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Comparison of the Bhatnagar-Gross-Krook approximation
with the exact Coulomb collision operator
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The collisional relaxation of a bi-Maxwellian and a double-beam distribution is studied in order to
assess the reliability of the Bhatnagar-Gross-Krook I,'BGK) operator in comparison with the full
Fokker-Planck Coulomb collision operator. If a velocity-dependent relaxation rate is employed,
qualitative agreement can be achieved between both models. Using the friction rate v~ in the BGK
model yields numerical results most similar to those of the exact Fokker-Planck model. However, in

quantitative terms the collisional relaxation of higher moments is only poorly described. In particu-
lar, for the skewness or heat flux the numerical differences are intolerable. For this and other
reasons detailed in the paper, the BGK model cannot serve as a reliable calculation of transport
properties. Nevertheless, it may have merits in qualitatively assessing collisional effects in inhomo-

geneous systems which otherwise have to be treated as entirely collision-free.

I. INTRODUCTION

The aim of this paper is to analyze numerically the col-
lisional relaxation in time of a bi-Maxwellian and a
double-beam distribution function by employing the
Bhatnagar-Gross-Krook (BGK) collision operator' for
various velocity-dependent collision rates and to compare
the results with the exact evolution obtained by time in-
tegration of the Fokker-Planck collision operator. By
this procedure a detailed comparison is facilitated between
the shape and the moments of the instantaneous distribu-
tion function. The relaxation-time approximation can
thus be assessed not only qualitatively but also quantita-
tively, which helps to judge its reliability for various ap-
plications in plasma physics.

Generally speaking, the BGK collision term turns out
to be a poor approximation for the collisional relaxation
of all velocity moments higher than the mean tempera-
ture. In particular, the heat-fiux regulation is rather inap-
propriately described.

An explicit solution of the Boltzmann equation or the
Fokker-Planck equation is generally a matter of consider-
able difficulty and in most realistic physical systems prac-
tically impossible. With the advent of modern computers,
however, numerical solutions have become available, ac-
counting even for complicated boundary and initial condi-
tions and time-varying forces in gases and multispecies
plasm as. Still, for many applications approximate
analytical solutions are required, which allow better in-
sight into the problem at hand and contribute to physical
intuition. In the collision-dominated regime, the
machinery of the Chapman-Enskog theory and Grad's
method yield approximations to any desired degree by ex-
pansion of the distribution function about a Maxwellian
to increasing order in the smallness parameter I, /L, i.e.,
free mean path over the macroscale. Classical transport
theory is based on this approach.

The opposite extreme case is the weakly collisional re-

gime with I, iL & 1, which is realized in most dilute gases,
planetary exospheres, " tenuous space plasmas, ' and labo-
ratory plasmas covering a wide range of density and tem-
peratures. These systems are often treated by disregarding
collisions entirely so as to exploit Liouville's theorem for
tracing the dynamical evolution of the distribution func-
tion. ' ' The subsequent introduction of collisions then
proves to be extremely difficult and no general techniques
exist to treat the Boltzmann equation in this case. Since it
is desirable to have a single collision operator which cov-
ers the whole parameter range of 0& l, iL g 00, Krook
and co-workers" originated what has become known as
the BGK model. This is a relaxation-time approach to
the collision operator reading

where f~ is the equivalent Maxwellian with the same
value of the density n, temperature T, and velocity u, as
obtained from the original distribution by taking ap-
propriate moments in velocity space.

With a constant r the collision operator (1) is strictly
consistent with particle number, momentum, and energy
conservation. This statement can be considered as the
shortest "derivation" of the BGK model, since the conser-
vation property is indispensable and ~ is only a
phenomenological parameter. Its choice may be justified
by plausibility arguments, as given, e.g. , by Liboff'6 in re-
lation to the full Boltzmann collision integral. However,
w does not follow in any logical manner from first princi-
ples. At best, it is a free parameter or function of veloci-
ty, which has to be chosen such that the full Boltzmann
collision integral is most closely simulated.

If r(v) is a velocity-dependent relaxation time, the
problem arises that (1) violates the conservation laws.
Particle density, momentum, and energy are then artifi-
cially created by "collisions" at each instant of time. One
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of the main purposes of this paper is to assess the numeri-

cal degree of this violation by using various relaxation
rates, e.g., as established by Spitzer'7 for Coulomb col-
lisions. It will turn out that even for strongly velocity-
dependent collision rates the density, velocity, and tem-

perature are still conservixl within a few percent. In this
respect, the usefulness of the BGK collision operator is
emphasized by our analysis.

This model derives its importance from its simplicity
and the possibility, e.g. , to study damping of sound waves
in gases and of collective oscillations in plasma in an alge-
braically tractable way. The original intent of Bhatnagar,
Gross, and Krook' was to examine the dynamic properties
of gases over a continuous range of pressures from the
Knudsen to the high-pressure aerodynamic limit. It was
then extended to study damping of small-amplitude waves
in two-component plasmas. ' By utilizing a Krook-type
collision integral, studies have also been carried out to
analyze electrostatic waves in inhomogeneous plasmas in
the laboratory, 's'9 and to investigate a plasma instability
resulting in field-aligned irregularities in the Earth s iono-
sphere. Kinetic models with relaxation-time operators
have also been developed for gas mixtures '

by employing
the known time scales for energy and momentum ex-
change between nonequipartition gases with various col-
lisional cross sections.

Since the operator (1) does not involve velocity deriva-
tives, it is easy to work with and, to give an example, one
may simply solve kinetic equations by time integration
along ballistic collisionless orbits. This technique has
been used to study collisional effects on fluid instabilities
in an inhomogeneous confined fusion plasma, 's'9 and
more recently in the solar-wind context, to model the col-
lisional effects on electrons, 2s 2 particularly the so-called
"strahl" electrons.

See n lnArp-
Pl Uo

vrhich is employed as the natural collision time scale
throughout the paper. The SGK operator can be cast in a
form similar to (2) by rewriting it as

1
&sox(v)f

Br 70

where the function viioit is

fw(»
vaoit(v) =v, (v) —1

Equations (2) and (5) look formally alike. Note, howev-

er, that v is, via the second derivative of f, much more
sensitive to the actual shape of the distribution function.
On the other hand viioK depends only on the free function
v, (v), describing the collisional relaxation, and on the ra-
tio of the equivalent Maxwellian to the actual distribution
function. The rewritten form of the collision operators
considerably eases comparison of these two models. It
also allows one to trace the collisional evolution in time of
the instantaneous relaxation rates.

As emphasized in the Introduction, the collision rate
v, (v) is a free model function to be chosen appropriately
for the system and type of collisions under consideration.
Spitzer' has provided a classical analysis of test-particle
slowing down, deflection, and energy loss suffered by
impinging on a Maxwelhan target distribution. The cor-
responding colbsion rates are defined in terms of the error
function P(y) and its derivative. These rate functions are
directly related to velocity-space friction and dif-
fusion ' ' (longitudinal and transverse) and given as

II. BASIC EQUATIONS AND RELAXATION RATES

As mentioned above, the Krook operator derives its
usefulness mainly from its simple algebraic structure and
the relaxation-time concept. This has to be contrasted
with the full Fokker-Planck operator 4'0 which for
Coulomb self-collisions can formally be written in a
relaxation-time form as well, reading

Spitzer's slowing down rate is equal to vL and the deflec-
tion rate is

(10)

with an effective relaxation rate

r

1 8 1 Bfv(v) =&mf(y)+ g(y)—
4 Byway f Byway

(2) The functions (7)—(10) are velocity dependent and rap-
idly decline to zero according to power laws at large y in-
dicating runaway or breakdown of collisional friction and
diffusion at high test-particle speeds. We shall employ all
four rate functions as collision rate v, in the BGK opera-
tor (5) and (6). The basic time scale ~0 is the same in all
cases. It is only based on the conserved density and tem-
perature. Finally, me also use the two constant rates

whereby velocities have been normalized as y= v/Uo. For
Uo we may conveniently choose the thermal speed of the
equivalent Maxwellian f~ having the same temperature,
mean velocity, and density as f itself. The distribution f
is dimensionless (normalized to a density of 1) and g (y) is
the Rosenbluth potential.

The basic Coulomb collision time is '

P(1)+P'(1)
vDr =vD(1)=

2

vFL =vF(1)=$(1)—p'(1) (12)

in order to demonstrate the differences between strong
velocity dispersion in the collision rate v, and a rigid re-
laxation at constant v, . All the rates (7)—(10) are plotted
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up as uo/A, which means replacing the true temperature
by an effective (parameter A, ) temperature. We considered
a similar modification by replacing, for gyrotropic distri-
butions, up by up(8) =(UTisin 8+UT~~cos 8}'~ where 8 is
the pitch angle of the particle velocity with respect to the
magnetic field (symmetry axis of the distribution). Then
y =ulup(8) and consequently v, (y) is a true vector func-
tion of the velocity. It will be shown later that working
with an effective thermal speed related to the particle's
pitch angle does not improve the BGK model. These re-
sults will not be discussed in detail. Numbers can be read
off from Table I. Best agreement with the exact operator
was obtained if the rates were isotropic and based on the
equivalent Maxwellian fM. This is demonstrated in the
subsequent section.

III. NUMERICAL RESULTS

0.0 1.0 2.0 3.0
Nor maLi. zed veLc)ci. t.g

5.0

FIG. 1. Collision frequencies as a function of normalized
velocity y =u/vo.

versus speed in Fig. 1. Note that at y= 1 all the rates are
about equal, but considerable differences occur at zero
and several thermal speeds. The actual course of v, as a
function of y has to be kept in mind in order to under-
stand the detailed numerical results presented below. We
may finally note that the rate functions for other types of
interactions, such as between Maxwell molecules and neu-
tral particles, are also available. They all can be derived
from a generalized Rosenbluth potential which reflects
the underlying central interaction force and the shape of
the target distribution. The rate functions discussed
above also play a key role in the transfer by Coulomb col-
lision of energy and momentum between drifting Maxwel-
11ans

The collision rates v~L, Tn are derived from the
equivalent Maxwellian with thermal speed up and do not
refiect the actual shape of the underlyin~ distribution as
does the exact v of Eq. (3). Rawls et al. ' have proposed
modifying the slowing-down rate by rescaling the speed

g exp
(U[[ —QJ) +Up2 2

2
Uy)

(13)

Secondly, we analyze a bi-Maxwellian distribution with

UT([ Uo/ 3 alld UTl 4uo/3 yielding UO ( T)) +~vTl )/
and T, =47|i.

The collisional decay of these two model distribution
towards equilibrium has extensively been analyzed before,
in particular the temporal evolution of the effective relax-
ation rate and the reshaping of f into a Maxwellian. We
refer the reader to the paper of I.ivi and Marsch which
we shall use as our benchmark case which the BGK ap-
proximation has to be compared with. Details of the nu-

Two nonthermal distributions will be studied here. One
is a double-beam distribution with the following parame-
ters n=O.SN (0.2N), u = —0.35uo (1.4uo), UT

——0.9vp
(0.6UO) for the main (beam) component. The effective
thermal speed is up ——gj n, (uz&+ , uj ) —with the index
running over the two components. These parameters are
typical for solar-wind proton distributions. ' We have
& =nz+n and uznz+un~ ——0 (proper frame condi-
tion). The distribution function reads

Pf~f(v)= g
(nuT, }

TABLE I. Results for bi-Maxwellian and double-bean distributions.

(a} Bi-Maxwellian distribution

N T A +C

{b} Double-beam distribution

uyU. T A

vy(8}
VL

va(8}
~F(8}

—4%
—6%
—1'

+ 0.2%
+ 0.5%
+ 3%
—1%

—16%
+ 33%
+ 32%
+ 13%

2.5+0.4
7.8+1.0
7.5+0.9
4.6%0.7

—1%
—2.7%
—3%
—3%

+ 0.6%
+ 2%%uo

+ 3%
+ 0.5%

—1%
—3%
—3%
—2%

—20%
—13%
—13%
+ 3.6%

1.4+0.3
3.3+0.6
3.1+0.7
2.2+0.4

—110%
+ 120%
+ 140%
—60%

Vy

VL

VD

—0.1%
—0.5%
—2%
+ 0.7%

—17%
+ 22%
+ 19%
+ 7%

2.3+0.3
5.8+0.8
5.2+0.9
3.9+0.5

+ 0.4%
+ 0.2%
+ 0.3%
+ 0.1%

+ 1.2%
+4%
+ 5%
+ 1.5%

—0.2%
—1%
—0.8%
—0.5%%uo

+ 20%
—16%
—16%
+2%

1.5+0.3
3.6+0.7
3.4+0.8
2.3%0.4

—85%
+ 100%
+ 160%
—13%

+FL

&m

—11%
—26%

2.7+0.4
1.8+0.3

+ 15%
+ 27%

1.6+0.3
1.1+0.2

—120%
—180%
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FIG. 2. Temperature ratio T& /T~~ of an initially bi-
Maxwellian distribution function as a function of time in units
of sp. Sohd lines relate to the Fokker-Planck, dashed lines

display the respective BGK model results with collision rates as
indicated. Note the quasiexponential relaxation towards isotro-

py

merical treatment of the exact Coulomb collision operator
can be found in the above reference and in a more general
context in the reviews by Killeen et al.

Figure 2 shows the colHsional relaxation of the bi-
Maxwellian distribution towards isotropy. In each box we
show the results of the exact and BGK model for Ti /T~~
as a function of time in units of ro and for the six relaxa-
tion rates v~ +L, T, vier, and v~L, . We remind the reader of
the speed dependence of the rates as displayed in Fig. 1.
The temperature anisotropy in Fig. 2 decays almost ex-
ponentially for all six cases. Apparently, the rate vF most
closely simulates the true collisional evolution (continuous
curves} whereas vn and vL, retard and vz accelerates the
isotropization process. Note that vr-I/y, vF-1/y,
vz-I/y, vD-I/y, for y»1. As a result of this
asymptotic behavior the rate v~ overestimates and vL un-
derestimates the true relaxation in the tails of the distribu-
tion. In surprising contrast, vF somehow comes very close
to the "truth. " The last two boxes indicate that a con-
stant rate tremendously accelerates the temperature iso-
tropization. The simple reason is that collisional dif-
fusion in the tail at speeds y& 1 is grossly overestimated
by fixing the rates at their most probable values at y= 1.

Figure 1 shows that the relaxation rate in the core part
of the distribution is smallest for vF, almost constant for
vr and vL, , and diverges for vD. Again, small rates about
the origin of velocity space sean to be most appropriate in
the BGK model to similarly reproduce the results of the
full Fokker-Planck operator. These general considera-
tions should be kept in mind in the subsequent discussion.

Table I composes the numerical parameters with rela-
tive errors and uncertainties. The upper part of the table
relates to the rates evaluated with the pitch-angle-
dependent thermal speed uo(8) and the lower part to rates
based on the isotropic uo of the equivalent Maxwellian.
In each panel the relative m.aximum error is given. The
results with a constant uo are generally better than those

2.0—
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I I I
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FIG. 3. Temperature ratio T},},/T& of an initially resolved
double-beam distribution as a function of time in units of ~p in
the same format as in Fig. 2.

with a pitch-angle-dependent relaxation rate as can be in-
ferred by comparison with Table I(a). The column labeled
with r, gives the average e-folding time for the quasi-
exponential decay of A =Ti/T~~ toward 1 in Table I(b).
The exact result is r, =(3 4.+0 3.)ro .As can be seen, vF
guarantees density and temperature conservation within a
percent and ensures that the actual temperature ratio devi-
ates by no more than 7% from the true value. Whereas
density and average temperature are conserved equally
well by all rates employed, the collision rate vz yields best
results as far as the anisotropy is concerned.

In Fig. 3 the collisional relaxation of T~~/Ti for the
double-beam distribution (13} is shown. Overall trends
are similar to those in Fig. 2. Apparently, the constant
rates vDT and v~r accelerate the isotropization process in
an unrealistic fashion. Again vF turns out to be the best
choice for the relaxation rate. The corresponding curve
(in the upper left box) almost exactly traces the "true" re-
sult obtained from the numerical solution of the Fokker-
Planck equation. In conclusion, the temperature anisotro-

py relaxation is fairly well described by the siinple BGK
model with vF, even in case of as large an initial ratio as
Ti /T~~

——4 in the bi-Maxwellian case. If we consider the
next higher moment, i.e., the heat fiux related to skewness
in the distribution, the situation becomes worse.

In Fig. 4 the collisional reduction of the heat flux, asso-
ciated with the double-beam distribution, is shown versus
time in units of ~0 Appare. ntly, there is stronger disper-
sion between the true and the BGK model results. The
agreement is again best for vF, although differences be-
tween the dashed and the continuous lines are substantial.
The collisional decay of the beam is slowest for vD I . The
main reason is that, according to Fig. 1, the rate functions
rapidly go to zero beyond y= 1. In contrast v~ has its
maximum near this point and runaway sets in only at
larger speeds. Consequently, with vD, I employed friction-
al slowing down is dramatically underestimated and even
after about 1(ho the beam remains resolved and almost
unchanged. In contrast, the rate vr leads to a much too
rapid slowing down of the beam and disappearance of the



34 IMPARISON OP THE SHATNAGAR-GROSS-KROOK. . . 537

0.050—

VF

V0

0.025—

0.050—

0.025—

2.5 5,0 7.5
I I r r r I I 1

2,5 5,0 7.5 2.5 5.0 7 5

t/zo
FIG. 4. Normalized heat flux Q~~ as a function of time in

units of ~0. Results for various BGK models (collision frequen-

cy employed as indicated) are shown together with the exact re-

sult (solid line} for comparison.
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heat flux (see middle box at the bottom of Fig. 4). This is
due to a much weaker dcx:line of vT-I ly at large speeds
and to a collisional deceleration being consequently more
effective than obtained from the full collision operator.

Just as the temperature anisotropy, so does the heat flux
decay much too rapidly if a constant collision rate vDz or
vFI is employed in (6). This is illustrated in the last two
boxes on the right-hand side. The very effective slowing
down is caused by lack of the runaway effect for a con-
stant v, which therefore decelerates very fast particles as
effectively as the thermal ones.

Figure 5 illustrates these results by another presenta-
tion. One-dimensional cuts through the distribution along
the beam drift (magnetic field) direction are shown for six
instances of time as indicated. The continuous curves
display the collisional reshaping of the initially double-

humped distribution towards a Maxwellian. As in earlier
simulations * ' also in our present example, by employ-
ing the full collision term, thermodynamic equilibrium is
achieved after about 10ro. In contrast, the BGK model
with vD (which is often used as a collision frequency in

transport theory' ' ) does not lead to a destruction of the
beam. It remains resolved until the end of the numerical
run. The collisional decay of the heat flux is somewhat
more realistically described by vz, yet a slight skewness
survives even after 10ro. As a result we can conclude that
the BGK model is poor and insufficient as far as col-
lisional evolution of moments higher than the pressure (or
temperature) is concerned.

The numerical discrepancies as compared with the ex-
act collision operator are striking, which is apparent from
Table I(b). The maximum relative errors in the collisional
invariants, the density, bulk speed, and temperature, are
shown along with errors in the pressure ratio A = T~~ jTi
and (fina column) the normalized heat flux Q~~ obtained

by numerically integrating the actual distribution:

—,
' I 1 vuii(UIi+Ui )f(v)

2 PfUO

FIG. 5. Time sequence of one-dimensional cuts through the
heat flux carrying distribution function as a function of parallel
velocity component U~~ in units of Uo. The exact result is shown

by the solid line, whereas the BGK model results are shown by
dotted (vF) and dashed lines (va). Note the substantial differ-
ences in the time evolution of the beam according to the dif-
ferent collision operators used.

In addition, the average e-folding time r, for the tem-
perature isotropization is given. The exact result is
~, =(2.64+0.36)~0', see also Fig. 3. As for the bi-
Maxwellian case, if the collision rate vF is implemented in
(6), we obtain smallest relative errors and best agreement.
By comparison of the first three columns, one finds no
substantial differences between results from the four rates
as far as the conservation of density, speed, and tempera-
ture is concerned. This is understandable as by construc-
tion the BGK model for a constant collision rate should
strictly conserve these quantities. However, for A numer-
ical differences appear and even more substantial ones for
Q, where intolerable errors occur. As a result, the BGK
model has serious deficiencies in describing the collisional
evolution of moments higher than the invariants n, u, and
T.

Model collision operators have been constructed to
remedy this situation. Rawls et al. ' established a
Krook-type model with a self-adjoint operator, also satis-
fying the H tha)rem, with the rate function vi. Basical-
ly, collisional relaxation is then forced toward a heat flux
carrying distribution of the Grad type which replaces the
Maxwellian in the Krook model. However, the Rawls
operator is an ad hoc approach and has not been derived
from basic principles but mainly constructed such as to
yield the same transport coefficients as derived from the
full collision operator.

As our discussion has shown so far, the Krook model is
unable to cope with the detailed shape of the distribution
during the collisional evolution. This is again demon-
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FIG. 6. Time sequence of one-dimensional cuts through the
initially bi-Maxwellian distribution function as a function of
normalized parallel speed. Solid line refers to the Fokker-
Planck operator whereas dotted (dashed) lines display the
BGK-model results with collision rate vF (vD }.

strated by Fig. 6, showing in the same format as Fig. 5,
various one-dimensional cuts through the initial bi-
Maxwelhan distributions. Apparently, above the 1% level
the curves for vF and vD and the exact result do not devi-
ate much from each other. Below the 0.1% level in the
tails substantial differences appear. For example, the ex-
act collisional relaxation is slower there than implied by
the Krook model. Only after 19rc is agreement between
the various models found even in the far tails. The main
reason for this behavior is that the effective rate vtIGK also
depends on the ratio fl lf, which is large at high speeds
along the parallel axis, since initially T~~

——0.25Tt. Con-
sequently, vttoit»v and the Krook model unrealistically
accelerates the relaxation process.

In order to illustrate the instantaneous relaxation rate
associated with the actual shape of the distribution func-
tion we show in Figs. 7(a) and 7(b) one-dimensional spec-
tra for two instances of time: t=0 and 1 =3rD. The dis-
tribution function along the beam direction is plotted
versus the parallel speed for the exact rate v and the func-
tions v+L Dr. Upward arrows indicate instantaneous
growth, downward pointing arrows mean negative rates
yielding decay of phase-space density.

Apparently the implementation of the various rates in
(6) leads to very different initial trends for reshaping the
double-peak distribution [Ftg. 7(a)]. The exact operator is
associated with the largest negative collision rates at the
beam position and only slight changes on top of the main
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FIG. 7. One-dimensional cuts through the heat flux carrying distribution function at two instances of time (a) 0 and (b) 3&0 plotted
vs normalized parallel speed. The effective collision rate v and the various vsGK are also shown by little arrows, the length of which
gives the modulus of the rate. Upward pointing arrows mean positive and downward negative rates. Note the very different initial
rates (a) and later on the differences in shape of the distribution at the original beam location.
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peak. In contrast, all the other rates at the BGK model
induce, to varying degrees, a reduction in phase-space
density at both peaks, whereas between them positive rates
are obtained leading to a filling up of the holes. A com-
paratively large effective collision rate for vD results from
the fact that vD diverges at y=O. In contrast, the large
negative rates for v at the beam are due to strong pitch-
angle gradients in the beam regime (which are not taken
into account by the BGK model) yielding enhanced col-
lisional diffusion.

Figure 7(b) shows, in the same format as Fig, 7(a), the
state of evolution at a later time t =3' Fo.r v and vT the
peak is not resolved any more and only a heat-flux
shoulder occurs. In contrast, for vF and even more clearly
for vt ti, the second peak is still there and resembles its in-

itial form.
These results are mainly due to the structure of the re-

laxation rates (see Fig. 1) at large speeds. The most rapid
decline is obtained for vD-1/y favoring runaway for the
beam particles (initial position y=1.4). Although the ac-
tual f strongly deviates at the beam location from the
equivalent Maxwellian, the longitudinal diffusion or de-
flection rate is too small to enforce "Maxwellianization"
after 3'. As a result, the collisional relaxation is drasti-
cally underestimated. Even after 10ro (not shown here)
the peak survived as a nearly resolved plateau. This clear-
ly illustrates the failure of the BGK model, if the Spitzer
slowing down or deflection time is used for the collision
rate v, . It seems as if collisional runaway, as it occurs
beyond the speed of the maximum of vF in Fig. 1, can
substantially be moderated by employing the full effective
collision frequency.

IV. CONCLUSIONS

The collisional relaxation of a double-beam and a bi-
Maxwellian distribution function has been studied by em-

ploying the BGK model" with various velocity-
dependent relaxation times and by comparing its results
with the exact ones obtained from numerical integration
of the full Fokker-Planck collision integral. This pro-
cedure allows us to assess the validity and reliability of
the BGK operator not only qualitatively but, for the first
time, quantitatively as well. Generally speaking, the
Krook model may serve well to incorporate collisions in
any model, as far as only their principal effects, for exam-
ple on wave damping' ' 0 are concerned. It has its merits
in alleviating the tremendous problems arising in a fully
consistent treatment of the Fokker-Planck or Boltzmann
equation. However, our analysis shows that the results
strongly depend on the choice of the relaxation rate em-

ployed, which has to be considered a free model function.
By construction, the BGK operator conserves density,

momentum, and energy for a constant collision rate. If

the rate is velocity dispersive then this is no longer strictly
true. Inspection of Table I shows that one can live with
the induced numerical uncertainties. This near conserva-
tion of the collisional invariants of the Fokker-Planck or
Boltzmann operator is the price to be payed for a better
and somewhat more realistic treatment of the tails of the
distribution function and of the higher moments as well.
Still, the temperature anisotropy and the heat flux or
skewness evolve quite differently in the true relaxation
process as compared to any one of the discussed models,
with the exception of the vF model. The situation is
much worse if a constant collision rate is employed for v, .
The evolution of 3 and Q is then entirely unrealistic.
This result emphasizes the need to take the velocity
dispersion of the collision rates v, seriously into account.

Surprisingly enough, employing the rate vF yields nu-

merical results which come closest to reality and bear the
smallest computational errors. As shown in Fig. 1, vz
starts linearly in y, then attains a maximum at about
y= 1, and asymptotically declines like 1/y implying col-
lisional runaway of the fast particles. ' It seems as if
these characteristics are essential for the fact that v~
reproduces most similarly the true collisional relaxation.
Note that vF naturally occurs in the frictional force term
via the derivative of Rosenbluth's h potential and that it
substantially differs from Spitzer's slowing down rate vL

and deflection rate vD, which are monotonically decreas-
ing functions of the particle speed.

In conclusion, our analysis reveals that the BGK-model
cannot be considered as generally appropriate for a
description of the collisional relaxation of nontherrnal dis-
tribution. If the friction rate vF is employed this model
reliably reproduces some qualitative features of the
reshaping process of distributions, which initially deviate
even strongly from Maxwellians. However, we would not
recommend calculating transport coefficients with the
BGK operator, since numerical errors must be expected to
be intolerably large.

Still, it seems reasonable to start with the v~
relaxation-time model, if some principal effects of col-
lisions are to be understood, i.e., in modifying the extreme
effects of spatial inhomogeneity on velocity distributions
of ions and electrons in dilute space plasmas. After our
analysis we would not recommend, however, using such a
model to investigate the spatial evolution of the heat flux
carried by electrons in or beyond the runaway regime.
This warning particularly applies to the difficult situation
where the heat flux carrying particles in the far tail
represent a minority population (of a few percent or so),
which is of the order of the relative density error unavoid-
ably induced by using velocity-dispersive relaxation rates
in the BGK model. In this case or whenever high numeri-
cal accuracy is required ' ' the fu11 Fokker-P1anck equa-
tion must be solved.
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