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Kneading theory of the circle map
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The symbolic dynamics of the circle map fi (x)=x+A, sin(2@x)+a (mod 1) is analyzed with use

of the symmetries of the hnes a =0 and a = 2, obtaining, by a projection method, factorization of

the Artin-Mazur g function. The Milnor-Thurston kneading theory is shown to be of interest for
both symmetric and nonsymmetric circle maps, where an obvious generalization is shown to be valid

and certain calculations simplify the relationship between the Artin-Mazur g function and the

itinerary.

I. INTRODUCTION

Nonlinear iterations of the interval or the circle have an
important place in current scientific hterature as methods
for describing complex phenomena associated with non-
linear oscillations and recurrences in physics and other
sc1CIlces.

Differential equations are transformed into nonlinear
difference equations, by using Poincare maps, ' the com-
puter output of which has motivated many fruitful
theorems and well-founded mathematical conjectures.
The experimentalist relating these iteration models to the
behavior of distinct physical systems have, in conse-
quence, favored an exponential growth of mathematical
research about the properties of nonlinear difference equa-
tions.

Period doubling and scaling are the two most attractive
phenomena found in numerical and physical experiments
(Refs. 1, 2, 10—12, and 14). Equally appealing is that the
same sequence of periods is present in natural experiments
and in computer iterations when the corresponding con-
trol parameter is increased. ' 7's Furthermore, the order
of points in a periodic iteration, or of the maxima in a
nonlinear oscillation are in correspondence and allow con-
nection of the

experimental

oscillation with a one-
dimensional map. i

Thus it is possible to predict the order of different
kinds of oscillations and the qualitative characteristics of
each when a par;imeter is tuned to the right value.

Striking examples are found in oscillations of periodic
chemical reactions such as those of Belousov-Zhabotinskii
or of the chlorite-thiosulfate. ' Identical properties have
been registered for electronic circuits including varactors,
all of which show remarkable parallelism to the behavior
of one-dimensional maps.

The purpose of this paper is to extend previous work
concerning maps of the interval~' to maps of the circle

x„+i——fi(x„)
where n is a positive integer, x„ the value of the coordi
nate at the nth iteration, and fi„a continuous iteration
function of the circle depending on at least one real pa-
rameter A, . The symbolic dynamics used, though em-

phasizing new mathematical facts, were without any for-
mal proof.

The prime example investigated was the mapping of the
circle

x„+i——x„+csin(2irx„)+a (mod 1), 0&a &1 (1.2)

z~z+Az(1 —z)( —,
' —z), 4&A, &16 (1.4)

as m'as previously reported in co11aboration with Chavoya
and Angulo.

For the two we find a range of the parameter A, (distinct
for each map) in which the very same order of periodic
cycles is evident, as A, is increased. The order of points
for each corresponding cycle also coincides.

The symmetry

fi.«)=1—fi(1—» (1.5)

with a and A, being two parameters. This mapping has a
long history, mainly of map behavior and properties when
A, is small and the iteration function, monotonous (see
Ref. 10 and citations therein).

The sine map has attracted much attention as a model
in which interesting scaling phenomena observed in area-
preserving maps of the plane are replicated. '0 '2 A par-
ticular scaling occurs exactly at the value

1 (1.3)2 1

where monotonicity is lost. A Cantor set in parameter
space, known as the "devil's staircase, " has been studied
with renormalization-group principles by various au-
thors' who affirm that the return map for a differential
equation of the resistively-shunted Josephson junction is
represented by a mapping of the circle

Maps have also been used as models to represent the
nonhnear intermittent oscillations to be witnessed in
chemical reactions and in the phase locking of cardiac
rhythms. '3 Numerical studies for large ranges of the two
parameters have been analyzed by a number of work-
ers""

Our interest in the circle map (1.2) was first aroused
upon observing that for a=0 and for small values of A,

(A, &0.73264413), the circle map behaves similarly to the
syIDmetr1c cubic IDap
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1 2 3 4 5 6 7 8

5 6 8 7 2 1 3 4 (2.7)
L

The second important property of the permutation (2.6)
arises in the presence of a symmetry. The numbers aj in
the case of the symmetry (1.5) obey the equation

Qj+gg+ ) j—d + 1, (2 8)

where d is the dimension of the permutation matrix, 8 in
example (2.7).

The dynamics of the intervals between the periodic
points permitted by matrix (2.6), are represented by a
Stefan matrix describing the image intervals of each inter-
val under iteration. ' '

The Stefan matrix mimics the graph of the iteration
function (adding, however, a vertical inversion) with
groups of the number one blocked into columns and
separated each from the other by vertices in the osition
of the nonzero entries of the permutation matrix. This
property is generalized for the circle map.

If A is the Stefan matrix, then the periodic points Nz
are equal to the trace of A to the p power

N~ =trace(Ai') . (2.9)

cf

Pg(x) =x~ gajx" ' .— (2.11)

We resort to these coefficients to evaluate the periodic
unstable points by the linear iteration '"

d

Nk ——g aJNk (2.12)
j=l

A factorization of the characteristic polynomial (which is
equivalent to that of the Artin-Mazur function) is ob-
tained for the symmetry of the Stefan matrix in the sym-
metric cubic.

The eigenvectors of this matrix fall into even and odd
eigenvectors with respect to inversion jr+1 —j of the
index of its entries. Even and odd both belonging to
orthogonal spaces. This splitting is the reason for the fac-
torization.

The Branner's companion mapping' of a symmetric
map also has the symmetry and factorization of a cubic.
In fact, at the same value of the parameter, it is possible
to find Stefan matrices differing only in a vertical inver-
sion for both maps. The eigenvectors, therefore, are iden-
tical. While the eigenvalues of even vectors are the same,
the eigenvalues of odd vectors differ in sign. An identical

Geometrically, this property coincides with the location of
the fixed points of a function by means of the intersection
of its graph with a straight line bisecting the coordinate
axes.

Thus the Artin-Mazur g function is obtained from the
characteristic determinant of matrix A

d

1/g(t) =
~

1 At
~

=1——g a, tj, (2.10)
j=1

where a, are the coefficients of the characteristic polyno-
iilial

polynomial factor is also found in the characteristic poly-
nomial with roots of even eigenvectors. The odd polyno-
mial factor is different only in the sign of the odd powers.

The factorization can also be considered as the result of
symmetry in the Milnor- Thurston kneading deter-
minant, ' since symmetry, as explained in Sec. IV, pro-
duces either a common factor in a column or a difference
of squares of two polynomials.

IH. SYMBOLIC DYNAMICS OF THE CIRCLE MAP

The analogous behavior of the symmetric cubic and the
a=O sine map, provides many ideas with which to gen-
eralize upon the symbolic dynamics of the interval to the
circle maps. An outstanding difference between the
dynamics of the circle map and the maps of the interval is
that of the identification of the points 0 and l. In the cir-
cle this point joins the two subintervals at the extrema,
forming a single subinterval.

Accordingly, we must suppress a row and a column of
the Stefan matrices to allow for the 0, 1 identification.
Thus the characteristic polynomial will differ by a lost
factor (x —1), corresponding to this identification. The
Branner's companion map (1.6), on the other hand, will

have gained a new fixed point, and a new factor (x —1),
when this identification is made.

To illustrate the changes in the Stefan matrix occurring
from the cubic to the circle, we take, for example, the
period corresponding to symbol MRC of the symmetric
cubic at value A, =14.801262. This period is found for
the a =0 sine map at A, =0.641 62. . . (see Fig. 1).

Thus the Stefan matrices for both maps become, respec-
tively,

1 0 0 0 0 0 0
1 0 0 0 1 1 0
1 0 0 1 0 1 0
0 1 0 1 0 1 0
0 1 0 1 0 0 1

0 1 1 0 0 0 1

0 0 0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

1 0 1 0 110100
1 1 0 0 0
0 0 0 0 0

0
1

1

1
(3.1)

Note that the first row and first column of the cubic
have each been suppressed in the sine matrices, and that
the last column of the sine matrix is transformed to in-
corporate two number ones in the first column of the
cubic's. Only the first number 1 on the diagonal of the
cubic matrix is lost for it has become identified with the
final 1.

The graph of the iteration function is recovered in the
maps of the interval by the Stefan matrix. It is possible to
do likewise for maps of the circle by constructing a tiling
with the Stefan matrix, as shown in Fig. 9. It often hap-
pens that for continuity the last column of one tile is ex-
tended over into that of the next. This effect on the bor-
der of the matrix could be equally obtained by defining
the Stefan matrices of a circle map onto a torus when we
join the parallel edges of the matrix.

The entry S,J of a Stefan matrix is equivalent to the
number of times the interval j is included in the image of
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(3.3)

where matrix R is defined by

1 when i +j =d or 2d
RJ —— I+j =

0 otherwise, (3.4)

the interval i .For the quadratic or cubic functions previ-
ously studied ' this number is invariably 1. However, for
the circle map this value can be otherwise (not 1 but a
positive iil'teger).

In any case, the Stefan matrix reproduces the graph of
the function and an integer as entry equals the number of
lines of the iteration function represented by that entry.
These lines should be continued into a neighboring entry.

To illustrate, the Stefan matrix of the cycle occurring
for values of the parameters a =0 and A, = 1.2582,

1 0 0 1 0 3

1 0 1 0 0 3

1 0 1 0 1 4
0 0 1 0 1 3

(3.2)

0 1 0 0 1 3

0 I 0 1 0 3

should be compared with the graph of the sine map for
the same values of the parameters in Fig. 2.

In the tiles similar to those of Fig. 9, half turn sym-
metries around any one of the two entries S33 and S66
were observed. A property which is general to the maps
of the circle with symmetry (1.5), is represented in matrix
algebra by a rotation matrix R, commuting with the
Stefan matrix

0 0 0

0 0 1 ~0 1

0 1 0 1 0 1 0 1 0 1 0

~0 110 0 1 1 0 1 0 0

1 0 0 1 0 1 1

0 0 1 1 1 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0

0 0 1 0 1 ~1~ 0 0
~

1 ~0 I

1 0 1 0 1 0 1 0 1 0 +1+0
~0 1 0 0 11 0 1 0 0 1

1 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0 0 0

FIG. 9. Four tiles of a Stefan matrix of the a=O sine map.

once again factorization of the Artin-Mazur function fol-
lows.

Since factorization of the characteristic polynomial of
matrix S is easily obtained from the known projectors
(3.5), an analysis of the Artin-Mazur function was under-
taken in search of a simple relation which was discovered
in the cubic map with the itinerary. If symmetry is in-

cluded, this relation is identifiable with the Milnor-
Thurston kneading determinant. The results of this study
exemplify the kneading theory of the circle map presented
in Sec. IV. The companion maps [(1.6) and (1.7)) of these
symmetric sine maps having identical symmetry are
analyzed similarly.

d being the dimension of matrices R and S. The matrix
R is well known in applied mathematics as the square of
the discrete Fourier transform.

Matrix R is its own inverse, and defines two projectors

(I+R )/2, (3.5)

splitting the eigenvector space of the Stefan matrix into
even and odd subspaces. The even vectors of the matrix S
are also eigenvectors of the projector (l+R)/2 with
eigenvalue 1, and odd eigenvectors of $ are eigenvectors
of projector ( I—R )/2 with eigenvalue —1.

Factorization of the characteristic polynomial of the
Stefan matrix produces factorization of the Artin-Mazur

g function as well. Two factors being found: one, the g
function of the matrix S(l+R )/2; the other, the g func-
tion of $(l —R)/2.

The above-mentioned factorization was previously en-
countered and reported in our study of the cubic map.
This factorization could be a particular application of the
Milnor-Thurston kneading theory. Here, however, it re-
sults from symmetry (1.5), and becomes therefore valid
for larger values of the parameter A,, which when con-
sidered as a map of the interval shows discontinuities of
the iteration function. Thus the Milnor-Thurston theory
should be restated.

At value a = —,
' the same factorization is found for the

sine map. In this case the symmetry (1.5) is also valid and

IV. KNEADING OF THE CIRCLE MAPS

Presented in this section is a pragmatic version of the
Milnor-Thurston kneading theory, ' and the suggestion
made as to how it should be further generalized to explain
the hundredfold output of distinct stable cycles of the cir-
cle map. The suggestion does not bear upon the complete
and formally correct theory, but on a simplified algorithm
to compute readily the Artin-Mazur g function.

To begin with, we examine the case a=0. The sine for
A, ~0.7326 behaves as a map of the interval and therefore
the Milnor-Thurston theory directly applies. The funda-
mental assumption in the Milnor- Thurston kneading
theory is the separation of the interval into the largest su-

bintervals continuous and monotonous (laps). The points
separating contiguous laps are at the extrema (maxima
and minima) of the iteration function. Two extrema and
three laps are had for the cubic map and for the sine map
without discontinuities. The subintervals separated by the
extrema are designed as IJ (j=1,2,3) and the extrema, as
Ek (k=1,2).

For most of the values of the parameters, iteration of
any extrema leads eventually to an asymptotic periodic at-
tractor of period p. Two cases are then possible.

(1) Iteration of the two extrema will lead to distinct cy-
cles. We eall these bistable.
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(2) The two iterations of the extrema will be attracted to
the same limit cycle designed as an isolated cycle.

Iterating with the P-iterated function fz of the extrema,[p)

we identify the limit points associated with the extrema.
They are stable periodic points closest to the extrema.

We denote the points associated with the maximum and
the minimum as M and m, respectively, and through
iteration of those points the cycles

The invariant coordinate has been used for ordering
points in a cycle' and for arr inging cydes as a function
of parameters.

The kneading invariant measures the discontinuity of
the invariant coordinate at the extrema according to the
+ or —laps at (4.6) used,

3

8~+(t) Bs—t(t) =26J++t(t) Ao+——A 0
——g P (t)IJ,

j=l

vj =fI"'(~)

zj ——fij'(m }

(4.1)

(4.2)

(4.10)

where polynomials P/(t) are formed with the terms multi-

plying the corresponding lap I~ Th. e kneading invariant
associated with the minima is

are obtained. In the first case, the two periods p and q are
such that

M =f&~'(M), m =fis'(m) . (4 3)

M =f&~'(m), m =fis'(I) . (4 4)

In presence of symmetry p =q; p could, in general, be dif-
ferent from q.

For a cycle, the address A will denote the lap of the set

I Ik I containing the j iterate (4.1) of M. BJ will denote
the lap containing the j iterate (4.2) of m, and formally
define the last address (j =p} as the average of the inter-
vals on both sides of the extrema in play

(Ii+I2)/2 if p corresponds to the maximum

(12+Ii)/2 if p corresponds to the minimum .

(4.5)

Similarly, B~ will be defined as a formal average of the
intervals on both sides of the extrema at the qth place fol-
lowing m. Moreover, Ao and 80 will be defined by

Ao =Il Ao+=I

In the second case of an isolated cycle of period P +q, the
same letters P and q for the number of periodic points be-
tween extrema become

3

e+(t) e (—t)=-2e+(t) 8+ —8; —= g Q, (t)I, , (4.11)

g P, (t)[1—s(IJ )t]=0 . (4.13)

The kneading determinant is the inverse of the Artin-
Mazur g function obtained by suppressing the final
column of the kneading matrix

1/g(t) =P2(t}[P)(t}—Pi(t)]

=[Pi(t)—Pi(t)][Pi(t)+Pi(t)]

where QJ(t) are the polynomials formed with the terms
multiplying the corresponding laps.

The kneading matrix is formed with polynomials P&(t)
and Q&(t),

P, (t) P,(t) P, (t)

Q i(t) Qi(t) Qi(t)

The symmetry (1.5) of the a=0 sine map induces the
property

P (t) = —Q4 (t) .

The kneading matrix annihilates the vector 1 e(1& )t an—d,
therefore,

and (4.6) X (t —1)/(t + 1), (4.14)

j—1

8~(()= $ B~(( ti E(8() . (4.9)

Bo ——I2,„BO ——I3 .

The sequence A o,A i,A z, . . . , A~ is known as the
itinerary of the maximum, and the sequence
BO,Bi,Bz, . . . ,Bs, the itinerary of the minimum.

Now assigning a sign to each lap

1 when fi is monotonous increasing in I~
e(I~) = —1 when fi„ is monotonous decreasing in I/ .

(4.7)

Next, consider the invariant coordinate of the extrema as

j—l

8ar(() $4, (' ii c(AJ)=
j=o

and

where the last equation obtained takes into account the
orthogonal property (4.13).

Thus the itinerary of the extrema may be used to calcu-
late the Artin-Mazur g function. In the case of the cubic
map these results are obtained as empirical rules deduced
directly from the itineraries and the factorization of the
characteristic polynomials of the Stefan matrices, in-
dependently of the Milnor-Thurston papers.

While the generalization of the Milnor-Thurston knead-
ing theory for the circle suffices for the examples con-
sidered, the theory should be extended for the reason that
maps of the circle viewed as such are continuous, but be-
come discontinuous if viewed as maps of the interval.
(See Figs. 1—8.}

The Mi1nor- Thurston a1gorithm to construct the
Artin-Mazur g function remains nearly the same. When
the map of the circle is considered as a map of the inter-
val, the points of discontinuity are incorporated as turning
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points separating different laps. The subintcrval includ-

ing the origin is considered as two distinct subintervals or
laps.

At first sight aIly particular case scc1118 CUfnbcrsomc.
For example, the map of the circle for the values given in
Fig. 3 comprises eight discontinuities, ten turning points,
and a kneading matrix with 110 functions all to be con-
sidered. The kneading determinant requires the carrying
out of 10!operations with polynomials in order to be able
to calculate the Artin-Mazur function. Actually, this
function can be obtained with the same formal result in
plenty of cases. This result will come from using well-
known properties of determinants in the kneading deter-
minant.

After the first laps visited, the iteration of discontinui-
ties follows the same itinerary. For itineraries of extrema,
the only case presented in Milnor-Thurston papers, the
different slopes of each side of laps joining at the extrema

produces a term in the kneading invariant from each lap
in the itinerary. For discontinuities this is no longer true;
the slopes do not change sign at a discontinuity. Most
laps of the itinerary for these discontinuities do not affect
the kn~~ing matrix. When it happens that an iteration
of discontinuities falls at the extrema things change for
the kneading matrix. Yet this case is simplified in the
kneading determinant. Since the occurrence for the
itinerary of that extrema has already been considered in
the determinant it is not necessary to include its repetition
in the itinerary of the discontinuity. Hence, only the first
laps of the itineraries of discontinuities are considered.

When the polynomials of the itineraries of the extrema
are formally written, all the periodic cycles with an equal
number of discontinuities have similar kneading deter-
mimmt.

Calculation of the kneading determinant for the non-
symmetric circle maps leads to

QLJ(t)+t —gjL&(t)+ gj CJ(t) gjRJ(—t) g C (t)
J J . J

=(1—t)

Q L&(t)+t —$jL,(t)+ $jC&(t) QJRJ(—t) $C, (t)
(4.15)

where LJ(t), Cj(t}, and RJ(t) are the polynomials that
multiply the laps forming the kneading invariant in Eq.
(4.10), and where the tilde denotes the polynomials in Eq.
(4.11). In the case of the circle map the polynomials to
the left of the maximum are designated by the letter L,
with the subindex ordering the laps. Starting from sub-
index zero the index increases toward the right. The CJ(t}
are the polynomials between extrema. The index is identi-
cal for both sides of the maximum and decreases toward
the right. The RJ(t) polynomials correspond to the laps
to the right of the minimum, the rightmost lap with sub-
index zero (when a=O) or minus one (when a=O). The
index decreases toward the left. For example, polynomi-
als of the map drawn in Fig. 5 should be denoted
LO,L i,L2,C2, Ci, CO, C ),R 2,R ),Ro.

Notation has been selected to obtain expression (4.15)
independently valid of the number of discontinuities, and
representing symmetric cases a=O and —,

'
by adding the

symmetry constraints valid for a =0,

R, k(t}=—Lt, (t},
Lk(t) = —R I t,(t),

Ct, (t)= —C I,(t),

and the symmetry constraints valid for a = —,
'

~

(4.16)

LJ(t) = R(t—),
R,(t)= L, (t), —

Cg(t) = C l J(t) . —
(4.17)

Based on this notation, (4.13) is written

(1—t) g [L (t)+R&(t)]+(1+t) g C (t)=0 . (4.18)

Taking into account symmetry constraints, the g function
of the a =0 symmetric case is

1/g(t) = g [LJ(t)+RJ(t)] g [LJ(t)—R/(t)] —t g (2j +1)[LJ(t)+RJ(t)]+2tgjCJ(t)
J J

(1+t) . (4.19)

And the g function of the symmetric a =
z result in the form

1/g(t)= g [L,(t)+R,(t)] g [L,(t)—R J(t)]—2t gj [LJ(t)—R,(t)]+t g C, (t)(2j —1)
J J

(1+t) . (4.20)
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These results were verified for hundreds of cases by direct
computation of the symmetric and nonsymmetric circle
map.

The premises upon which these studies have been based
have been applied to other mappings and return maps.
One case of particular interest is the Lorenz model ' as
studied by Birman and %illiams based on the knot
theory in which they used a return map of two laps
represented by the letters x and y. This is a monotonic
and discontinuous map, and the kneading theory predicts
if P(x) is the polynomial of any permutation cycle of this

map, then P(x)(x —2)/(x —l) is the polynomial of its
Stefan matrix. Another way of obtaining this result is by
straightforwardly taking the discrete Fourier transform of
the Stefan matrix.
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