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l-separated Hylleraas basis functions in the perturbation expansion of atomic states:
Accurate partial-wave energies of second order in 1/Z for the 18 2 ground state
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The previously derived method of l-projected Hylleraas basis functions [for calculating the indivi-

dual partial waves Ri(r „rz)Pi(cos8) of an atomic pair function of first perturbation order in 1/Z] is
analyzed again and improved. It suffices to project„onto I'i{cos8), a subset of Hylleraas functions
{the powers of u =r12 and s =rl +r2 alone). The I-separated Hylleras functions give rapid conver-
gence since they possess a similar discontinuity at ri rz a——s the exact partial wave [C. Schwartz,
Phys. Rev. 126, 1015 (1962)]. The handling of the l projections is easy. The method is applied to
the 1s pair to obtain, at relatively lorv basis-set dimensions and without using any nonlinear param-
eter, the heretofore most accurate values of the partial-wave energies EI' {I=0, 1,2, . . .) and of the
entire second-order energy EH, .

I. INTRODUCTION
In the calculation of an n-electron atomic state by per-

turbation expansion (with respect to the full or screened
electronic interaction' }, there are two kinds of
mathematically rigorous decoupling which divide the
large problem into subproblems that can be solved in-
dependently of each other. This decoupling holds for the
first perturbation order. It does not hold for the entire
eigenfunction, therefore it is not available in a method
that is only variational. The first-order eigenfunction
'0'(n) (which provides the energy up to the third order)
decouPles into -(z) heliumlike Pair functions ql'(2). 3

Secondly, the perturbation equation for each of the atomic
pair functions qt'(2) splits into independent equations for
its "partial waves"; for an (L =0) pair the partial-wave
decomposition is

qt'(2):= qi'(ri, rz, 8)= g Ri(r„rz)Pt(cos8)
l=o

(8 is the angle between the vectors ri and rz, Pi the 1th
Legendre polynomial}.

Both principles have been taken care of in the "method
of symmetry-adapted pair functions" (SAPF's} developed
by Jankowski et al. In the framework of the Hartree-
Fock-based perturbation expansion the method has pro-
vided very accurate second- and third-order energies for
the ten-electron ' ' " and larger ' ' atoms. The qi'(n)
problem for atoms thus reduces to the calculation of indi-
vidual radial functions like the Ri(r i,rz) (l=0, 1,2,3, . . .)
in Eq. (1).

The E.I can be approximated in a linear basis set using
the variation-perturbation principle. ' Continuing the
work of a previous paper (here called paper I), we study
basis functions which can compactly represent an Rt.
The exact Ri(ri, rz) is characterized by a finite discon-
tinuity of the third derivative in the neighborhood of
ri rz Therefo——re t.he approximation by configuration-
interaction-like products of orbitals, e.g.,
r iexp( —ari)rz exp( Prz), inust be —slowly convergent.

The basis set should contain functions which themselves
have a discontinuous third derivative. Paper I has shown
that such functions arise naturally by projection [onto
Pi(cos8)] of the Hylleraas basis functions (powers of
u=riz, s=ri+rz, and t= ri+rz) —which are
known" " to give a good representation of the entire
qt'(2).

In the present paper we simplify this "I-Hylleraas
method:" It suffices to project a subset of Hylleraas func-
tions (the powers of u and s alone). These still generate a
complete set of radial functions. The convergence im-
proves and, furthermore, the method is easier to handle
since from the outset there are no linearly dependent pro-
jections. We apply the method to the ls ground state
and calculate accurate values of the partial-wave energies
Et (of second order in 1/Z). Section II contains the
mathematical results, Sec. III the calculations and the
comparison with other work. Section IV indicates possi-
ble applications. The description of the method in this
paper is restricted to the 1/Z expansion. ' However, after
the necessary changes the I-separated Hylleraas basis
functions must be also applicable to the Hartree-Fock-
based expansion.

II. THE CONDENSED
I-HYLLERAAS BASIS SET

We consider the l/Z expansion for the ground state of
the two-electron atom:

+He ——O'He+Z 'PH, + '

where iltH, ——(1/m )exp( r i
—rz), —

EH, —1+( —, )Z '——+EH+
(unit of length is 1/Z bohrs; unit of energy is Z hartree).

Through the partial-wave expansion Eq. (1), the first-
order perturbation equation splits into separate equations
for /=0, 1,2, . . . :
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(H + 1)%I+ [(1/ri2)t ——,5t o]% H, =O

[H is the sum of two hydrogenic operators, and

(1/riz)t (r——&/r &+' )Pi]. Likewise the variation-
perturbation principle decouples into separate principles
for the Et and ipse, cf. Eqs. (1)—(5) of paper I.

The Hylleraas basis functions (for representing the en-

tire %H, ) are (s =ri+r2 t = ri+—r2, u =ri2)

F,b, u'——s t'X; a,b E [0,1,2, . . . j, cE I0,2,4, . . . j .

(5)

In our calculations we choose the simplest reference func-
tion: X=VH, for all /. The "/-Hylleraas basis functions"
as suggested in paper I arise by projection of the F,b, onto
Pt(cos8). These projections, which we write as F,b, t, are
of two types: They are infinitely differentiable in ri and
rz for the even u powers (a=0,2,4, . . .), and finitely (at
least two times) differentiable at ri r2 fo——r the odd
a=1,3,5, . . . . Since in Eq. (4) (1 /r, 2) thas a "cusp" at
ri ri (a——discontinuous first derivative) the solution 4'i
must have a discontinuous third derivative. Among the
basis functions F,b, t the Fibot (which contain the first
power of u and do not contain t) are the most important
for modeliny this cusp behavior of O'I, see (c) below.
Since +I~—,(u)t+H, for /-+ao (Ref. 6) the first basis
function Fitw t alone is sufficient for representing the par-
tial waves of high /. (The Et b, for example, is so ap-
proximated with an accuracy of 10 a.u. )

From these considerations it results that the generating
set (5}can be reduced to the subset where c =0:

F,b t yq ——A(q)Pt(cos8),

where m=a+b, y=r&, q=r& jr&, and A(q) is a po-
lynominal in q (which depends on /, a, and b). Because of
the y in (9) there can be linear dependence at most be-
tween functions of the same m. Consider the case of the
partial wave /=0. For m = 1 there are two projections

and

(s)o=s =y(1+q) (10a)

[(m+2)u t —(m+4)u + ]t o
———2s +

(M=0, 1,2, . . . ) . (8)

For / & 1 the projection (ut )i, for example, is linearly in-
dependent of the F,b t.

Statement (b) is a consequence of the fact' that, in the
space of the wave functions %(ri, ri, 8), the subset u s t'
of (5) with even u exponents is already a complete system.
When this subset of Hylleraas functions is projected onto
a given /, one obtains complete radial sets consisting, how-
ever, of the infinitely differentiable functions only. It is
easily seen that each (u s t'}i depends linearly on the
projections of the form (u ~sb)i.

For (c) one examines the projections F~ t for
a=1,3,5, . . . as functions of (ri, r2) in the neighborhood
of r, =r2. The (usb)t (b=0, 1,2,3, . . .) exhibit a discon-
tinuity in the third derivative. For (us t )t and (u s )t
the discontinuity moves to the fifth derivative, for
(us t }t, ( u s t )t, and (u s )t to the seventh derivative.

(d) can be proved as follows. Any projection F,b t has
the form

(u)o ———,y(3+q') (lob)
F,b ——u's X, a,b E I0, 1,2,3, . . . j .

For given /, let [F,b, t j and IF,b t j denote the sets of the
(nonzero) /-projections of the functions (5) and (6), respec-
tively. Our basis sets for the practical calculations will be
fixed by the usual conditions

a+b+c &M and a+b &M,

which are linearly independent. For higher m one con-
cludes by induction: If the projections ofs, us ', . . . , u~ are independent then the same must
be true for the projections of the s-multiplied functions
s +', . . . , u s. There is one remaining projection: that
of u +'. For a pure u power the polynomial A (q) in Eq.
(9) is nonzero at q= —1; so, it cannot be a linear com-
bination of the s-multiplied projections since these vanish
at q = —1. For the / & 1 the proof works the same way.

TABLE I. Partial wave I =O. Calculations using the I-

separated Hylleraas functions jF,bI Oj where a+—b &M; cf.
Eqs. (6} and (7}. dim is the respective basis-set dimension. En-
ergies in 10 a.u.

dim

—124 694.019
—125 331.192
—125 333.249
—125 333.688
—125 333.789
—125 333.816
—125 333.825
—125 333.828
—125 333.830

la

5
9b

14
20
27
35
44
54

'Only function u.
See Ref. 21.

respectively, where M,ME [1,2, 3, . . . j. These finite sets
will be denoted by Bt(M) and Bi(M), respectively. We
have the following statements (to be proved subsequently).

(a) For /=0 and any M, Bo(M) and Bo(M) span the
same linear space; i.e., the elimination of linearly depen-
dent projections reduces Bo(M) to Bo(M}. For /&1 the
linear space of Bi(M) is actually larger than that of
Bi(M). The observations (b)—(d) refer to all / & 0.

(b) IF b i j is an (over)complete system, i.e., it can
represent the exact partial wave 4'1.

(c) Through the proje:tions of us (b =0, 1,2, . . .),
I F,b t j is capable of a rapid modeling of +i near r i r2. ——

(d) All projections in IF,bi j are linearly independent.
That is, the elimination of linear dependences as in

IF,b, i j is no longer necessary.
Observation (a) follows from the fact that, for /=0,

there is a linear relation' between (u t )o and the F,b o.
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TABLE II. Partial wave 1=1. Comparison of the full and the condensed l-separated Hylleraas sets
(left- and right-hand sides, respectively); cf. Eqs. (5)—(7). Improved convergence for sets fixed by
2a+b &N (lower right); cf. Eq. (11). All energies in 10 a.u.

[~as.i= i [

dim

—24 781.837

[+ah, I = &i

dim

—24 781.837

12
18
25
33
42
52

—26 489.931
—26 493.644
—26 494.637
—26 494.9SS
—26495.072
—26 495.120

10
15
21
28
36
45

—26 489.785
—26 493.S81
—26 494.610
—26 494.943
—26 495.066
—26 495.117

9
10
11
12
13
14
15

20
25
30
36
42
49
56

—26 494.954
—26 495.068
—26 495.117
—26 495.140
—26 495.150
—26 495.155
—26 495.158

III. CALCULATIONS

The 1-projected Hylleraas functions are all of the form
(9). The variation principle for Et and %'t [see Eq. (5) of
paper I] leads, as usual, to a system of linear equations.
AII matrix and vector elements are sums of the James-
Coolidge integrals' V „(a=2, P=2); cf. Eq. (18) of I.
%'e set m +n =0' and V~„=U~ ~. Th.e U~, ~ are com-

puted recursively using the formulas of James and

Coolidge. ' The original procedure, which starts from

Uo, ———,
' ln2 and ascends in m and o, tends to accumu-

late roundoff error. For reaching higher values of m and

o, it is much safer to descend, starting from some "corner
value" U 0,.0 with mo&no+1. Thts U 0,.0

can be

found by summation of the series Eq. (20) of I. (This
series is convergent for all m and o.) Fifty terms of it
provide Uso 4o with an accuracy of 12 decimal places.

The numerical results for the partial waves 1=0—15

are collected in Tables I—V. In the case of 1=0 (Table I)
the full 1-separated Hylleraas set Bo(M) and the con-
densed set Bo(M) are equal [see (a) of Sec. II]. For the
partial waves 1=1 and 2 Tables II and III give the results
from both basis sets for comparison; one can see that the
energy is altered very little by the omission of the t-
dependent functions, while the dimension reduces. The
convergence with rising M of Bt(M), see Eq. (7), is rela-
tively slow for the partial waves I = 1 and 2. This is ow-
ing partly to our rigid choice of reference function 4H,
for all l. We have therefore applied sets B/'(N) which are
the subsets of [F,b t ) restricted by the condition

2a+b &X (N =1,2, 3„.. . ) .

These contain relatively more s than u powers and allow
for a better modeling of the s dependence of the radial
function R& in a similar way as the substitution of the

TABLE III. Partial wave 1=2. Similar calculations as Table II; cf. Eqs. (5)—(7) and (11).

[~as, i=a[
dim

—3832.698

[+ab, s =2 I

dim

—3832.698

30
39
49

—3905.984
—3906.065
—3906.100

—3905.971
—3906.058
—3906.096

dim

32
38
44
Sl

—3906.109
—3906.120
—3906.126
—3906.129
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1

8
9

10
11

1

24
31
39
48

—1070.190
—1077.716
—1077.721
—1077.724
—1077.726

1

7
8
9

10

1

16
21
27
34

—404.846
—406.093
—406.095
—406.096
—406.097

—184.710
—184.991
—184.993
—184.994
—184.995

reference function exp( —s) by exp( —ks) where k is a free
parameter. ' The lower parts of Tables II and DI show
for I =1 and 2 that 8I'(X) needs considerably fewer basis
functions than Bi(M) for the same accuracy of the energy.
(For I =0 and 3 the use of BI(N) gives little advantage. )

For I=15 (see Table V) the energy of the "one-function
approximation" qII ——c(l)(u)i%'H, is —3.029 714X 10
a.u.; this differs from the exact energy by only 1X10
a.u. The one-function approximation, in turn, can be re-
placed very accurately by the three terms of its asymptotic
expansion, Eq. (21) of I. This three-term formula gives
—3.029716X10 a.u. for 1=15 and, when summed' '
over all 1)16, the total of —14.2481X10 a.u. The

TABLE V. Partial waves/ & 6 using the /-separated Hylleraas
sets tF~~I; cf. Eq. (6). The values in the column "converged"
are attained with M =6 (dim 12}for /=6 —12, with M=4 (dim
6} for /=13—15. Sum / & 16 is taken from the asymptotic for-
mula Eq. (21) or Ref. 9.

6
7
8
9

10
11
12
13
14
15

M =1 {dim 1}

—95.?082
—54.3689
—33.1093
—21.2898
—14.3009
—9.9570
—7.1432
—5.2564
—3.9531
—3.0297

Converged

—95.?88
—54.396
-33.120
—21.2941
—14.3029
—9.9579
—7.1437
—5.2566
—3.9533
—3.0298

&16 —14.2481 —14.2481

TABLE IV. Partial eaves /= 3,4,5 using the /-separated Hyl-
leraas sets IF~,~I; ef. Eq. (6).

dim

difference against the sum of the exact partial-wave ener-
gies should be less than 1X10 9 a.u.

For the I &4 (Tables IV and V) the respective best
values of the partial-wave energies are converged within
the given number of digits. For I =0—3 (Tables I—III)
the remaining error appears to be not larger than a few
10 a.u. in each case. Summation over all I gives the to-
tal second-order energy F.~,, cf. Eq. (3). In Table VI,
lines 1(A)—1(C), three suins of different accuracy have
been formed. The best value, gained with /-separated
H~lleraas basis sets of dimension & 56, is
EH, ———1S7666.425 X 10 a.u.

The extrapolated value of Midtdal, " see line 4(B) of
Table VI, is very close to it. Midtdal s variational result
[4(A)] enables the direct comparison between entire and
I-separated Hylleraas functions since Midtdal's work, like
the present one, uses the nonoptimized reference function
exp( —ks) with k=1. The accuracy of the 203 entire
functions is reached in I-separated calculations of dimen-
sions & 30 [see line 1(A)].

Our result 1(B) is close to the best previous values:
That of Scherr and Knight' ~ ' (line 7 of Table VI) and
Knight's'+" value of —157 666.40 X 10 a.u. which was
obtained in 100 Hylleraas functions with an optimized k.
It is well known'+ ' that the optimization of k saves basis
functions; compare also lines 4(A} and 5 of Table VI. Re-
cent l-separated Hylleraas calculations" which optimize
k =kI for each I need only 70—50% of the dimensions of
the present (k = 1) calculations.

Good convergence of the I-separated Hylleraas func-
tions can be seen from the comparison with other radial
basis sets. The powers of r& and r& [Ref. 18(b)] have
been discussed in paper I; see also the present Table VI,
line 2. A recent paper by Kutzelnigg ' ' explores the
partial-wave structure of the remainder wave function
which is obtained from either the entire or the first-order
perturbation eigenfunction by separation of an r,&-

proportional part r&iP(rt, ri). The VI of the 1/Z expan-
sion is thus represented by —,

' (r,z)i+H, plus the sum of or-
bital products (which contain one optimized exponential
parameter per I}. A set of 55 products gives for I = 1 the
energy of —26494.93X10 a.u. The same accuracy can
be attained with 20 of the I-separated Hylleraas functions
(Table II). This indicates that the convergence for the low
1 is improved by the participation of more of the "cusp
functions" (u)is qIH, along with the (b =0) function; cf.
Sec. II. In Kutzelnigg s method a similar improvement is
provided for through the optimization of the reference
function P.

At the end of this section we should like to underline
the observation of Schwartz and Byron and Joachain' ' '

that a partial wave is approximated only slowly if the ra-
dial basis set consists of orbital products
P,J.(r„ri)=p;(r, )yj.(ri) alone. This should also be true
for the Manlier-Plesset expansion. Orbital products have
been used by Jankowski and co-workers for the practical
implementation of the SAPF method. For each partial
wave of the ls pair of the neon atom (MSller-Plesset ex-
pansion) a choice of 120 products (which are expressed in
20 Slater orbitals with carefully optimized exponential pa-
rameters) gave the EI (for example, 1=3,4, . . . , 9} mth
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TABLE VI. Total second-order energy EH, (all partial ~aves included). Results from I-separated

variation (lines 1—3) and from entire variation (lines 4—7). Energies in 10 a.u.

Line

(A)
(B)
(C)

(A)
(B)

Method

/-projected Hylleraas functions, exponential parameter
k =1 (present results):
(27,30,27, 18,12,12)'
(44,42,44,31,21,20)'
(54,56,51,48,34,20)'
Powers of r & and r &, k=1, dim 30 for each I & 10
[Byron et al. , Ref. 19{b)]
{r~2)I and orbital products, k opt. , dim 55 for the
low I [Kutzelnigg, Ref. 5(b)]
Hylleraas functions, k=1 {Midtdal, Ref. 11):
variational result, dim 203
extrapolated value
Hylleraas functions, k opt. , dim 70 [Knight and
Scherr, Ref. 10(a)]
Hylleraas-like functions, k opt. „dim 100 {Sanders
and Scherr, Ref. 22)
Kinoshita functions, k opt. , dim 100 [Scherr and

Knight, Ref. 10{b)]

2

—157 666.299
—157 666.405
—157666.425
—157656

—157666.14

—157 666.239
—157 666.428
—157666.149

—157 666.38

—155 666.405

'In brackets are the respective dimensions for 1=0,1,2,3,4,5.
bCf. Sec. III.

an accuracy of 10 a.u. [Table II of Ref. 7(a)]. In order
to obtain the Et of the 1/Z series with the same accuracy
(see also Table D of paper I) very small sets of 8, 5, and 1

I-separated Hylleraas functions are sufficient for 1=3, 4,
and I & 5, respectively.

IV. CONCLUSION

In this paper the method of the I-separated Hylleraas
basis functions (for calculating a partial wave of an atom-
ic pair function) has been analyzed again and simplified.
Generating the 1 projections and evaluating the matrix
elements is transparent and straightforward. The applica-
tion of the method to the lsd ground state (1/Z expan-
sion) gave the most accurate values to date of the partial-
wave energies Et (1=0,1,2, . . .) and of the entire EH
(Table VI). In order to approximate a partial wave %t
with a given accuracy, the basis-set dimension is lower (in
some cases much lower) with the l-separated Hylleraas
functions than with other previously used basis
functions. ' ' ' ' ' The 203-dimensional calculation" in
entire Hylleraas functions is equivalent to individual I-
separated calculations, each of dimension &30. For the
low I it would be possible to reduce the basis set dimen-
sions further by optimizing the reference function X=Xt

for each I (von Hirschhausen' ). Further details have
been discussed in Sec. III.

The decoupling into partial waves exist also for the pair
functions of the second and higher perturbation orders,
+H„etc. The l-separated Hylleraas functions are then
again applicable. Though the variation principle for Et
and %t (of some I) contains the first-order partial waves

VI of al/ I, the evaluation appears to present no difficul-
ties.

The main field of application of the I-separated Hyl-
leraas basis set is the determination of the first-order
eigenfunction of the n electron ato-m through the separate
calculation of the pairs ls2s (singlet and triplet g, 2p
(triplet P), etc.; that is, in the framework of the method of
"symmetry-adapted pairs" or in the counterpart of it in
the 1/Z expansion.
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