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Narrow Angers in the Saffman-Taylor instability
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Saffman-Taylor fingers ~ith a relative vridth much smaller than the classical limit A, O.S are
found when a small isolated bubble is located at their tip. These solutions are members of a fami-

ly found by Saffman and Taylor neglecting superficial tension. Recent theories have sho~n that
when capillary forces are taken into account an unphysical cusplike singularity ~ould appear at
the tip of all the fingers with A, & O.S. Conversely, here the replacement of the tip by a small bub-
ble makes these solutions possible. At large velocity these fingers show dendritic instability.

When between two narrowly spaced glass plates, a fluid
of small viscosity drives a fluid of large viscosity, their in-
terface is affected by the Saffman-Taylor instability. Two
geometrical configurations are used for its study. In the
original Saffman-Taylor experiment' the fluids are con-
fined in a linear channel of width w. In the axisymmetric
geometry introduced by Patersons the viscous fluid is con-
tained between two circular glass disks and the less viscous
fluid is injected at the center. In both geometries the ini-
tial destabilization is characterized by its length scale
le-b(T/pV)'~z where T is the surface tension, p the
dynamical viscosity, b the thickness of the cell, and V the
velocity of the interface. The subsequent evolution of the
instability is very different in each geometry.

In the axisymmetric case the fingers tend to remain a
size of the order of /e. As they move outwards they under-

go a series of irregular tip splitting and side branching. In
a previous experiments performed in this geometry we
showed that the influence of an isolated bubble at the tip
created an artificial sharper point to a growing finger. Be-
cause of the higher curvature at the tip, the pressure gra-
dient is increased and so is the finger velocity. These fas-
ter fingers take a parabolic shape which, for larger veloci-
ties, is affected by dendritic instabilities very similar to
those observed in crystal growth.

In the present paper we study the influence of a perturb-
ing bubble in the linear geometry. We will first recall the
main classical results in this case. Because of the geome-
trical configuration, the growing fingers tend to screen
each other off, so that only the fastest continue to grow.
This gives rise to a stable finger shape where the length
scale of the width u of the cell imposes itself. The finger is
characterized by the ratio 1L, of its width to that of the cell.
In the original paper by Saffman and Taylor A, was studied
as a function of the capillary number C pV/ T. More
recently a new parameter was used, 1/8 12f(/b)
& (pV/T)] which for equal values gave comparable A, in
cells of various geometrical dimensions. In a particular
cell for a given fluid the control parameter is the velocity V
which can be chosen by changing the applied pressure.

The classical puzzling result is that with increasing 1/8
the relative width A, of the finger first decreases from 1 to
0.5, at which it remains in a very large range of values of
1/8.

Saffman and Taylor, assuming that the capillary forces

should become negligible at large values of 1/8, solved
analytically the two-dimensional potential flow problem in
the absence of surface tension. They found a family of
solutions parametrized by A, which could take all values
0&X&1,

The origin is taken at the tip of the finger; Ox and Oy

are, respectively, parallel to the length and to the width of
the cell and the half width w/2 of the cell is taken as unit
length. No physical argument indicates which solution is
selected. Furthermore at low velocity the observed fingers
do not correspond to the predicted shape, only the particu-
lar k 0.5 solution corresponds to the fingers observed at
large 1/8. No reason could be found at first why the solu-
tions A. & 0.5 were not observed at all.

Pitts, using an empirical law on the local curvature at a
point of the profile, found a modified relation

x —In —I +cos
l xy
2

This fitted well the observed fingers in t, e range
0.5&A, &0.80, where all the experimental pr files are
homothetics so that they can all be reduced to a single
curve by magnification of the axes.

The first attempt to take surface tension into account in
this problem was made by McLean and Saffman. 3 Fol-
lowing their work, recent progress in this problem has been
made by Vanden-Broeks using numerical techniques, and
by Dombre, Hakim, and Pomeau, Shraiman, ' and Hong
and Langer" using analytical calculation. They showed
that the taking into account of surface tension in the
Saffman-Taylor solutions leads to finding a cusphke singu-
larity at the tip of most of them. Only for a family of solu-
tions the cusp's amplitude is reduced to zero. These solu-
tions have width ~ & & and all tend toward ~ 2 for van-
ishing surface tension.

I. EXPERIMENT SETUP

Four experimental cells were used. They were made
with glass plates 1.50 m long and 1.5 cm thick separated
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by 0.1-cm-thick spacers. Their widths w were, respective-

ly, 12, 6, 4, and 2 cm. The viscous fluid filling them was a
silicone oil Rhodorsil 47 V 100 with surface tension
T 20.9 N/m at 25' and viscosity p 9.65X10 2 kg/ms.
The fluid of low viscosity was nitrogen gas. We measured
finger shapes, width, and velocities either with photo-
graphs taken with a motorized camera or with video tape
recordings. Small bubbles were injected into the cell be-
fore the experiment started by means of a long hypodermic
needle.

B. KXPKMMKNTAL RESULTS

We inject into the cell small air bubbles near the initial
motionless front between nitrogen and oil. To be effective
these bubbles have to be of an oblate shape between the
flat plates so that their initial diameter in the cell plane
must be a few times the thickness b. When pressure is ap-
plied the bubbles start moving. As their friction on the
glass plate is negligible they form zones of constant pres-
sure which distort the neighboring isobars in the oil. As
the front destabilizes, one of the fingers situated behind a
bubble will grow faster and catch up. The bubble then
remains stable at the tip. As the velocity of this finger be-
comes larger (because of the increase of the curvature of
the tip) it then overcomes the other fingers and forms a
steady solution translating along the whole cell (Fig. 1).

Fingers with a bubble at the tip can be observed in a
large range of values of velocities. However, for small ve-
locities the bubble does not always remain stable; it drifts
off on the side so that its effect vanishes. For large veloci-
ties the bubble and the fingertip are pressed against each
other so that the tip of the finger and the back of the bub-
ble are flattened and reach a stable configuration (Fig. 1).

For a given applied pressure the velocity of the new
stable finger with a bubble at the tip is larger and its width
X smaller than in the usual Saffman-Taylor case. If the
film that separates the bubble from the finger breaks, the
finger slows down and returns to its classical shape.

The photograph of a finger with A, 0.32 obtained in the
cell w 6 cm for V 5 cm/s is shown on Fig. 1. The
finger profile has a well-determined shape which does not
include the isolated bubble. We have superlxised, exclud-
ing the bubble, points of the profiles 1~0.32 calculated,
respectively, with Eqs. (1) and (2). We see immediately
that this finger is not a member of the family described by
Pitt's formula, but that its shape coincides with striking
precision with the solution of Saffman and Taylor. The
only deviation is localized behind the bubble where its in-
fluence has created a little flat part.

Figure 2 shows the evolution of the observed values of A,

as a function of the capillary number in three of the four
experimental cells. As in the usual fingers, X, decreases
with increasing C, and a saturation occurs at a value A,

„

which depends upon the aspect ratio of the cell. We find
for cells of thickness b 0.1 cm:

2,,=0.46 for w 2cm, )L,,=0.345 for w 4 cm,

2,,=0.30for w 6cm, A,,=0.225 form 12cm .

These values are much smaller than the classical limit
0.5. Contrary to the classical situation, the results ob-

]

FIG. 1. Photograph of a finger obtained in the cell ~ 6 cm,
b 0.1 cm at V 5.3 cm/s. The crosses are points of the
theoretical profile from Saffman-Taylor Eq. (1) for X 0.32.
The dots are calculated from Pitt's Eq. (2) for X 0.32.

tained in the various cells cannot be brought to near coin-
cidence by using the dimensionless number I/8.

The mean diameter d of the efficient bubbles can be
chosen in the range b (d (Sb For .the same applied
pressure the velocity of the finger will depend upon the size
of the bubble. However, in a given geometry, all the ob-
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FIG. 2. Variation of X with the velocity V (or the capillary
number C pV/T) in the three geometries: (a) w 2 cm, (1)
w 6cm, (e) w 12cm.



NARRO% FINGERS IN THE SAFFMAN-TAYLOR INSTABILITY 5177

From the measures of A, we can deduce the curvature EC

as a function of the velocity V in the different cells. The
result is shown on Fig. 3. It shows that at a given velocity
the curvature E is the same in all the cells (of equal thick-
ness). Then Eq. (4) gives a relation between the observed
A, and the width w of the cell:

1 —(1 —4wSC/~)"
2wK/ir

(5)

Figure 4 shows the observed values of A, in the four ex-
perimental cells at a velocity V 6 cm/s compared to the
predicted dependence X(w ) given by the relation (5). The
best fitting value of E for this velocity was EC 4. 1 cm

We can compare the destabilization of these new fingers
to that of the classical ones. For values of I/8 & 7000 the
usual Saffman-Taylor fingers destabilize when irregular
side branching and tip splitting occur. s With a very small

served values of A, lie on the same curve X(V) (Fig. 2).
This shows that the shape of a finger depends only on its
velocity. This velocity is itself determined by both the ap-
plied pressure and the bubble size.

To understand these results we must remember that in
the axisymmetric case the fingers, in the presence of a
bubble, take a parabolic shapes with a curvature at the tip
determined by the velocity.

In the present linear case the solutions given. by Eq. (1)
also have a parabolic shape near the tip. For small values
of y they reduce to

A.
—1x~ my

4A,

We must remember that the solutions (1) were found,
w/2 being taken as unit lengh. In a real cell the shape of
the finger near its tip can be characterized by the curva-
ture E of the parabola at the tip

I/Z-- (4)
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FIG. 4. Values of X, as a function of the width of the cell at
velocity V 6 cm/s. The continuous line is calculated from Eq.
(5), the crosses are experimental.

bubble at their tip the fingers are more stable and can be
observed to values as large as 20000.

They also destabilize differently into one of two periodic
behaviors. In the first one [Fig. 5(a)], observed for small
bubbles, the curvature of the extremity of the finger varies
periodically. The pulsating tip creates symmetrical lateral
branches. When the bubble is large [Fig. 5(b)] the ex-
tremity of the finger oscillates transversely. We had ob-
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FIG. 3. The curvature of the parabolic extremity as a function
of the velocity V. 0:w™6cm; +:~ 12 cm.

FIG. 5. (a) The pulsating tip regime of a finger with a small
bubble, w 6 cm, V 10 cm/s, (b) the oscillating tip regime of a
finger with a larger tip bubble, w 6 cm, V 7 cm/s.



5178 Y. COUDBR, N. OBRARD, AND M. RABAUD

served both these instabilities in the Paterson geometry
where the lateral branches could fully develop. We point-
ed out that the first one is identical in shape to a classical
dendritic instability. In the present experiment the vicinity
of the side walls hmits the growth of the instability. In the
widest cell, where A. is small, lateral branches can still be
formed. In the narrowest the growth is practically inhibit-
ed. These instabilities will be described in more detail in a
forthcoming paper.

Finally, we tried to apply to the finger another type of
local perturbation of the tip. We stretched a very thin
thread along the whole length of the cell and in the middle
of its width. This technique was first used by Grace and
Harrison'z who showed that in a Hele Shaw cell, rising
bubbles have a larger velocity when they surround a verti-
cal wire. Except for their tip which becomes asymmetrical
with respect to the wire, fingers similar to those obtained
with the small bubble are observed. '3 Dendritic instability
also occurs. A similar result has been obtained recently by
A. Libchaber. 's

BE. CONCLUSEONS

For large velocities where viscous forces should dom-
inate, surface tension remains important in the determina-
tion of the shape of the fingers. Recent theories have
shown that this is due to its critical role in the localized re-
gion of the finger tip. Conversely, we have shown that in-
troducing a localized perturbation at the tip suppresses the

width selection described in Refs. 9-11. Other solutions
(those predicted in theories neglecting surface tension) be-
come possible. These are the parametrized Saffman-
Taylor solutions here and the parabolas in the circular
geometry. The curvature at the tip is determined by the
velocity and selects the finger experimentally observed.
Both are affected at larger velocities by dendritic instabili-
ties.

Dendrites have usually been associated with crystalline
anisotropy. In the present experiment as well as in the
axisymmetric one, we show that a local perturbation of the
tip creates these characteristic patterns. Anisotropy of the
medium is not therefore a necessary condition to dendritic
growth. It is only one of the means by which the singulari-
ty of the tip can be removed so that fingers with parabolic
extremities are made possible.

Nore added in proof. Recent experiments in cells of
various thicknesses (b 0.05, 0.1, and 0.2 cm) show that
the relevant parameter for the cruves A, (V) of Fig. 2 is the
ratio of the width over the thickness of the cell w/b. The
nondimensional version of Fig. 3 is then a plot of ECb vs C
and in Fig. 4 the abscissa can be scaled adimensionally in
w/b.

ACKNOW KDGMKNTS

We are very grateful to P. Tabeling for initiating us to
many aspects of the Saffman-Taylor instability. We thank
C. Caroli, T. Dombre, V. Hakim, A. Libchaber, and
Y. Pomeau for many fruitful discussions.

'P. 6. Saffman and G. I. Taylor, Proc. R. Soc. London, Ser. A
245, 312 (1958).

2E. Pitts, J. Fhud Mech. 97, 53 (1980).
3J. %. McLean and P. G. Saffman, J. Fluid Mech. 192, 455

(1981).
sP. Tabeling, G. Zocchi, and A. Libchaber, J. Fluid Mech. (to be

published).
sL. Paterson, J. Fluid Mech. 1D, 513 (1981).
@Y.Couder, O. Cardoso, D. Dupuy, P. Tavernier, and %.Thorn,

Europhys. Lett. 2, 437 (1986).
7G. Tryggvason and H. Aref, J. Fluid Mech. 136, 1 (1983).
sJ. M. Vanden-Broeck, Phys. Fluids 26, 2033 (1983).
~T. Dombre, V. Hakim, and Y. Pomeau, C. R. Acad. Sci. Ser. A

11302, 803 (1986); R. Combescot, T. Dombre, V. Hakim,

Y. Pomeau, and A. Pumir, Phys. Rev. Lett. 56, 2036 (1986).
'eB. Shraiman i Phys. Rev. Lett. 56, 2028 (1986).
"D.C. Hong and J. Langer, Phys. Rev. Lett. 56, 2032 (1986).
'2J. R. Grace and D. Harrison, Chem. Eng. Sci. 22, 1337 (1967).

In the axisymmetric configuration, Ben Jacob et al. introduced
a strong anisotropy by engraving deep grooves in the cell
plates. They observed that the general anisotropy of the ce11

induced dendritic fingers. VA'th a localized thread we show
that a similar effect is obtained by acting on the tip of the
finger only. [E. Ben Jacob, R. Godbey, N. D. Goidenfeld, J.
Koplik, H. Levine, T. Muller, and L. M. Sander, Phys. Rev.
Lett. 55, 1315 (1985)].

'A. Libchaber (private communication).






