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Response of the basic period-doubling mode of the dissipative Fermi-Ulam model to a periodic
perturbation is studied both experimentally and theoretically. An intuitively obvious explanation of
the noisy-precursors phenomenon is presented. Possible practical imphcations of the resonant-

response phenomenon are discussed. Connections with the virtual Hopf phenomenon predicted by
%'iesenfeld are indicated.

I. INTRODUCTION

This paper concerns a connection between two phenom-
ena discovered recently in nonlinear dynamical systems:
noisy precursors of period-doubling bifurcations and the
resonant response of period-doubling modes.

As shown by Wiesenfeld, ' random noise should induce
new features in the power spectra of systems displaying
stable periodic behavior as those systems approach a
dynamical instability. In the case of a period-doubling in-
stability the "new features" stand for broadband lines ap-
pearing in the power spectrum at the frequencies at which
period doubhng is to produce its next 5 peaks. Such
noise-induced lines, preluding the occurrence of a period-
doubhng instability, were observed in experiments on non-
linear RLC circuits. 2

The second of the two phenomena mentioned above, the
resonant response of period-doubling modes, was
discovered in experiments on a nonlinear mechanical sys-
tem. Studying the bifurcation diagram of a basic,
period-doubling mode of the system, we noticed that the
phase of the mode responds to a periodic perturbation in a
resonant manner. The peak of the resonant response
proved to be dependent on the value of the nonlinearity
parameter A, . For increasing A, the peak shifted within the
response spectrum towards the frequency at which period
doubling was to produce its next 5 peak.

The noisy-precursors and resonant-response phenomena
were discovered independently. It was not difficult to
guess that in the ease of period-doubling systems they
might occur together and, if so, they should be closely
connected. In the present paper ere analyze quantitatively
this connection reconsidering results of our previous ex-
periments. Starting from an elementary theoretical
description of the experimental system we show that the
resonant-response phenomenon must, in the vicinity of a
period-doubling bifurcation, result in the appearance of
the Wiesenfeld's noisy precursor. The theoretical analysis
is limited to systems vrhose dynamics can be described by
the dissipative standard mapping. A general analysis of
"... the sequence of events (as some parameter varies)
whereby the noisy precursor of Hopf bifurcation continu-
ously changes into the precursor of a period-doubling bi-
furcation" can be found in the latest Wiesenfeld paper.

In terms of his general theory the present paper provides
the first experimental evidence for the "virtual Hopf
phenomenon, " as the defined above sequence of events is
called, and gives a particular, experiment-based explana-
tion of its origin. The resonant-response phenomenon we
observed is an experimental manifestation of the virtual
Hopf bifurcation he predicted.

The paper is organized as follows. In Sec. II we
describe the physical system and results of experiments in
which the resonant response of a period-doubling mode to
periodic perturbation is shown to shift towards the fre-
quency at which the period doubling is to produce its next
5 peak. In Sec. III we present an elementary theoretical
description of the experimental model and we analyze the
resonant properties of its basic mode in the vicinity of the
stability limits. Possible practical implications of the
phenomenon and its connections with the general virtual
Hopf phenomenon predicted by Wiesenfeld are discussed
in Sec. IV.

Il. PHYSICAL SYSTEM
AND EXPERIMENTAL PROCEDURES

The experiments described below were performed on
the jumping-particle model, one of the simplest experi-
mental systems which display the period-doubling transi-
tion from regular to chaotic motion. The model, a practi-
cal realization of the Fermi-Ulam idea, consists of a par-
ticle (steel sphere) jumping vertically on a vibrating hor-
izontal surface (glass plate fixed to the membrane of a
loudspeaker); see Fig. 1. The surface vibrates sinusoidally
at a constant audio frequency vo. The amplitude H of the
vibration is precisely controlled by a helipot attenuator.
The jumping particle can be seen as a strongly nonlinear
oscillator driven at discrete moments of time by an exter-
nal signal.

In the absence of the driving signal, i.e., when the col-
lision surface stays still, the particle dropped on the sur-
face will execute an infinite (theoretically) sequence of
jumps. Because of the dissipation, a part (0& ki~ 1) of
the particle kinetic energy is lost at each collision. Thus,
the (i+1)th jump lasts T,+, kT;, where T, is th——e time
length of the ith jump. Consequently, the I T~I';=i" se-
quence is geometrically convergent to zero and its sum,
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FIG. 1. Physical reahzation of the Fermi-Ulam model.

i.e., the total time duration of the jumping transient, is fi-
nite:

The sequence of jumps can be seen as a damped oscilla-
tion transient whose frequency v(i)-1/T~ diverges to in-

finity as i ~ oo. If, however, the collision surface is set by
the external signal into sinusoidal motion, the particle can
at a certain stage of the transient go into resonance with
the surface and, compensating for losses of its energy at
each collision, continue the motion in an endless sequence
of jumps. Such a steady vibration of the system we shall
refer to as "mode" in what follows.

From the whole variety of different modes which can
be set within the experimental model we consider below
the simplest, denoted by M"'. In this mode the particle
makes equidistant (in time) jumps between consecutive
periods of the surface vibration function h, (t)
= —Hcos(2m. vot). As seen from Fig. 2(a}, where the
mode is shown schematically, the collision moments t; are
always located at the same phase within the rising parts of
the surface motion. Thus, at each collision, the losses of
the particle kinetic energy are compensated via the
momentum transfer from the collision surface moving up-
wards. Below a well-defined threshold Ho of the surface
vibration amplitude the M'" mode ceases to exist since

hjl
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FIG. 2. Trajectories of the jumping particle in its (a) M'"
and (b) M"2' modes.

even at the phase at which the collision surface reaches its
maximum velocity the losses of energy cannot be compen-
sated. On the other hand, the M'" mode becomes unsta-
ble when the amplitude of the surface vibration is too
high, H &H&, giving place to its period-doubled version
M" ', see Fig. 2(b). The appearance of the M" ' mode
completes the first stage of the theoretically infinite cas-
cade of period doublings.

If at H E(HO, Hi } the M"' mode is perturbed, for ex-

ample, by shifting the phase of the ith collision by b„then
in the subsequent collisions the phase will return to its sta-
tionary value via a damped oscillatory transient. This
suggests that the dynamics of the phase of the M'" mode
should be described in terms of a damped oscillator. To
find the resonance frequency of the latter, one can either
Fourier transform the transient or perform a typical sta-
tionary spectroscopy procedure, i.e., perturb the oscillator
with a small-amplitude sinusoidal signal and monitor its
response versus the slowly varying frequency of the latter.
Such an experiment was performed by the present au-
thors. The operational principle of the experimental setup
we used, the details of which are described elsewhere, is
as follows.

The main signal driving the collision surface, i.e., the
loudspeaker to whose membrane the glass plate is fixed, is
either amplitude or frequency modulated by an additional
signal of slowly increasing frequency v. The response of
the M"' mode to the perturbation, i.e., deviations of the
consecutive collision phases from their stationary position
in the absence of the perturbation, is recorded versus v
with a storage oscilloscope.

Figure 3 presents typical images obtained by means of
such a procedure at constant H and for a few different
values of the amplitude of the perturbing signal. In view
of the obvious relation between the envelopes of these im-

ages with recordings obtained from typical stationary
spectroscopies, we shall in the following refer to the im-

ages as "spectra. " As clearly seen in Fig. 3 the spectra
display a characteristic resonance peak whose shape
changes strongly with the amplitude of the perturbing sig-
nal; being smooth at low amplitudes, at higher amplitudes
it becomes strongly deformed and reveals a rich internal
structure. To avoid nonlinear effects, which are interest-
ing on their own, in further experiments we kept the am-
plitude of the perturbing signal at a low value. In prac-
tice, the depth of the resulting modulation of the main
signal was about 1%.

To obtain qualitative knowledge of how the resonant
response of the M"' mode changes along its bifurcation
tree, we recorded its spectra at a number of amplitudes
H E (Hp, Hi ) of the main signal. The spectra were
recorded both for the frequency modulation, Fig. 4, and
amplitude modulation, Fig. 5. As seen from these figures,
the spectra display a number of peaks located, in general,
at frequencies

v,~(H) and v„-(H}=nvo+v„,(H), n =1,2, . . .

where v, (H) E (O,vo/2) denotes the location of the
lowest-frequency peak. Since it is v,~(H) that determines
the position of all peaks within the spectra, it was studied
quantitatively by recording a series of precise FM spectra
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within the relevant (O, vo/2) frequency range. The spectra
were taken at a number of different points of the bifurca-
tion tree including the branches of the period-doubled
M" ' mode. A11 the spectra presented in Fig. 6 were tak-
en at the same level of the perturbing signal. Although
small enough to provide clear, smooth spectra for
HE(H IIH I), i.e., the main single branch of the bifurca-
tion tree, the perturbing signal proved to be too large for
studies of the M" ' mode. As seen from Fig. 6 Z, Z',
Z", at the a~plied level of perturbation, the two branches
of the M" mode became locally (in the vicinity of the
resonance peaks) interconnected, i.e., the mode was practi-
cally destroyed. Let us note that the phenomenon occurs
in a sudden, dischargehke manner as soon as the devia-
tions of the phase from its stable position exceed a thresh-
old value; the critical deviation is much smaller than the
separation of the two branches themselves.

The frequency scale of the presented spectra can be
easily determined from their internal structure. Namely,
all points at which v passes through a low-order commen-
surability with vo are clearly distinguished by the charac-
teristic stroboscopic patterns which appear in their vicini-

ty. FIG. 4. Phase response FM spectra of the M"' mode record-
ed at six points of its bifurcation tree (shown at the left side of
the picture). The frequency v of the perturbing signal was swept

up to vo (=33 Hz).

OI« f«$
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As seen in Fig. 6, v, (H) tends to 0 and vo/2 for
H~Hz+ and H~HI, respectively. Above Hi, where
the single branch of the M"' mode bifurcates into two
branches of the period-doubled M" ' mode, two reso-
nance peaks appear in the studied (O, vo/2) frequency
range. If by v, (H) we denote once more the location of
the lower peak, then the position of the upper peak can be
specified as vi H =vo/2 —v, (H). As H tends to Hz, i.e.,
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FIG. 3. Phase response spectra of the M'" mode recorded
for a few different ainplitudes of the periodic perturbation. The
amplitude 8 of the vibration of the collision surface determin-
ing the position of the M"' mode within its bifurcation tree was
the same for all presented spectra. Amplitudes of the perturb-
ing signal were equal to 0.2, 0.3, 0.4, O.S, 0.6, 0.7S, and 1.0 for
spectra denoted as A, B, . . . ,G. The frequency v of the perturb-
ing signal was swept linearly from about zero to vo/2; vo ——34
Hz. The stroboscopic pattern of the 3 commensurability point
is clearly visible in the middle of the resonance peak.

%ar
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FIG. 5. Phase response AM spectra of the M") mode record-
ed at six points of its bifurcation tree (same as in Fig. 4). The
frequency v of the perturbing signal was swept up to 2vo 4;=33
Hz).
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FIG. 6. Phase response FM spectra of the M'" mode recorded at 27 points of its bifurcation tree including the M" ' period-
doubled mode. In arbitrary units, in which Ho ——0.24 and H& ——1.00, the positions of spectra indicated as A, B, . . . ,Z, Z', Z" are,
respectively, &=0.28, 0.32, 0.36, 0.39, 0.43, 0.46, 0.50, 0.54, 0.57, 0.61, 0.64, 0.68, 0.72, 0.75, 0.79, 0.82, 0.86, 0.90, 0.93, 0.97, 0.99,
1.00, 1.02, 1.04, 1.06, 1.15, 1.17. The frequency v of the perturbing signal was swept up to v+2. A single frequency sweep lasted
100 s. vo ——34 Hz.

to the upper stability limit of the M"2' mode, v,~(H)
tends to vo/4, while near the lower H& limit it tends to
zero.

Resonant properties of the stable modes can also be
studied using an alternative technique. Namely, one can
keep both the amplitude and the frequency v of the per-
turbing signal constant and sweep the amplitude H of the
main signal, recording thus the image of the bifurcation
tree in the presence of the periodic perturbation. Images
obtained by means of such a technique are presented in
Flg. 7.

III. THEORETICAL DESCRIPTION
OF THE MODEL AND THE RESONANT-RESPONSE

LINEAR APPROXIMATION

The experimental simplicity of the jumping-particle
model results in the equally simple theory of its dynamics.
As shown below, the theory can be built directly from the
analysis of the consecutive collision events.

I.et w;, be the velocity (in the laboratory reference
frame) with which at time r; &

the particle starts on its
(i —l)st jump. At time r;=r; ~+ T~ &

the particle ar-
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we transform (1}and (3) into the dimensionless form

vi =kU; 1+A, S111 8;,
8,„=8,+U, ,

(6a)

(6b)

(k+1)81r vp

FIG. 7. Bifurcation tree of the M(" mode recorded in the
presence of a periodic perturbation. The frequency v of the per-
turbing signal ~as equal to 20, 25, 30, 35, 40, 45, and 50 Hz for
recordings marked, respectively, as A„B,~ ~ ~,G. Yo= 100 Hz.

plays the role of the nonlinearity parameter of the two-
dimensional area-contracting (for k & 1) mapping (6). In
terms of Eq. (6} the angular frequency cop of the surface
vibration quals 1 and the 8 length of the particle jumIis
in the M' ' mode equals 2m. Consequently, the M"
mode is described by

8;=tr e(A)—+i 2',
where e(A, ) denotes the shift of the collision moments 8;
from the consecutive, negative-slope zeros of the surface
action function A, sinB. The shift, previously discussed as
necessary to compensate losses of the particle kinetic ener-

gy, can be determined from the balance condition

(1—k)2m =A, sin[n —s'(A, )] .

which describes the (i +1)st collision event at which the
particle trajectory [left-hand side of (2)] meets the trajec-
tory of the collision surface [right-hand side of (2)]. Only
those trajectories whose starting velocities m; are larger
than the respective surface velocities 2nvp8 sin(2m—vpt;)
and whose time lengths T; are positive have a real physi-
cal sense. Equation (2) simplifies considerably in the case
of all modes in which consecutive collisions take place at
the same phase of the surface motion. For such inodes,
e.g., M"', T; =2m;/g. Consequently,

tl + 1 ti +2wi Ig .

Defining

(3)

rives back at the surface with velocity w; 1
—gT;

where g is the gravitational acceleration constant.
Thus, in the reference frame connected with the colli-
sion surface, its velocity equals w; 1

—gT,
—21rvp8sin(2mvpt;). Because of the dissipation, only a
part (0 & k & 1) of the relative velocity is reflected during
the collision; thus, the velocity with which the particle
starts 011 1ts itli ju1np eqllals

w; =k(gTl 1
—8'; 1)+(k+1)2trvpH Sin(2&vptt) .

The time length of the ith jump can be found from the
condition

8cos( 27Tvpt1 ) +—wl Tl —
2 gTl =—8 cos[21rvp( tl' + Tl )]

2

e(A, ) =arcsin 2n.
1—

(10)

A, , =2[(1+k)'+(1—k)'ir']'" (12)

of the M"' mode can be in intuitive terms explained as
follows. The consecutive collisions are located in the M" '

mode at the negative-slope parts of the surface action
function A, sinB. Thus, a deviation 5 in the location of a
collision phase 8;=8;[mod(21r)] from its proper m —e(A, )

place will be partially compensated in the next jump —the
negative slope creates a negative feedback driving the
M'" mode phase back to its stable position. If, however,
the slope is too high, which happens for A, ~ A, &, the nega-
tive feedback overreacts by altering the next collision mo-
ment 8;+& by more than b, to the other side of the
m —e(A, ) location.

Concluding, for A, E(A,p, A, 1) the M"' mode is stable, and
when perturbed it returns to its stationary phase m —e(A, )

via a damped oscillatory transient. Figure 8 presents
shapes of such transients calculated numerically according
to (6) for a few values of A, in the vicinity of Ap and A,i.

Dynamics of the deviations

(13a)

Obviously, the shift cannot exceed n/2 since above this
value the A, sin(ir —e) term begins to decrease. This deter-
mines the lower stability limit for the M'" mode:

Ag ——(1—k)2m .

The origin of the upper stability limit

0P. =V.—V (13b)
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FIG. S. Return transients of the M'" mode pluise 5I calculated according to {6}at diffaent points of the bifurcation tree;
k =0.SS. The mode has been kicked out from its stable position by an instantaneous perturbation of its up=2II velocity. (a) and (b)

show the return transients near the +=0.9424S lower stability limit, while (c) and (d) show such transients near the upper
A. »

——3.818 15 stability limit. One division of the e vertical scale equals e X 10 ' and 1.6&rX 10 ~ for plots (a),(b) and (t:),(d), respec-
tively.

of the phase 8I——8;[mod(2Ir}] and velocity u; of the
M" ' mode from their stationary 8 =fr—e(A, ) and
u =2m values is described by two first-order difference
equations

gi =kJII I
—A, sillxf, (14a)

&s +1=&s +P'I, (14b)

which are obtained by inserting (13) into (6). A, =)j,sin8
denotes the nonlinauity parameter of the new mapping.
In view of (10), A,

' can be expressed as

(15)

The two first-order difference equations can be put to-
gether into one second-order equation

(xf+ I 2xf+xf—I )+ (1 k)(xf —xf I )+—A'xf 0, ——
describing the discrete-time i dynamics of the deviations

x, of the M"' mode phase from its stationary location.
Since as seen from Figs. 8(a} and S(b), for transients ob-
served near Q, consecutive x s differ but by small
amounts, the difference equation (19) can be replaced by
its differential equivalent

x+2hpx+Pipx =0, (20)

In the vicinity of Q and A, I, )j,
' is well approximated by

(16)

where

hp ——(4fr) '(1—k) (21)

where

A2I —+2=2(k +1) .

Let us note that due to the minus sign at the )j,'sinx; tarn
of Eq. (14a) the simplest stationary solution, i.e., point at-
tractor of mapping (14), is located at x =0, y =0.

For
~
x;

~
=0, Eq. (14a) can be linearized PI (A, +e)=(2~) '(2)jc)'~ e'~ (23)

alps(A, )=(2Ir) i)j,'(A, ) .

x and x denote here, respectively, the second and the first
derivatives of x taken over the continuous variable 8,
which bet%'ee11 two consecUtlve c001s10118cha11es on sver-
age by 2Ir. Equation (20) describes the dynamics of a con-
ventional damped harmonic oscillator whose characteris-
tic frequency PIp decreases raPidly as A,~Q,

p. =kg] ( —A, x.

&g+1=&s +A ~ (1gb)

but whose dIImping factor hp stays constant. Consequent-
ly, the amplitude A (cp, A, ) of its response to a periodic per-
turbation of frequency pI
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A (f0,A, )=cp I [Pip(A, )—P~z]2+4h pco2I (24) (xi+4 —2x;+2+x;)+(1—k )(x;+2—x;)2

changes strongly near Q, where hppip '(A, )~ ()0. Figure 9
presents shapes of A(co, }t.) calculated according to (24),
(22), (21), and (15) for a few values of }{,in the vicinity of

The calculations were made for k =0.85 which fits
well the experimental data of Fig. 6. As seen from Fig. 9
the resonance peak of A(f0, A, } located at

x+2Ii ix +co ix =0, (30)

+[2(k + 1)—}I,']A, 'x; =0 . (29)

Since near A. i differences between every other x; are small,
(29) can be replaced by its differential equivalent

pi, (iL) = [cop(}L,)—2hp2]'~z (25) Ii i
——(8n ) '(1—k2)

shifts with decreasing I, towards zero and reaches the lim-
it value in a critical manner at a Q & Q determined by co i(A, )=(4)r) [2(k +1)—}I,'(f{,)]}{,'(}I,) . (32)

p)p{ A,p ) =2'~ Iip . (26)

A(0, /+e)=Cp(2m) (2Ag)
' e (27)

Concluding, near }{pthe phase of the M'" mode becomes
extremely sensitive to low-frequency perturbations. This
phenomenon is accompanied by the divergence of the re-
laxation time r. Namely, for A. such that cop(A, ) ~ hp the
oscillator (20} becomes overdamped and its relaxation
time diverges according to the power law

Thus, for k E (,ke ) we ohserve in g (ark) s single peak
located at ~=0. It is essenti to be wvare that t s ap-
pens not due to an incr~~e of the dgkgnping factor hp but
due to the decrease of the characteristic frequency pip(}I,}.
Using more intuitive terms we may say that the parabolic
well, within which the phase of the M"' mode is locked,
flattens rapidly near Q. Since A(0, }{,) has the physical
sense of an oscillator response to a constant force, this
flattening of the potential well results in the divergence of
A(O, A, ) for A,~Q:

x and x denote derivatives of x taken over the continuous
variable e, which between every other x; changes on aver-
age by 4n. It is. essential to remember that in view of the
way in which Eq. {30)was obtained, it describes not the
complete oscillation of the M"' mode phase but only its
low-frequency co envelope imposed on the co= —,

' fast os-

cillation. Thus, in the vicinity of }{,i the response of the
M" ' mode phase to a periodic perturbation should be well

approximated by

A (pi, A, ) =A ( —,
' —pi, A, ) =Ci I [co i(}{,)—co] +4h iso I

(33)

Figure 10 shows its shape for a few values of A, near }(,&.

As in the previous case the response spectrum displays
a single resonance peak located at

a)~(k) = 7' —[co i(A, ) —2h i]'~ (34)

rp~(A, ) reaches the limit —,
'

value at a }(.f & }(,
&

given by the
condition

r(Ay+ 6)=(1—k)(2n ) '(2Ag) {28)
a) i(A, i )=2h2i . (35)

A similar analysis can be performed near A, i. Namely,
in the vicinity of this instability point, consecutive x; s are
almost exactly opposite, i.e., every other x& changes but by
a small amount. [See Figs. 8(c) and 8(d).] This suggests
the possibility of formulating an equation analogous to
(20). Indeed, using (18) one can obtain

Thus, for A, G (A,i,}{,i } we observe a peak located at pi = —,
' .

Its maximum A ( —,', A. i —e) diverges near A, i as

A( —,', A, i —e)=Ci(4ir) }{,i 'e (36)

Similarly, the relaxation time T diverges near A,
&

according
to the power law

A{u, 3} A{~, A}j
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FIG. 9. Amphtude A (ca, k. ) of the response of the M'»} mode

phd to a periodic perturbation calculated according to (24) in
the vicinity of Ap. k =0.85.

FIG. 10. Anphtude A(co, A, ) of the response of the M"'
mode phase to a periodic perturbation calculated according to
(33) in the vicinity of A, ». k =0.85.
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(37)

The last result stays in agronnent with what has been pre-
viously observed experimentally and confirmed by numer-

ical calculations. ' To check the validity of approxima-
tions (25) and (34) we performed numerical calculations
which simulate the stationary spectroscopy procedure
used to obtain spectra presented in Fig. 6. The simulation
consisted of perturbing the surface action term A, sin8 of
Eq. (6a) by a periodic signal of low amplitude y and slow-

ly varying frequency:

vi ——kv; i+iLsin[8;+y sin( —,'c82)] . (38)

c was chosen such that the sweep of the perturbation fre-

quency to=c8 through the (0, —,) range took 5 X 10s itera-

tions. The results of the simulation are shown in Figs. 11
and 12. Figure 11 presents the position of the calculated
resonant-response peak ai (A. ) obtained at y=10, to-
gether with approximations (25) and (34). When the am-

plitude of the periodic perturbation is higher, y=10
eo, (A, ) changes its shape considerably, in particular near
A, i, see Fig. 12. This effect, resulting from the nonlinear

response of the system, is visible also in the experimental
results presented in Fig. 6. Positions of the experimental

peaks, also plotted in Fig. 12, fit well the numerically
determined curve.

IV. RESONANT-RESPONSE PHENOMENON
AND NOISY PRECURSORS 08 PERIOD-DOUBLING

SIFURCATIONS

k -0.85

10

0.5

FIG. 11. Maximum response frequency co~(A. ) of the M"'
mode phase calculated numerically at a low amplitude of the
periodic perturbation; @=10 6. Dashed curves represent the
damped harmonic oscillator approximations (25) and (34).
k =0.85.

The theoretical analysis of the resonant-response
phenomenon presented in Sec. Ill is based on Eqs. (6a)
and (6b) known as the dissipative standard mapping.
Consequently, results of the analysis are valid not only for
the particular experimental model we designed but for all
nonlinear systems whose dynamics can be described by
this set of equations. On the other hand, period-doubling
systems described by one-dimensional mapping are out-
side the validity range. In such systems, the noisy precur-
sors of period-doubling bifurcations must occur, while the
resonant-response (virtual Hopf) phenomenon need not
OCCUI.

Let us now come to the main aim of the present study,
i.e., an intuitive explanation of the origin of the period-
doubling noisy precursors in the nonlinear dynamical sys-
tems in which the resonant-response phenomenon occurs.

Let M'~' be a stable periodic mode of the system
described by Eqs. (6a) and (6b). The mode is represented
in the power spectrum by a 5 peak located at a frequency
v"'. On the other hand, the phase of the mode itself
responds to a periodic perturbation as a damped oscillator
whose resonance frequency v changes from zero to
v' '/2 as the nonlinearity parameter is swept throughout
the stability range of the mode. Near ends of the stability
range the dynatnics of the phase oscillations of the mode
can formally be described in teems of conventional
datnped harmonic oscillators whose damping factors stay
constant but whose characteristic frequencies tend to zero.
Consequently, the phase of the mode lmemes extremely
sensitive to perturbations of well-defined 'frequencies:

k -0.85

5 =~o-

FIG. 12. Maximum response frequency ~, (A, ) of the M")
mode phase calculated numerically at y=10 . Experimental
values, obtained from spectra A, B, . . . , $V shown in Fig. 6, are
also marked. k =0.85.
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v=O and v=v'N'/2 at the lower and upper stability limits,
respectively. When such a system is perturbed by the
white-noise signal, it will respond in a colored noisy
manner. The peak in the colored noisy response spectrum
will be located, of course, at the frequency v at which
the M'~' mode phase displays its resonant behavior. Ac-
cording to Eqs. (27) and (36) the peak must rapidly grow
near the stability limits even when because of high dissi-
pation it was hardly visible in the middle of the stability
range. This explains why for highly dissipative systems
[described by the nearly one-dimensional mapping to
which (6a) and (6b) reduces for k =0] the period-doubling
noisy precursors must appear while the virtual Hopf pre-
cursor (i.e., the colored response of the period-doubling
mode inside its stability range) need not be visible.

On the other hand, for k= 1, i.e., when the system is
nearly conservative [and mapping (6a) and (6b) nearly area
preserving], the resonant-response peak should be high
and sharp in the whole stabihty range. This may be of a
practical importance since, as suggested by Wiesenfeld
and McNamara, " period-doubling systems could be used

as small-signal amplifiers. Driven by the external signal
of a frequency vo, such systems should in the vicinity of
the first period-doubling-bifurcation point provide a signi-
ficant amplification of signals of vo/2 frequency. ' In
view of the results of the present study, one may expect
that the amplification should be also effective in the
whole (O,vo/2) range, if only the nonlinear system in
question was nearly conservative. In such a case the fre-
quency v, at which the selective amplification takes
place, would be easily varied within the (O,vo/2) range
merely by adjusting the amplitude H of the driving signal.
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