nth eigenvectors of Hz and H are
nearly always nearly orthogonal to each other. This result
is similar to the orthogonality of bare and dressed states
in quantum field theory. ' [I4aturally, for finite i)l, it is al-
ways possible to make V small enough so that {32) is
valid. This does not guar mtee, of course, that the pertur-
bation series will then converge. ]
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The results obtained here allow us to sharpen those of a
previous article. It was shown in Ref. 7 that the time
average of the quantum fluctuations of a time-dependent

operator A(t) is given by

F'=&[&A{t)& ]'& —[«A(t)» ]' (33)

=gg l peak
I'IAthI' —g I piiAit I' (34)

j k J
This can be written as

F'= g g'
I peak I

'
I Ajk I

' {35)
j k

which involves only off diagona-l matrix elements. As-
snmmg statistical independence, this is

F'=&
I Ata I'& g g'

I pih I

' (36)

where & & denotes an ensemble average. Since

gk ~ Aik ~

= I A j —I A j, this ensemble average is about
( I A j —

I A j )/N, where N is the number of energy levels
involved.

On the other hand, gigtjpth ~
may take values

from 1 (for a pure state) to N ' (for an ideal mixture).
The practical situation is usually closer to a mixture and
one obtains

F =(IA j —IA j )/N (37)

which is smaller by a factor N than the estimate of Ref. 7.
This strengthens the validity of the results claimed in that
pa
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