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Density-functional theory of curvature elasticity in nematic liquids. II.
Effect of long-range dispersion interactions
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The theory of curvature elasticity in nematics described in earlier papers is reformulated and sim-

plified. The extent to which the "splay, " twist, and "bend" constants (Kl, lt 2, EC3) of nematic liquid
crystals differ from one another and the way they depend upon the degree of alignment (as charac-
terized by the nematic order parameters T„)are determined by the structure of the medium which in
turn is characterized by the correlation functions. The direct correlation functions of the isotropic
liquid in terms of which the elastic constants are expressed have broad functional similarities for
systems with rather different intermolecular potentials. An approximate scheme is proposed to esti-
mate the values of the direct pair correlation function. Numerical results for the elastic constants
are presented for a range of hard-core sizes and shapes and dispersional strengths and anisotropies.
It is found that the effect of the long-range dispersion interactions on the elastic constants is deter-
mined not only by the angle-dependent part of the forces, but, and more significantly, by the cou-
pling between the isotropic part and anisotropic hard-core repulsions through the pair correlation
function. The attractive interactions are found to make significant contributions to EC; in ordinary
nematics (nematics of rod-shaped molecules) when xo (length-to-width ratio) is small ( & 3.0) and in
discotic nematics when 1/xo is large (i.e., )3.0). Qualitative features exhibited by our calculation
for both the ordinary and the discotic nematics are in agreement with the experiment.

I. INTRODUCTION'

The Frank elastic constants are a measure of the free
energy associated with long-wavelength distortion of the
nematic state in which the local preferred dire;tion of
molecular orientation varies in space. If the local pre-
ferred direction at the point r is parallel to the director
n(r), the free energy associated with the distortion is writ-
ten as'

~~, =-,' I«[E,(V n)'+E, (n ~Xn)'

+E,(n x Vxn)'],
where Ei, E2, and E3 are elastic constants. The first
term in this equation gives energy associated with splay,
the second that associated with twist or torsion, and the
third that associated with flexion or bend. Thus the
Frank elastic constants E; characterize the free-energy in-
crease associated with the three normal modes of defor-
mation of the oriented nematic state.

The phenomenological theory of Landau and de
Gennes, in which the Helmholtz free energy is expressed
in powers of the order parameters and its gradient, gives

ICf jC2 jC3 —5 1 1 5 (1.3)

This is not in agreement with the experimental finding
that for long-elongated molecules (i.e., for ordinary
nematic phase) E2 is the smallest of the three elastic con-
stants. For discotic nematic, however, IC2 is largest. The
following general results, first reported by Priest, are
found to be in good qualitative agreement with experi-
ment:

eter P2. Thus, to order P2, IC& ——IC3 and all three elastic
constants vary with temperature as P2. Experimentally,
however, one finds that 0.5 &E3/E i & 3.0 and
0.5 &E2/Ei «0.8 for long elongated molecules.

In another approach ' one begins with a model, be it
in the form of the molecular shape or of the intermolecu-
lar potentials, and proceeds to calculate excess free-energy
density due to distortion. These calculations are invari-
ably based on assumptions as to the relative importance of
the repulsive and attractive parts of the intermolecular in-
teractions. For a special case of anisotropic dispersion in-
teraction between spherical molecules (Maier-Saupe
model), Nehring and Saupe found, up to order P 2,

Ei E3 —( 2L i +L2 )P 2 and—E2 ——2L i P 2

where P2 ———,
' (3 cos 8—1) (8 being the angle between the

director and molecular symmetry axis) and L i and L2 are
phenomenological constants appearing in the Landau
free-energy density. The overbar indicates the ensemble
average. The above result is obtained by restricting one-
self to axially symmetric molecules and expanding the
free-energy density up to second order in the order param-

El = 1+b, 3b.'(P4/P2 ), —
K

IC2 = 1 —2b —b '(P4/Pi ),E
IC3 = 1+6+kb, '(P 4/P 2),E

where

(1.4)
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K= —,
' (Ki +Kg+Xi )

II. BASIC THEORY

The Helmholtz free energy F of a system of nonspheri-
cal molecules of arbitrary symmetry contained in a
volume Vat temperature T is

PF=PF;g+H, (2.1)

where p ' is Boltzmann's constant times temperature and
pF~& is the reduced Helmholtz free energy for the ideal
gas:

pF & f p(x) [ln[p(x)A]+ pu'(x) ———1]dx . (2.2)

P4= —,
' (35cos 8—30cos 8+3).

The quantities 6 and 6' are constants depending on
molecular properties: In order to calculate them, further
approximations have to be made.

The combined effect of repulsive and attractive forces
has been considered by Poniewierski and Stecki" and Gel-
bart and Ben-Shaul. In many of the earlier works
the potential-energy function plays an explicit role,
whereas the structure of the liquid crystals (which enters
via a variety of considerations concerning excluded
volume of correlations, packing geometry, etc.) plays only
an implicit one.

The theory described by Singh' and others' is based
on a density-functional approach, which allows one to
write a formally exact expression for the free energy in
terms of the direct pair correlation functions The .direct
correlation functions which appear in this expression are
functionals of the single-particle density distribution p(x),
where x indicates both the position coordinate r of a mol-
ecule and its orientation Q, described by Euler angles a,
P, and f. Using the functional Taylor expansion, the
direct correlation function of a nonuniform system is ex-
pressed in terms of the direct correlation functions of the
isotropic liquid' at the same number density p. This pro-
cedure is briefiy reviewed in Sec. II.

In the previous paper in this series, ' hereafter referred
to as I, we assumed that any change in the direct pair
correlation function (DPCF) c2 due to distortion is of or-
der q (where q is the wave number associated with the
distortion) and therefore makes no contribution of order
q2 in the free energy. In Sec. II, however, we show that
this approximation is not needed.

The purpose of this paper is to present and discuss the
contributions of the long-range dispersion interaction to
the Frank elastic constants. In I we reported the numeri-
cal values of the three elastic constants for systems com-
posed of hard ellipsoids of revolution. In this paper we
recalculate them using the formulation described in Sec.
II. The model system which we investigate here is
described in Sec. III. %e also discuss in this section the
approximations used for numerical enumerations. The re-
sults are presented and discussed in Sec. IV. The paper is
concluded in Sec. V with a brief summary and concluding
remarks.

Here A is the cube of the thermal wavelength associated
with a molecule and u'(x) is the potential at x due to
external field. H is the excess reduced Helmholtz free en-
ergy arising from the intermolecular interactions and is a
functional of the single-particle density distribution p(x)
and pair potential u(x;, xj ).

The functional H acts as a generating functional for the
correlation functions' '

5p(x; )
i=1

= —c„(x), . . . , x„;[pj )
—= —c„[pI, (2.3}

where c„are direct n-body correlation functions. The
functional dependence of c„on p(x) is indicated by curly
brackets [ I; —kTci(x~', [pI ) is the solvent-mediated ef-
fective potential field acting at x;. The function
cz(xi, x2, [p[) is the Ornstein-Zernike direct pair correla-
tion function.

The functional integration of (2.3) for n = 1 leads to
1

H[p) = —f dxip(xi) f daci(xi, ctp(xi)) . (2.4)

The parameter a characterizes a path in the space of the
density. The existence of the functional H [Eq. (2.3)]
guarantees that the above result is independent of the path
of integration. ' In a nonuniform system, p(x) is a func-
tion of x (i.e., position and orientation) and c„a function-
al of p(x).

Since a uniform nematic phase is translationally invari-
ant,

p(xi) =po f(Qi) (2.5)

f(r, Q}=fo(r,Q)[1+t(r„Q)],
where

(2.7)

(2.8)

The term in t in (2.7) represents the stress-induced
changes in the form of the distribution function. In the
case of long-wavelength distortion this term makes no
contribution to the Frank elastic constants. In (2.8), e is a
unit vector along a molecular symmetry axis and n(r) is
the local director.

Functional Taylor expansion is used to express the
direct one-particle correlation function of a distorted
nematic phase in terms of the direct correlation functions
of the isotropic liquid at the same number density po.
Thus

where po is the mean number density and f(Q, ) is the
singlet orientational distribution function normalized to
unity,

f f(Qi)dQi ——1 . (2.6)

For a uniform nematic, f(Q) is independent of position.
Any deformation in the liquid crystal will cause the

orientational distribution to be distorted in space from
whatever form it had in the perfectly ordered nematic.
Since the principal effect of an orientational stress is to
cause the director to vary spatially in such a way that at
each point in space, f has the same uniaxial form with
only the axis varying, we write
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ce

c,(x„IP))=c,(x„po)+ g f g [dx;5po(x;)]c„(po)+f dxz[5p(xz) —5po(xz)]cz(po)

+2 f dxz f dxzpo(x3)[5P(xz) —5po(xz)]c3(po)

+f dx, f dx, [5p(x, ) 5—p,(x, )][5p(x3) 5—po(x3)]c3(po)+ (2.9)

where

5P(x; ) =p(x» ) —po
——po(fo(r;, Q; ) —1 ),

5po(x; )—:po(f(r~, Q; ) —1), (2.10)

cn(PO)=c»»(xl&xz» &xn»Po) .

Substitution of Eq. (2.9) in (2.4) and (2.1) leads to

where

n

PF =PF +d&(p )o—g, f g [d.;5p.(., )].„(p.)
n =2 ' r'=1

and

(2.11)

(2.12)

(2.13)

with

H(po) ———po f dxt f dxz f da'cz(a'po) .

P~d= z f dxl f dxz5po(xl)[5P(xz)-5po(xz)]cz(po)- I f dxi f dxz f dx35po(xl)5po(xz)[5p(xz) 5po(xz)]c3(po)

dX1 X2 dX3 POX1 PX2 POX2 P 3 POX3 ~3PO+

Here the quantity PF„ is the reduced Helmholtz free energy of the undistorted nematic phase with preferred axis corre-
sponding to that at r; and which remains constant throughout the sample.

PAEAN

is the free energy associated with the
distortion. It may be noted that P ~d is expressed here in terms of c„(po), whereas in I it is expressed in terms of

1 C

c„(po)=f da f da'c„(a'po) . (2.14)

As mentioned above, in I we replaced cz I pI of a distorted nematic by cz(pof(Q)) of a uniform nematic on the grounds
that the change in cz due to distortion makes no contribution to PbFd. The derivation given here is free from this as-
sumption and is therefore more rigorous.

We followed a method described in I to derive expressions for the Frank elastic constants from the expression of
P~~. The result is

(2.15)

where

pokT f dr» f dQ& f dQzriz5f(Q& O)F(rtz Q& Qz)cz(po)

K;"'=—', pokT f dr~z f dr—3 f dQ~ f dQz f dQ3r, z5f(Q„O)5f(Q3, 0)F;(r)z, Q), Qz)c3(po) .

(2.16)

(2.17)

Here

Fi(riz, Q), Qz) =f'(Qz, O)

—(r&z.x)

(r~z x)

(r,z z)

(r)z z)

(r&z x)

+ zf"«»O) (r» y)'.
(r)z z)

(2.18)
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and 5f(o;,0)=f{o;,0)—l. i stands for 1,2,3 and x, y,
and 0 stand for unit vectors along the specified I, F, and

Z axes:

f (Q„o)=g P, [r, ,(o,) —I;,(Q, )]P,', ](I), (2.19)

f"(O2,0)=+Pi [Yi 0(Q2}Pj'0(1)
L

+[PL, 2(Q2)+ Fi, 2(Q2)]IPL'2(1},

where

PL,']]{1)=—2 L(L+1}t 2I. +1
4m

' 1/2

PL, i(1)= PL ](—1)
' 1/2

(L —1)! 2L+1
(L +1)! 4n. (2.21}

PL 2(1)=Pi" ](1}
' 1/2

,' (L —1)L—(L+1)(L+2}(L —2)! 2L+1

III. APPROXIMATIONS AND DERIVATION
OF WORKING EQUATIONS

A. Pair potential model

Let the model system under investigation be fully
described by a potential function which depends on orien-
tations and relative centers-of-mass coordinates of mole-
cules but is independent of rotational momenta and inter-
nal vibrational states. Since the flexibility af liquid-
crystal-forming molecules (particularly in their alkyl end
chains) is believed to be important in many instances, the
assumption that the molecules are rigid may not be realis-
tic. It may also be remembered that the symmetry of. the
nematogenic molecules is never as high as D„]„realmol-
ecules are more lathlike than cylindrical. However, for
many real systems, the terms in the pair potential energy
which result from deviations fram cylindrical symmetry
are small and can be treated by perturbation. Moreover,
as shown in Sec. II, the potential function does not appear
explicitly in our formulation. It appears only through the
direct correlation functions. The direct correlation func-
tions are found to have broad functional similarities for
systems with rather different intermolecular potentials
and it is relatively easy to guess a form for them which
mimics the essential feature of the system.

The pair potential function is assumed to have the form

C2(p0) =C2(r]2to]to2spo}

C3(po) —C3(r]2,r]3,r23 Q] Q2 Q3 po) ~

(2.22)

Since isotropic liquid is translationally invariant, the
direct correlation functions c2 and c3 appearing in (2.16}
and (2.17) depend only on the relative separation of mole-
cules and not on their individual positions. Thus

u (x]&x2)=uo(x], x2) +u, (x»x2) . (3.1)

Here uo(x], x2) represents the repulsion between hard el-
lipsoids of revolution parametrized by the length-ta-width
ratio xo=a/b, where 2]2 and 2b denote, respectively, the
lengths of the major (axis of revolution) and minor axes of
the ellipsoids. u, (x],x2) represents the long-range attrac-
tion.

For uo we choose

Since our knowledge of the direct three-body correlation
functions is meager even far atomic fluids, we use the fol-
lowing relation to simplify the terms involving them:

uo(x]yx2)—:uo(r]2$O]yO2)

ao for r]2 &D(o]2)
0 for r]2&D(o]2), (3.2)

ac,(r„,o„o,)

c3 «f2 «f3 «g3 J 2 3 «3 3 ~ 2.23

where D(o]2) [—=D(r]2,Q]2)] is the distance of closest ap-
proach of two molecules with relative orientation given by
Q]2. For D(o») we use the expression given by Berne
and Pechukas, '

(r,2.e, )2+(r, 2 e2) —2X(r, 2 e, )(r,2 e2)(e, .e2}
D(oi2) =2b 1 —X

1 —X {e].e2)

' —1/2

(3.3)

CI. Cg
u, (r]2,Q],Q2) = —

6
—

6 P2(cos8»},
f )2

(3.4)

where X=(xo —1}/(xo+1), r]2 is a unit vector along the
intermolecular axis, and e] and eq are unit vectors along
the symmetry axes of two interacting ellipsoids.

The u, is assumed to have the following form:

where c; and c, are constants related to the isotropic and
anisotropic dispersion interactions and 8&2 is the angle be-
tween the symmetry axes of the two molecules. The effect
of the slowly varying attractive potential on the structure
of the liquid is small and can be approximated by the
first-order perturbation.

A system interacting via a pair potential uo will hence-
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forth be referred to as a reference system and the potential

u, a perturbation potential.

B. The direct correlation functions
and decoupling approximations

The correlation functions appearing in (2.15)—(2.18) are
not known even for a system of hard ellipsoids of revolu-

tion. The solutions of the integral equations of a liquid-

state theory such as the hypernetted chain equation, the
Percus-Yevick (PY} equation, the mean spherical approxi-
mation, or the optimized random-phase approximation
are difficult and time consuming to obtain.

In I we used an approximation for the DPCF of a sys-
tem interacting via a ~pair potential uo, in which we took
the Wertheim-Thiele analytic solution of the PY equa-
tion for a system of hard spheres of diameter do and re-

placed the diameter do by the distance of closest approach
D(012), i.e.,

C2 (r12,01,02}=C2 (r12/D(012})

~12 r12/D(012)

a 1
———(1+22)) /(1 —g)

bi=621(1+ —,
'

2)) /(1 —rl)

and 2) =poo, U =(n'/6)xo(2b), the molecular voluine. As
explained elsewhere, ' ' this approximation decouples the
translational and orientational degrees of freedom and is
therefore called the decoupling approximation. This form
of the DPCF for hard ellipsoids of revolution gives
reasonable results for the Frank elastic constants' and the
isotropic-nematic as dwell as isotropic-plastic transitions. 2

In order to obtain the DPCF for a system interacting
via a pair potential u, we adopt the following perturbation
scheme. We noted earlier that H is functional of pair po-
tential u and satisfies the following relation 6'

ui+bir 12+ 2 2)ui(r12) f«r i2 & 1

0 for r;2) 1,

= —,PP(xi)P(X2)g(xi, x2) .H
5u X1,X2

(3.6)

(3.5) The functional integration of (3.6} leads to

I
1

H[p, u I H[p, uoI+ —,p dA, f dxi f dx2p(xi)p(X2)u, (xi,x2)g(x, , x2, A), (3.7)

where H [p, uoj represents the reduced excess free energy
of the reference system as a functional of p(x} which is
held fixed during the process of increasing id, . A, is a per-
turbation parameter defined by the relation

u(xi, x2, A, ) =uo(xi«X2)+d(ug(xi, x2) . (3.8)

where g'0'(x»x2) is the pair correlation function of the
reference system and 5g(xi, x2) the first-order perturbation
correction. When this is substituted in (3.7) we obtain the
reduced excess free energy corre:t to first order in pertur-
bation

Clearly, A, =0 describes the reference system of hard ellip-
soids of revolution and A, = 1 the physical system of in-
terest. The single-particle density distribution function
p(x) is held fixed in (3.7) as the perturbation potential is
switched on.

Equation (3.7) is exact. Its evaluation, however, re-
quires knowledge of the pair distribution function
g(x, ,x2,.d(, ) for a system interacting via a pair potential
(3.8) at fixed density p(x). Simple perturbation theory for
the pair correlation function leads to

g(xi, x2,'A, ) =g' '(xi, x2}+A[5g(xi,x2)]0+ . , (3.9)

H(p«1=tlfp ««J+T~g f dx) f dx p(x, )p2(x, )

Xu, (x„x2)g' '(xi, x2) .

(3.10)

From relation (2.3) for n =2 and (3.10) we get

C2(xiyx2) —C2 (XitX2) Pldg(xiyx2)g (Xi X2)+(0)

(3.11)
where c2 ' is the DPCF for the reference system. If
g (xi,x2) is taken equal to unity, (3.11) reduces to

C2(xi«X2) =C2 (Xi,X2)—PQ~(xi«X2) « (3.12)

which is equivalent to the random-phase approximation
(RPA} for the structure factor. We can therefore call
(3.11) the extended random-phase approximation (ERPA).
It may, however, be noted that the RPA or ERPA has a
drawback in that it predicts a distribution function
g(xi, x2) which can be nonzero inside the hard core. This
unphysical feature of the RPA is remedied by means of a
self-consistency requirement or by an optimization pro-
cedure. Such a procedure is not attempted here because
the ERPA gives good accounts of the thermodynamic
properties.

In the decoupling approximation,
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g'"(x„x,) =—g'0}(r»,Q, ,Q2)

=g "'«12d'D«12) )

(0)=gh. «12» (3.13)

c3«12 r}»r23'Q1 Q2 Q3)
~'

2 r13 F23

D(Q12)
'

D(Q13)
'

D(Q23)

where gh, '(r;2) is the radial distribution function of a
fiuid of hard spheres at packing fraction g pou. The
decoupling approximation, as has been discussed in I and
elsewhere, is good for calculating the thermodynamic
properties of the isotropic liquid but appears to overem-
phasize the anisotropy in the pair correlation function for
a parallel configuration of molecules and underestimates
it for a perpendicular configuration. This defect of the
decouphng approximation does not appear to be of serious
consequence in the calculation of the elastic constants.

For the direct three-body correlation function we use
the foBowing relation:

C. The Frank elastic constants
in the decoupling approximation

The Frank elastic constant can be written as

y (K~( }+K~( }) (3.14)

where subscripts r and a indicate, respectively, the contri-
butions arising from the repulsive and attractive parts of
the interaction. In the decoupling approximation, their
expression reduces to

K,'= pokTc—2(po) f dQ1 f dQ2 f dr}25f(Q1,0)F;(r}2)Q»Q2)D'(r, 2rQ}2) r

K;,'= —T~pok~c2(po) f dQ1 f dQ2 fdQ35f(Q1, 0)5f(Q3,0)fdr}2D (r}2,Q12)F;(r}2,Q},Q2)

23

K~', ' —— pol4(p') —f dQ1 f dQ2 f dr}25f(Q1,0)F;(r}2,Q},Q2)[c;+c,P2(cos()}12)]D '(r12, Q12),

(3.15)

(3.16)

(3.17)

6,"=——', p lt&(p') 1 dA& J dAr fdAr6f(A„O)6f(A, O)f dr» f ,dr„ f drrrF(r», A„Ar)D'(r», A»)D'(rrr, A»)

)&D (r12,0,2)[c;+c,P2(cosa}2)] . (3.18)

Here
1

c2(po) dr12(r12) c2(r!2 po)0

4q —11'+16

80(1—q)"
5c2(po)

c 2(po) =
P

(3.19)

—0.0845(p') +0.7512(p') —0.6802(p') ],

I4(p')= f, (r12) 'gh", (r}2)«12 . (3.20)

I4(p ) is obtained from the exact radial distribution
function for hard spheres generated from computer simu-
lations. Combining the known density expansion for
gh, '(r', 2) and the Monte Carlo values, Larsen et 621. have
found the foBowing series for I4(p'):

I.(,*)= ' [12.5664+3.8894p 0.08»(p )
4m

IV. RESULTS AND DISCUSSIONS

Our theory involves expansion to increasingly higher
order in the direct correlation functions. Thus

K; = g K,'"', (4.1)

where K ' contains the pair correlation function, K;"' the
three-body correlation function, and so on. The contribu-
tion to each elastic constant arising from K ' is written
as a double sum over contributions which are quadratic in
the order parameters Pq, i.e.,

K(0} gs gr K(0}(L Lr)
L L'

(4.2)

The prime on the summation in (4.2) indicates the restric-
tion that only even L has to be considered. The odd terms
vanish because molecules do not distinguish "up" from
"down. '* K;"' is expressed as a triplet sum over contribu-
tions which are cubic in the order parameter PI .

where

5I4(q)
I4(p') =

5g

(3.21) K'"=g g g K"'(L L,
' L.")

I
Ltd

From symmetry considerations one finds

K '(L,L') ='K '(L', L ),
K;"'(L,L',L")=K;"'(L',L,L")=K;"'(L",L',L ),

(4.3)
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etc., for all i,n and L,L',L". Thus each term of the
series (4.2) and (4.3) can be written, respectively, as

X;"'=K,"'(2,2)+2K,'"(2,4)+
K;"'=K,'"(2,2,2)+

where K '(L,L') ccPLPq and K 'a: PL PL Pl . Since
P2 ~ P4 &Ps and P4/P2-0. 25 for a typical nematic,
we evaluate only those terms which are written explicitly
in the series (4A). The computational method adopted
here is described in detail in I.

In Tables I and II we list the contribution of individual
terms of the series (4.1) and (4.4) for xo ——3.0 and
xo ——1/3.0, respectively, for systems of prolate and oblate
molecules. All the results tabulated and graphed here are
for Pq ——0.5, P4 ——0.15, t)=OA5, c;=1.0X10 ergcms,
and c, /c; =0.05, For prolate molecules we take T=400
K and 2b= 5.0 A. These parameters with xo ——3.0 crude-
ly simulate an ordinary nematic phase (nematic phase of
elongated molecules) of PAA (para-azoxyanisole). The
temperature 400 K lies in the middle of the thermal range
(390—408 K) of the nematic phase of PAA at atmospher-
ic pressure. A PAA molecule can roughly be taken to be
15 A long and 5 A wide. Though the geometry of the
molecule is not strictly ellipsoidal, it can roughly be ap-
proximated to be a prolate ellipsoid of revolution of
xo ——3.0.

A system having flat disclike molecules exhibits a
discotic nematic phase. This phase is distinguished
from ordinary nematics by indications of the anisotropy
of the dielectric permittivity and other tensor characteris-
tics. With T=600 K, 2b=15 A, and xo ——1/3.0, we may
crudely simulate a discotic nematic phase of hexa-n-
hexyloxy benzoate ( n =4) of triphenylene.

A number of observations can be made from Tables I
and II. The series (4.4a) is found to converge rapidly for
both systems of prolate and oblate molecules and for both
repulsive and attractive interactions. The terms written
explictly in (4.4a), however, are insufficient for systems of
large xo (prolate) and 1/xo (oblate). For a reference sys-
tem of prolate tnolecules with xo ——3.0,

~

2E „'(2,4)/K „'(2,2)
~

is found to be 0.24, 0.17, and 0.32,
respectively, for KP„', K2,', and K3,'. These numbers for

oblate molecules with xo ——1/3.0 are 0.19, 0.045, and 0.26,
respectively. From these numbers we conclude that the
higher-order terms of the series (4.4a) are not negligible, at
least for those systems for which the value of xo deviates
considerably from unity. The situation appears better in
the case of attractive interactions. For a system of prolate
molecules (with xo =3.0),

~
2K, '(2,4)/K, '(2,2)

~

is of the
order of 0.095, 0.078, and 0.128, respectively, for i=1, 2,
and 3, whereas for a system of oblate molecules
(xQ —1/3.0), these numbers are 0.078, 0.037, and 0.102.
From these numbers we conclude that the series (4.4a)
converges faster for the long-range attractive interactions
than the hard-core repulsion.

The contribution of higher-order terms in the series
(4.4a) can be approximated with the help of a simple [1,0]
Pace approximant. Thus

2K,"'(2,4)
K,""=Z;"'(2,2) 1—

Kt"(2,2)
(4.5)

These values are also given in Tables I and II and com-
pared with E '=E '(2,2)+2K '(2,4). We find, as ar-
gued above, that while the contribution of higher-order
terms in the series (4.4a) is almost negligible for the long-
range dispersion interactions, for all xo, it is small but not
negligible for the hard-core replusion in a system of large
anisotropy in the hard-core interaction. This is also obvi-
ous from Figs. 1 and 2 in which we plot the contribution
of individual terms of the series (4Aa) as a function of xo
and 1/xo for the reference system and the perturbation
potential, respectively. We find that as xo deviates from
unity, the contribution of higher-order terms increases; for
the perturbation potential, however, K ' and K ' are al-
most identical on the graph (Fig. 2) even for xo (or
1/xp) 5.0.

One may note from Fig. 2 that while the contribution
of the long-range dispersion interactions to the Frank
elastic constants decreases with xo in the system of pro-
late molecules, it increases with 1/xo in the case of oblate
molecules. This trend is reversed from the one found in
the case of hard-core repulsion (see Fig. 1). This can be
understood from the fact that the major contribution to
the E,' comes from the angle-independent part of the

TABLE I. Contributions of individual terms in the series (4.1) and (4.4) to each elastic constant for
both hard-core repulsions and attractive interactions for a system of prolate (xo ——3.0) ellipsoids of revo-
lution. For the results shown here, I q

——0.5, 7 4
——0.15, g=0.45, T=400 K, 2b= 5 A, c;=1.0)& 10 56

erg cm, and c, /c; =0.05. The values for E; are given in units of 10 ' dyn (E; =E;, +E;„.E~ ——12.72,
K2 ——5.77, K3 ——20.11g 10 dyn).

X,'o)(2,2)
2g(0)(2 4)
~(0)

l

g (0)p

K "(2,2,2)
K;
K,

''
K',"

12.97
—3.15

9.82
10.45

—1.48
8.34
8.97
9.16

6.28
—1.05

5.23
5.39

—1.18
4.05
4.21
4.42

12.97
4.20

17.17
19.18

—2.08
15.09
17.10
17.30

3.26
0.31
3.57
3.61

—0.05
3.52
3.56
3.56

1.28
0.10
1.38
1.39

—0.04
1.34
1.35
1.35

3.26
—0.42

2.84
2.89

—0.08
2.76
2.81
2.81
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TABLE II. Contributions of individual terms in the series (4.1) and (4.4) to each elastic constant for
both hard-core repulsion and attractive interactions for a system of oblate (1/xo ——3.0) ellipsoids. For
the results sholem here, P2 ——0.5, Pq ——0.15, q=0.45, T=600 K, 2b=15.0 A, c;=1.0&10 erg cm,
and c, /c;=0.05. The values for K; are given in units of 10 dyn. (K;=K;, +K;, ; Kl ——8.87,

K2 ——10.63, K3 ——5.53x 10 dyn).

K(o'(2,2)
2K)' '{2,4)
K(0)

l
K(0)P

I

K "(2,2,2)
K;
K,'
KPP

l

8.12
1.57
9.69

10.06
—1.76

7.93
8.30
8.56

K;„
K2

11.45
0.52

11.97
12.00

—1.83
10.14
10.17
10.41

K3

8.12
—2.09

6.03
6.46

—1.62
4.41
4.84
5.16

Kl

0.343
—0.027

0.316
0.317

—0.009
0.307
0.308
0.308

K;,
K2

0.241
—0.009

0.232
0.232

—0.008
0.224
0.224
0.224

0.343
0.035
0.378
0.382

—0.011
0.367
0.371
0.371

dispersion interactions (see Figs. 5 and 6). Thus, the KI,'

emphasize the region where the intermolecular separation
is small. The availability of this region decreases with in-

creasing xo in the case of prolate molecules in which we

have fixed 2b Contr.ary to this, the availability of the re-

gion of small intermolecular separation increases with in-

creasing i/xo and &eeping 2b fixed in a system of oblate
molecules.

The magnitude of K;"'(2,2,2) is found to be small for
both the reference and perturbation potentials and for
both the prolate and oblate molecules. This led us to
neglect the contribution of higher-order terms in the series

(a) (b)
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xo for prolate ellipsoids. (1) Same as in (a) but as a function of 1/xo for oblate ellipsoids.

(4.4b). . We believe that the error caused due to this is
negligible.

Next we examine the convergence of the series (4.1).
K "is found to be very small compared to K ' for all i
For example, the magnitude of ~K;",'/K „'~ is found to
be of the order of 0.15, 0.22, and 0.12 for a hard ellipsoid
of revolution of xo ——3.0. For long-range dispersion in-

teractions one finds, for xo ——3.0,
~
K,"/K, '

( to be of the
order of 0.01, 0.03, and 0.03, respectively, for i = 1, 2, and
3. For oblate molecules with xo ——1/3.0 one finds that

(
K;",'/K, '

~

is 0.18, 0.15, and 0.26 and j K,"/K, '
(

is
0.028, 0.034, and 0.029, respectively, for i =1, 2, and 3.
These numbers indicate that the series (4.1} converges
fairly rapidly in both systems. For long-range dispersion
interactions, it appears sufficient to truncate the series
with its first term. For the hard-core interactions we can
apply the [1,0] Padh approximant to assess the contribu-
tion of higher-order terms in (4.1). Thus

g(&)
PP (0)E+ir +i r l (0)p (4.6)

&~;r

The last row of Tables I and II lists the values of K;

They are compared with K; =K '+K; and
K~~=K ' +K ". From these tables and Figs. 3(a) and
3(b), in which we plot the contribution of the individual
terms of the series (4.1) as a function of xo aild 1/xp,
respectively, it is obvious that the contribution of higher-
order terms of the series (4.1) is small even for hard core-

repulsion.
In Figs. 4(a) and 4(b} we compare the contributions

arising froin the long-range dispersion interactions and
the hard-core repulsion to the Frank elastic constants.
The contributions are plotted as a function of xo and
1/xo, respectively. We find that in a system of prolate
molecules with small xo (4.0, the attractive interactions
make a substantial contribution to the elastic constants.
As xo increases, the repulsive interaction dominates. For
xo & 5.0, the contribution of the attractive interactions ap-
pears to be negligible. In the case of oblate molecules, the
relative contribution of the dispersion interactions in-
creases with 1/xo. It becomes measurable only after
I/x~) 3.0. At small values of 1/xo the contribution is
negligible. From Figs. 4(a) and 4(b) it appears that while
for prolate molecules the contribution of the attractive in-
teractions must be included (especially if xo &4.0) in the
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FIG. 3. (a) Contribution of the hard-core repulsion to individual terms of the series (4.1) for each elastic constant, as a function of
xo for prolate ellipsoids. (b) Same as in (a) but as a function of 1/xo for oblate ellipsoids.

calculation of the elastic constants, it may be neglected for
a system of oblate molecules if xo & 0.34.

Figures 5(a) and 5(b) give the values of K; as a function
of c, /c;. It is seen from these figures that for both sys-
tems, the K; are insensitive to the magnitude of the aniso-
tropic dispersion interaction. But the K; are sensitive to
the magnitude of the isotropic dispersion interaction.
This is shown in Figs. 6(a) and 6(b) in which we plot K; as
a function of c; for a given c, /c; (=0.05) for the system
of prolate and oblate molecules. The coupling between
the isotropic attraction and anisotropic hard-core repul-
sion through the pair correlation function is responsible
for this contribution. This coupling was neglected in
theories based on the Maier-Sanpe model, but it was
featured, for example, in the generalized van der Waal's
treatment of Gelbart and Ben-Shaul.

In agreement with the results reported in I and else-
where, we find that for a system of prolate ellipsoids,
K '(2,2)=K& '(2,2)&Kz '(2,2) for all xo. The fact that
Ki&Ki is primarily due to the contribution of 2K '(2,4).
In particular, we find that 2K „'(2,4) is positive for K&
and negative for Ki and Kz, But 2K;, (2,4) is nelIative
for Ki and positive for Ki and K2. However, 2K,",'(2,4)

is very small compared to 2K, '(2,4) for all values of i
This suggests that Kq ~Ki for long-elongated molecules
in agreement with the experiment. It may also be noted
that the presence of strong long-range dispersion interac-
tion decreases the value of the ratio K&/Ki which is
found to be increasing with xo. K;"' is found to be nega-
tive and larger in magnitude for i =3 than for i =1 and 2.
Therefore, the K," contribution will also decrease the
value of the ratio K3/Ki.

For oblate ellipsoids we find K(2"(2,2))KI"(2,2)
=K3 '(2,2). 2K „'(2,4) is found to be negative for i =3
and positive for i =1 and 2 for hard-core repulsion. On
the other hand, 2E,'(2,4) is positive for i =3 and nega-
tive for i=1 and 2 for attractive interactions. Since the
magnitude of 2K~ '(2,4) is small, we find the general rela-
tion Kz &K»K& which is intuitively correct. The fact
that the twist deformation is most difficult to apply in a
discotic nematic phase is thus borne out by our calcula-
tion.

Our calculation confirms the following findings, ' '
—,
' K(,"(2,4) =K(,"(2,4)= ——,

' K',"(2,4)
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K'i '(2, 2) =Kg '(2,2),
which hold good for all xo (prolate as well as oblate) and
are independent of potential models.

From Table I we find, for PAA at 400 K,
K i .Ki .K3 —2.2:1:3.5 compared to the observed ratios of

2.0

1.0—
O4

4C

0.5—

2.0:I:3.2.i The absolute magnitude (12.7, 5.8, and
20.1)&10 dyn) of our calculated elastic constants are,
however, somewhat higher than the experiment (7.0, 3.5,
and 11.2)&10 dyn). The values of the K s are very sen-
sitive to the values of the parameters used in the calcula-
tion. No attempt has been made here to fit the experi-
mental data by adjusting the parameters. Further, ~e
may note that it is difficult to measure the absolute values
of the elastic constants. ' ' ' lt is the ratios K3/Ki and
K2/K, which are measured more accurately. From ex-
perimental data one finds the following: (i} The ratio
K2/Ki lies within 0.5—0.7 and is more or less indepen-
dent of the temperature and only slightly depends on xo,
(ii} Kz/Ki increases with increasing xo for rigid mole-
cules, and (iii) for molecules with fiexible alkylene chains,
the ratio K&/Ki decreases with increasing chain length.
In Fig. 7 we plot calculated values of the ratios K2/Ki
and K&/Ki as a function of xo for both prolate and ob-
late ellipsoids. For this calculation, P&/Pz is taken to be
equal to 0.3 and independent of xo (this may not be true
in real systems). Our calculation agrees qualitatively with
the experiment. In order to understand (iii) we note that
the I'zI'& attractive interaction contributions tend to make
Ei larger than Ki, whereas the opposite is true for PzP4
hard-core repulsion terms. If molecular polarizability in-
creases sufficiently through a homologous series of com-
pounds, 2K;, (2,4) grow faster than 2K~ „(2,4) and account
in this way for a decreasing value of K3/Ki.

V. SUMMARY AND CONCLUSIONS

0 I t I i I i I i I i

4.0 3-0 Z-p 1.0 2 0 3 0 4.0
&/x 0 Xo

FIG. 7. Ratios K2/EI and K3/Kl plotted as a function of
xo for prolate and 1/xo for oblate ellipsoids.

A modified version of the density-functional theory
developed in earlier papers has been used to calculate the
elastic constants of ordinary as well as discotic nematic
phase. The theory involves expansion in successively
higher-order direct correlation functions c„ofthe isotro-
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pic liquid at the same number density p. In I, this series
was written in toms of c„defined by (2.14). A series
written in terms of c„converges faster than the one writ-

ten in terms of c„. This can be understood from the fact
that

1 a 5c+ 1 25 czc„=,f da f da' c„+2p "+—p'
o o

and

&n

&n+1 Xn+j. y

5p

Cn

2
= f f cn+2dxn+idxn+ip'

This means that a term involving c2 in series (4.1) is
equivalent in some approximate sense to terms involving

c„, c„+i, and c„+2 of series (4.7) of I. In I, it was as-
sumed that the change in cz due to distortion of the uni-
form nematic makes no contribution to the elastic con-
stants. The derivation given in this paper is free from this
assumption.

Our theory of curvature elasticity in the nematics re-
quires as input the direct correlation function of an isotro-
pic system as a function of number density and tempera-
ture. Although the integral equations of liquid-state
thtxiry can always be solved numerically to give informa-
tion about c2 as a function of intermolecular separation
and orientations, such solutions in practice are often quite
difficult or time consuming to obtain. For this reason, we

employ the simple analytic model of Eq. (3.5) for hard
linear molecules which, while in no sense exact, may quite
effectively play much the same role for molecular fluids
that the Wertheim-Thielez' solution of the PY equation
played for atomic fluids. One deficiency of Eq. (3.5) is,
however, immediately apparent in the limit of vanishing
intermolecular separation r~2. It yields a constant a ~ with
no orientation dependence at all, contrary to known
behavior of cz(xi, xz) for a simple molecular system. 2

Equation (3.5) may thus be expected to be qualitatively in-
correct for small values of ri2. This need not be a serious
flaw, however, for we want cz(xi, x2) as an integrand
where it will first be multiplied by a power of ri2, a step
which would in any case wash out most of the short-range
structure of a more correct cz(ri2, Qi,Q2).

The decoupling approximation introduces anisotropy in
the pair correlation function. In case of prolate mole-
cules, for example, when two molecules are parallel, ci is
most anisotropic and the surfaces of constant c2 are pro-
late spheriods of axial ratio xo, with the long axes of the
spheriods pointing along ei and e2. When eile2, cz is
most isotropic, the surfaim» of constant cq are then oblate
sphenods with the symmetry axis alon~ ei Xei, and the
axial ratio of this spheriod is —,'(1+xo) «xo. It there-
fore seems that the decoupling approximation overesti-
mates the anisotropy in the DPCF for the parallel config-

—pu(r&2, 0&,Q2)
c(riz, Qi, Q2}~(e ' ' —1) . (5.1)

The result of Gelbart and Ben-Shauls can be found from
the expression of Kt' '

by using the following relation:

—Pu, (rip, Qi, Qi) . (5.2)

The factor 1/(1 —ri) is believed to take care of the
higher-body packing entropy effects. As shown by Bar-
boy and Gelbart, however, though (5.2} is a significant
improvement over (5.1) (as far as contribution of repulsive
interactions is concerned), it is not good enough to yield
the correct compressibility factor for hard sphero-
cylinders. The contributions of order 1/(1 —ri)i and
higher must be included to provide accurate 13P/p data.
The attractive interaction part of (5.1) and (5.2) corre-
sponds to the RPA as given by (3.12). While Ref. 11 em-

ploys precisely the same potential as the present paper,
Ref. 8 considers a more elaborate form of the intermolec-
ular dispersional interactions.

For a system of prolate ellipsoids which model ordinary
nematic phases of rigid elongated molecules, we find
Ki &K»K2. This relation changes to Kz pK»K3 for
a system of oblate ellipsoids which models the discotic
nematic phase. These results are in agreement with exper-
iment ' ' and with the theoretical results reported ear-
lier. ' Further, we find that for prolate ellipsoids, the ra-
tio K3/Ki increases with xp which is in agreement with
experiment. ' In view of the fact that the potential
model and the parameters used in the calculation only
crudely simulate a real system, the agreement is hearten-
ing.

The assumption that the long-range dispersion interac-
tion acts between the molecular centers may not be true.
An alternative approach would be to assume the attractive
as well as repulsive interaction distributed along the mole-
cules, i.e., embedded interaction site model. Further, the
softness in the repulsive core and the dependence of the
pair interaction on r Q should be taken into'account. As
pointed out in the preceding section, the flexibility of the
alkyl chain of molecules plays an important role in deter-
mining the relative values of the three principal elastic
constants. The geometry of the molecule, however, does
not appear to have a significant effect on K3/K, .i

uration and underestimates that for perpendicular config-
urations. In spite of this defect, the decoupling approxi-
mation has been found to yield the values of the compres-
sibility factor in very good agreement with the machine
simulation results.

Though Poniewierski and Stecki" gave expressions for
the Frank elastic constants which are equivalent to that of
K ' of this work, they took the zero-density limit for the
DPCF, i.e.,
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