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It is demonstrated theoretically for arbitrary diatomic molecules (and atoms) and verified nu-

merically with a- twentiethwrder perturbation study of the Stark effect for the ground state of
Hz+ that highwrder nonadiabatic electric polarizabilities in each order result from the delicate
partia1 balancing of larger opposing perturbational shifts in their kinetic, nuclear-potential, and
field-potentia1 cemponents, where the relative magnitudes and signs of these component shifts can
be precisely determined by general a priori relationships. This method of analysis, based upon a
combination of the Stark viria1, He11mann-peynman, and remainder theorems, and implemented
via the perturbational-variational Rayleigh-Ritz formalism, provides a novel mechanism for study-

ing in detail the physical origins of molecular polarixsbilities.

Quite recently, large-order perturbation theory'
(LOPT) was appliedz s for the first time to the study of the
Stark effect for the hydrogen molecular ion H2+; in these
studies, LOPT was implemented via the powerful and flex-
ible perturbational-variational Rayleigh-Ritz (PV-RR)
matrix formalism. " To obtain results of highest acccuracy
directly without the requirement of making supplementary
vibrational corrections, the initial LOPT PV-RR Stark
calculations for Hz+ were performed nonadiabatically, s

i.e., without invoking the customary Born-Oppenheimer
approximation but, rather, treating Hz+ as a three-particle
system with all particles on an equal footing. Subsequent-
ly, as a sensitive test of the influence of nuclear motion on
polarizabilities in hi~her order, the LOFT PV-RR calcula-
tions were repeated adiabatically, i.e., within the Born-
Oppenheimer (clamped-nuclei) approximation and with-
out any correction for nuclear motion. These studies yield-
ed the nonadiabatic and adiabatic exact Rayleigh-
Schrodinger (RS) ground-state polarizability (eigenvalue)
series through twentieth and thirtieth order, respectively;
earlier Stark expansions for Hz+ were limited to fourth or-
der. s These highwrder Polarizability series for Hz+, as
well as those previously derived for hydrogenic ions, 7 9 are
of considerable interest for a number of reasons. ' 3 7 'e

In general, the polarizabilities are a measure of the ease
with which the molecular charge distribution can be dis-
torted in the presence of a uniform electric field. Little or
nothing is known quantitatively, however, concerning the
interplay of the various, possibly competing, physical fac-
tors which lead to the molecular polarizabilities. In the
present work, we investigate these physical origins in detail
for the first time by resolving the high-order nonadiabatic
polarizabilities for Hz into their kinetic- and potential-
energy components, where the latter are further decom-
posed into their nuclear- and field-potential components;
aside from a recent preliminary application of the pro-
cedure to hydrogenic ions, we are not aware of any similar
calculations in the literature for either atoms or molecules,

not even lowwrder ones. As we shall demonstrate theoret-
ically for arbitrary diatotrtic molecules (and atoms), and
verify numerically for Hz+, the total nonadiabatic polar-
izabilities in each order result from the delicate partial
balancing of larger opposing perturbational shifts in their
energetic components, where the relative magnitudes and
signs of these shifts can be precisely determined by general
a priori relationships. In particular, we report here the RS
ground-state series of all three nonadiabatic energetic
components for Hz+ through twentieth order. These were
obtained within the framework of the PV-RR formalism
by using two different independent methods.

In the center-of-mass system, the perturbed nonadiabat-
ic Hamiltonian operator H for Hz+, in a uniform electro-
static field F, parallel to the internuclear (z) axis, has the
forms

H H(Fs) Ho+H iFs

where the unperturbed (field free) Hat and the kinetic and
nuclear-ptential operators, T and Ve, respectively, are
given by

'

Ho T+ Ve, (2)

T--—'(1+—'p ')V'- p 'v$

Vo- —r,-'-r +It.-', (3b)

(3a)

and the perturbing field-potential operator H i can be writ-
ten as2'5'~

Hi fz,
f 1+m, /M = 1.000272234 .

(4a)

(4b)

Here, V~2 and V$ are, respectively, the Laplacian operator
for the electron relative to the geometric center of the nu-
clei A and 8, and for one nucleus relative to the other, p, is
the reduced nuclear mass; r~ and rtt have their usual signi-
ficance, R is the internuclear separation (which in the

1986 The American Physical Society



PHYSICAL ORIGINS OF HIGH-ORDER NONADIASATIC. . . 5143

nonadiabatic approach is treated as a variable of integra-
tion), z is the electronic coordinate relative to the
geometric center of the nuclei; m, and M are, respectively,
the mass of the electron and the total molecular mass, and
the numerical factor'2 f stems from the nonadiabatic
treatment. We seek the RS series in powers of F, for the
perturbed normalized eigenfunctions I y (F, )& and eigen-
values E'(F, ) from which we then obtain the correspond-
inj, RS series of the energetic components &T&'(F, ),
& VD&'(F, ), and &H i&'(F, ); here, the superscript s labels the
state and &A &'(F, ) denotes the expectation value
&!!s'(Fs)I & I!!s'(Fs)& of an arbitrary operator A indepen-
dent of F,. To initiate the PV-RR procedure, introduce
the highly accurate nonadiabatic Rayleigh-Ritz ansatz"
used in the previous PV-RR calculations2 of high-order
nonadiabatic polarizabilities. One then forms the nonadi-
abatic matrix eigenvalue equation

aJx~ = —j!&T&,',
a,"&—= —j!&V,&;,
ay~~= ——j!&Hi&,' i .

(ioa)

(10b)

(10c)

which, together with (10), yields the components directly;
here A is the matrix representation A in the chosen basis.
(2) We also have at our disposal, however, the Stark nona-
diabatic virial theorem, '5

As previously mentioned, the components (10) are deter-
mined by two independent methods: (1) From the basic
PV-RR formalism, 4 we have the purely numerical pro-
cedure,

(A)J f (C$) ACg-a, A-TVoH],

where H and S are, respectively, the total perturbed Ham-
iltonian and overlap matrices and C' is the column eigen-
vector composed of the linear variational coefficients. In
contrast, however, to the conventional Rayleigh-Ritz pro-
cedure with its attendant problem of variational collapse, '3

H is partitioned according to (1) as

H H(Fs ) Ho+ HiFs,

2u+~+ e+~ —e~~ 0

and the Hellmann-Feynman theorem, 4's

aj~~ jej' .

On combining (9), (12), and (13),one obtains

aj~~ (2j —1)a,',
ag ~(2 3j)aj .

(i2)

(i3)

(i4a)

(14b)
where F, is not assigned fixed numerical values but, rath-
er, treated as a variable perturbing parameter. Applica-
tion of the PV-RR formalism to (5) and (6) then yields
the series

c'-c'(F, )-g cj'Fj,
J~p

Es ~Es(F ) ~ g EsFj
J~P

(7a)

(7b)

and refer to the a~ collectively as polarizabilities. It fol-
lows from (1), (2), and (8) that, in general, one can ex-
press the az as the sum of the energetic components

e'-a~ +a"'+a~~J

~here the kinetic, nuclear-potential, and field-potential
components, a~+~, ajar~, and aJF~, respectively, are defined

&i&'-&i&'(F, )-g &i&JFJ, i -T,v, ,a, (7c)
j 0

to high order for the states of interest in a single computer
run. The extent to which the PV-RR eigenvalue series
(7b) agrees with the corresponding exact RS series de-
pends upon the effective choice and dree of saturation of
the basis set, and can be determined" 9 by examining the
variational convergence of the individual E~', as we shall
demonstrate, similar remarks apply to the expectation-
value series (7c). To maintain close connection with the
widely used notation' for molecular polarizability studies,
we write the E; of (7b) as

EJ' —aj'/j!, j 1,2, . . . ,

Thus, (13) and (14) completely separate the components
and enable their indirect theoretical determination via the
a)'.

Note that if (11) is used, a knowledge of the eigenvector
series (7a) through nth order only suffices to compute the
component series (7c) through like order; on the other
hand, with (13) and (14), the component series can be ex-
tended through (2n+1)th order, with but negligible com-
putational effort, from the nth-order eigenvector series
since the latter yields the polarizability series (7b) through
(2n+ 1)th order via the PV-RR remainder theorem. ~ This
distinction between the two approaches leads to a number
of additional interesting consequences. ' Equations (13)
and (14), which hold for the exact RS nonadiabatic polar-
izabilities of all states of all diatomic molecules (and
atoms), are the principal theoretical findings of this work,
and display quantitatively the previously mentioned deli-
cate partial balancing of the components: In particular,
note that for j~ 2 I

aJN~
I & I

aj'~
I & I aj'~ I & I a'I, and

for all j, aj, uf ~, and a~~~ are of like sign, while aj ~ is of
the opposite sign; thus, for j 1,2, . . . , we can write

Ia;I -I laj'+aj" I
—

laj 'I I . (i5)

Further, if the Bender-Wu"0's-type asymptotic formulas
for the large-order az should be determined, (13) and (14)
would then immediately yield the corresponding asymptot-
ic formulas for the components, as has been recently
demonstrated for hydrogenic ions.

For a homopolar molecule such as H2+ in a uniform
electric field parallel to the internuclear axis, the odd order
a~ and their components a!i vanish identically due to sym-
metry. As a test of our formalism, however, we shall not
impose this constraint explicitly, but numerically evaluate



JPRPMIAH N. Sg.VERMAN AND DAVID M. BISHOP

TABLE I. Comparison of variational convergence as a
function' of N of PV-RR nonadiabatic polarizability components

af, ap, slid af (ill atomic ulllts).

140

190

320

490

540

16.8
17.563

17.21
17.512

17.427
17.498 8

17.469
17.493 3

1 7.482 1

17.49 1 72

17.488 9
17.491 29

17.490 2
17.49 1 14

17.49072
17.491 084

17.49096
1 7.49 1 07 1

1 7.49099
17.49 1 068

-22.7
-23.4 17

-23.04
-23.349

-23.260
-23.331 8

-23.330
-23.3324

-23.3 I 2 7
-23.322 29

-23.3 194
-23.321 72

-23.3206
-23,321 52

-23.321 08
-23.321 446

-23.321 32
-23 ~ 32 1 427

-23.32 1 35
-23.321 424

1 1.708
1 1.708

1 1.674
1 1.674

1 1.665 9
1 1.665 9

1 1.662 2
1 1.6622

1 1.661 47
1 1.661 47

1 1.660 86
1 1.660 86

1 1 .660 76
1 1.66076

1 1.660 723
1 1.660723

1 1.660 714
1 1,660714

I 1.660712
1 1.660 712

'For each value of N, the first ro~ of entries is computed with

Eq. (11)and the second with Eqs. (13) aud (14).

all coefficients. To illustrate our theory, we apply the pro-
cedure to the ground state of H2+ and, for brevity,
suppress the state superscript. All calculations were per-
formed in ordinary double-precision arithmetic (about 16
significant digits) with an efficient computer program for
implementing PV-RR, which incorporates the basic PV-
RR algorithmsQ augmented by the above-cited theorems.

The computational details are precisely as described in
Ref. 2, both in fixing the nonlinear parameters and in sys-
tematically constructing a sequence of variational eigen-
functions with the number of basis functions N increasing
over the range of N 2,6,14, . . . , 400,490,540. In all cal-
culations, the odd-order coefficients were found to vanish
identically as required. In Table I are collected our non-
adiabatic values of af, czn, and ag as functions of N, com-
puted both with (11) and with (13) and (14). It is seen
that in complete accord with theoretical predictions, ' both
entries for the cg are identical but the ap and ap comput-
ed with (14) converge variationally more rapidly and with
greater accuracy than those computed with (ll); in gen-
eral, this latter effect is enhanced with increasing order.
For N 540, the quantities computed with (13) and (14)
have converged to the exact RS values within a few units
in the last digit reported. Table II displays the nonadia-
batic aj+, CP, and CJF through twentieth order, computed
with (13) and (14) for N 540, where the variational con-
vergence determined as illustrated in Table I is again
judged to be within a few units in the last digit reported.
Table II also collects the previously computedz twentieth
order cj for comparison with their components; the partial
cancellation of the larger shifts in the components in sum-
ming to the CJ is manifest fcf. (15)]. It is highly sigmfi-
cant that all (nonvanishing) CJ, and, hence, all af and a~~

are positive and all C~N are negative. On bearing the defi-
nitions (10) of the components in mind, one sees that the
physical origins of the nonadiabatic polarizabilities for the
ground state of Hz+ are, in each order, unambiguously due
to a decrease in the average kinetic energy of the molecule
coupled with an increase in the average (negative) dis-
placement of the electron from the geometric center of the
nuclei, these positive contributions being largely offset by
the decrease in the magnitude of the average nuclear po-
tential of the molecule.

This research was conceived and partially implemented
while one of us (J.N.S.) was a guest of the other author at
the University of Ottawa. We gratefully acknowledge the

TABLE II. High-order RS nonadiabatic polarizability components ap, aj, aud aJ (in atomic units)
for the ground state of H2+ computed' via the PV-RR formalism for N 540.b

2
4
6
8
10
12
14
16
18
20

17.491 068
15.351 65 x 103

65.728 1 x 10'
67.550x 10'0

127.91 x 10'4

38.78 x 10"
172.3 x 10"
105.3 x 1028

84.4x 10"
85.4x 1038

-23.321 424
-21.93093x 10'
-95.6045 x 10~
—99.073 x 10io

—188.50 x 10'4
—57.33x 10"

-255.2 x 10"
-156.2 x 10"
-125.4 x 10"
-127.0x 10"

1 1.660712
8.772 37 x 103

35.85 1 7 x 10~

36.027 x 10"
67.32 x 10'4

20.23 x 10"
89.3 x 1023

54.3 x 10"
43.4 x 10"
43.8 x 10"

5.830356
2.19309 x 103

5 9753x 10'
4.503 x 10"
6.73 x 10'4

1.69 x 10'~

6.4 x 10"
3.4 x 1028

2.4 x 10"
2.2 x 1038

'Computed with Eqs. (13) and (14).
Field-free expectation values from zero-order virial theorem: (T}Q 0.59'7 139(}5'7 u u ( p'Q}Q

—1.194278 1 14 a.u.
'The total nonadiabatic polarizabilities from Ref. 2; the components are related tc the aj via Fq (9)
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