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Theoretical problems related to the Brochard-Leger wall in liquid crystals have been further ex-
plained. It has been shown that there exists a critical region in liquid crystals beyond which the
Brochard-Leger wall does not exist. The relaxation behavior of the wall has been discussed, and
the relaxation time has been calculated. The speed of the Brochard-Leger wall has been investi-
gated for the case for which the tilt angle of the external field is equal to a critical angle.

I. INTRODUCTION

Liquid crystals are delicate nonlinear systems. When
submitted to an external field, they exhibit many novel
patterns and interesting phenomena, such as walls,' the
Williams domain,? transient periodic structures,’ optical
bistability, and chaps.* The study of these phenomena and
structures are very attractive topics in the physics of liquid
crystals and nonequilibrium statistics.

The Freedericsz transition occurs when a uniformly
aligned nematic liquid-crystal film is subjected to a mag-
netic field H > H.. Above the threshold field H., two
equivalent tilted configurations are separated by a wall,
which was called the “Brochard-Leger wall” in a previous
work.> It has been pointed out that the Brochard-Leger
wall in liquid crystals displays an important nonlinear
structure.> I have shown that the Brochard-Leger wall
provides an excellent example of nonequilibrium phase
transition, which can be described exactly by a solitary
wave. Furthermore, the Brochard-Leger wall shows an
impressive analogy with nerve propagation in neurobiolo-
gy. It is clear that there exist many interesting problems
in the Brochard-Leger wall. The purpose of this work is to
further explain the properties of the B-L wall and some of
the related problems. Three points will be briefly ad-
dressed: (i) There exists a critical region in a nematic
slab, inside which the transition of the director field is con-
tinuous, so the Brochard-Leger wall is formed; outside
which the transition of the director field becomes discon-
tinuous, so the Brochard-Leger wall does not exist; (ii) the
relaxation behavior of the B-L wall is discussed, the relax-
ation time 79 of the B-L wall is given by 79=47y,d>
x (a—1)"2/(37%a%k ¢); (iii) in the critical case, the speed
C of the Brochard-Leger wall becomes C =kX,H/(3y,)
x (dH [n~[XJk — 1),

II. CRITICAL LENGTH OF THE B-L WALL

The relevant equation (see Ref. 5) for describing the B-
L wall in the liquid crystals is as follows:
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where

F(0)=I[sin(266y) — 8sin (205 ) — £1/6}, . )

It should be pointed out that when we examine the process
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of establishing Eq. (1) in detail, we see that the basic phys-
ical consideration for establishing Eq. (1) is valid not only
for the middle thin layer of the nematic slab, but also for
each thin layer of the considered slab. Here the important
condition is that every considered layer of the nematic slab
must be kept very thin. Bearing this in mind, we see that
the form of Eq. (1) is appropriate to each thin layer of the
nematic slab in our problem. In the general case, we
should of course substitute 8p(x3) for 8y in Eq. (1). So
the general equation now reads
30 _ 9860 _(. 1z -
— T {sin[208¢(x3)]1 — 0sin[20(x3)] — €}/63(x3) ,
ot dx
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where £ =¢sin(26,)/6 and ¢ is the tilt angle of the exter-
nal field. For the definitions of other quantities in Eq.
(1), the reader is referred to Ref. 5. Adopting the discus-
sions parallel to that of Ref. 5, we can obtain the following
similar inequality:

0= (8+3/27)6¢(x3)/sin[260(x3)]1 =0, . 3)

The inequality (3) restricts the behavior of the B-L wall
and shows the existence of the critical angle ¢.. The defin-
ite restriction (3) is of significance in physics. One of the
direct consequences of this inequality is that there is a crit-
ical length d, in the B-L wall, for which the B-L wall does
not exist in the region d. < | x3| <d where d is the thick-
ness of the nematic slab.

The function 6p(x3) is the solution of the equation
k86/3’x3+ +XaH?sin(26) =0 with the boundary condi-
tion Gp(—d/2) =0y(d/2) =0. It is known® that G¢(x3)
can be expressed as follows:
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In the case HRX H,, Oy is small. According to the above
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expressions of (4) and (5), 6yp(x3) can be expressed ap-
proximately by

90()63) -2(0_1)”2008 [%)Q] . 6)

Using (6), we can obtain the following inequality from

3):

x5 ] s%cos"[0.787(a—l)_l/2¢] =d, . o)
]

2
F=1k fé/z d.f2 [[Ge(x,,x3,0)] +[60(x1,x3,0)

—¢2J —d./2 9x, 9x3

where
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The inequality (7) explicitly demonstrates the existence of
the critical length d, for the B-L wall. Inequality (7)
shows that doxd. d, increases with decreasing the tilt an-
gle ¢ and increasing the external field a. The expression
(7) also shows that d,. =d, if and only if ¢ =0. The mean-
ing of the results obtained above is very clear.

Because the width & and length d. of the B-L wall are
expressed explicitly, the elastic energy F of the wall can be
calculated according to the following integration:

2
] ]dx;dx3 N (8)

6(x1,x3,0) =0 (x3)0; (x1,x3,0) =B (x3) {sin(B+ n/3)[1 +tanh (& ~'x,)1+2v/3/3 cos(B+27/3) +¢/60} ,
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From the phase-transition point of view the critical
length d, is an interesting quantity. For |x3| <d, the
transition of the director field is continuous. For |x;|
>d, the transition of the director field becomes discon-
tinuous. d, discriminates between the two different transi-
tions of the director field in the nematic slab. Figure 1
shows the dependence of the critical length d. on the re-
duced magnetic field a=H/H,. Here we take ¢=0.05
(~3°) and B=d./d. Note that the condition (7) is of
universality, as it is independent of the concrete parame-
ters of liquid crystals.

In a previous work’ the theoretical aspect of the elec-
trohydrodynamic instability of the Williams domain under
inclined external field was investigated. One of the con-
clusions made was that there also exist a critical angle
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FIG. 1. The dependence of the reduced critical length

B=d./d of the Brochard-Leger wall on the deduced magnetic
field a=H/H.. $=0.05 (~3°). Note that when H — H,, the
inequality (3) is destroyed.

r

0.(») (o is the frequency of the field) and critical length
d; in the Williams domain (see Ref. 7). At 6> 6.(w) the
Williams domain does not exist. Note that this conclusion
is similar to that of the present work. In the case of the in-
clined external field, the symmetries of both systems are
broken. There will appear some new physical phenomena
connected with the symmetry breaking of the Brochard-
Leger wall and the Williams domain. Here we have seen
that in spite of the different physical mechanism under the
Williams domain and the Brochard-Leger wall, their
responses to the inclined fields show some similar features.

ITII. RELAXATION BEHAVIOR OF B-L WALL

The dynamical behavior of the director field was investi-
gated by Pieranski, Brochard, and Guyon,? when the mag-
netic field is switched on and off suddenly. Their results
give an ideal of the order of magntiude of the relaxation
time for many of liquid-crystal devices. The relaxation
behavior of the Brochard-Leger wall is also of importance.
By using the results obtained in Ref. 5 the investigation of
this problem becomes quite simple and clear.

If ¢70, the directors in the Brochard-Leger wall go
down continuously from one stable side to the other. In
the latter stable side the directors make the larger tilt an-
gle have lower energy. It is very clear that the transient
regime of the director field in our problem is the width & of
the B-L wall (i.e., the correlation length for the phase
transition). If the B-L wall passes the characteristic dis-
tance £ in the time 7o, so we can naturally define the time
7o as the relaxation time of the B-L wall. That is,

- \/—3_71
C  (+—cosp)X.H*6%

In the case HZ Hy, we can express the relaxation time
7o by the following formula:

- 471d2(a —1 )1/2
3r2a’k ¢
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The above formula can also be used to determine the
viscosity 7; in an experiment. Equation (10) shows that
the relaxation time tx¢ !, r«y,. Figure 2 gives the
dependence of the relaxation time 7y versus the reduced
magnetic field a. Here we take d=10? yum k=6x10""
dyn, ¢=0.05 (~3°) and y,=0.76p. Typically o for a
MBBA (p-methoxybenzylidene-p’-n-butylaniline) film of
d=10? um is about 10?2 s. Note that when a =%, 7o gets
the maximum value.

When the external field is switched off suddenly from
H > H, to zero, the equation describing the relaxation
behavior of the Brochard-Leger wall will become the fol-
lowing linear diffusion equation:

o0 _, 0% _

- —k
14! o1 ax?

The initial value condition is
61(x1,0,t) | ;=0 =sin(B+ n/3)[1 +tanh (&~ 'x)]
+2v3/3 cos(B+2n/3)+0/6y .  (12)

In this situation the B-L wall will relax from the pattern
(12) to an equilibrium stationary state. Such an evolu-
tionary process can be described by the following solution

of Eq. (12):

0. an

1l n
G(XI,I) 2 [ kit

A proper description of the relaxation behavior of the
Brochard-Leger wall should consider the fluctuation phe-
nomena in detail. In this aspect we have noted a series of
articles by Buttick and Landauer.” Buttick and Landauer
have studied the dynamical behavior in linear arrays of
overdamped multistable systems coupled to a thermal
reservior. Some of the general discussions by Buttick and
Landauer are relevant to the behavior of the Brochard-
Leger wall. In another aspect, the model for the
Brochard-Leger wall subjected to fluctuation provides an
excellent example for the Buttick-Landauer general sys-
tem. Recently Sagues and San Miguel'® have studied the
dynamical behavior of the fluctuation in the Freederickz
transition and obtained some interesting results. It is easy
to see that the study of the B-L wall is closely related to
that of Sagues and San Miguel, and it is also concerned
with some of the interesting problems in nonequilibrium
statistical mechanics.

IV. ANALOGY WITH NERVE PROPAGATION

In my previous works>!! I have outlined the similarity
between the motion of the B-L wall and nerve propagation.
Because nerve fiber shows the structure of liquid crystals,
such a similarity is obviously an impressive one. Here I
will briefly mention other related facts and conclusions.

The Huxley theory gives good descriptions for the
behavior of nerve propagation. A large number of studies
have demonstrated that (i) the Huxley theory shows the
threshold phenomena in nerve propagation, (ii) the Hux-
ley theory shows solitary wave solution, (iii) the Huxley

RAPID COMMUNICATIONS

5181
fo(S) T T T T T T
L — 1
100 4
r !
!
50 I 1
1
L | d
|
‘1
0 1 1 | 1 I 1
10 1 12 13 14 15 a(=H/H¢)

FIG. 2. The dependence of the relaxation time 7o vs the re-
duced magnetic field a=H/H,. ¢=0.05 (~3°). Note that
when H — H,, the inequality (3) is destroyed.

12
] f_“{sin(ﬂ+7t/3)[l+tanh(§"'y)]+2\/§c0s(ﬂ+2k/3)+¢/6M}exp[—yl(y —x1)*/(4ke)1dy. (13)

—
theory shows multiple solitary wave structure, and (iv) the
Huxley theory shows periodic wave structure. These con-
clusions agree with the experimental facts in neurobiology.

It is of importance in liquid crystals that all of these typ-
ical phenomena in neurobiology also appear in a series of
experiments in liquid crystals. Leger’s experiment! has
shown the solitary wave and multiple solitary wave struc-
tures and threshold phenomena. The recent experiments
performed by Guyon, Meyer, Salans,’ and Sun and Kle-
man'? and Lonberg, Fraden, Hurd, and Meyer'? show that
there also exist interesting transient periodic structures
which are similar to the Williams domain in liquid crys-
tals. When one discusses the theoretical aspect of these
phenomena, the coupling between the rotation of directors
and fluid velocity should be considered in detail. In this
case, we can analyze Eqgs. (8) in Ref. 11. By using singu-
lar perturbation theory'* in phase space, one can reveal the
various propagation phenomena of the solutions, such as
periodic structure, coupled solitary waves, and multiple
solitary waves. These facts show the impressive similarity
once again.

Finally, I want to point out the uncertainty of the depen-
dence of the velocity C of the B-L wall on the external
field H. Such an uncertainty comes from the inequality
(3). As the velocity C is sensitively dependent upon the tilt
angle ¢ and ¢ is restricted by the inequality (3), so rela-
tionship between the velocity C and field H becomes vari-
able. Note that because of the inequality (3), the diver-
gence velocity C, as H goes to H,, is a pseudophenome-
non.! In the critical situation, the inequality (3) becomes
the equality ¢ =(8v/3/27)64/sin(26x). In this case, the
velocity formula for the B-L wall is transformed to the fol-



RAPID COMMUNICATIONS

5182

lowing form

1/2 172
c_l.ﬁ[ H[ﬁ] ] | a4

3‘}'1 —7? k
The above formula shows the relationship between the
velocity of the wall and the thickness d of the nematic slab
in the critical situation. Note that the experimental results
in neurobiology show that!®

C~@)?orC~d , (15)
where C is the velocity of the nerve propagation and d is
the diameter of the nerve fiber. It is clear that the study of
the propagation speed is a very interesting problem. There
also exists another interesting problem. When the nerve
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signal is propagating, the coupled ion flow in the nerve
fiber always follows the propagation. Correspondingly,
when the B-L wall and related periodic structures are
formed, the coupled convection in liquid crystals also links
with the motion of these structures. One can naturally ask
whether or not the convection can provide a possible
manner of ion exchange in nerve fiber. This is a meaning-
ful question.
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