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It is shown ho~ to calculate any generalized fractal dimension of the Feigenbaum attractor from
the trajectory scaling function. The Hausdorff dimension is determined.

Bensimon et al. ' have developed a renormalization
technique to compute, using universal quantities, the gen-
eralized fractal dimensions of the attractor at the accumu-
lation point in period doubling, first calculated by
Grassberger. ' We wish to point out that these numbers
can be calculated in a much simpler way using the Feigen-
baum trajectory scaling function~ and the therinodynaniic
analogy developed by Vul et al., ' and we compute one of
these dimensions, the Hausdorff dimension. The input in
our calculations is I.anford's7 high-accuracy approxima-
tion to the Feigenbautti function.

The formula for the generalized fractal dimension'

Dq, at level N, as a sum over intervals i, with lengths l;
and weights p;

2N

QPq/l; q= 1; qq =(q —1)Dq (1)

can, for the period-doubling attractor, be rewritten ' as

2N

g e itw(i) —2 NF(P)—

(icr, .i. . , t' ) N(t tr, .2. . , 't0N). . .I o (3)

Here o(i i, . . . ,itq) is the Fei enbaum trajectory scaling
function with argument tr(i/2 +') . Hence

~
tr

~

~ plays
the role of a transfer matrix, and F(P)= —M(P)/In2,
where A,(P) is the largest eigenvalue of the matrix. The
Hausdorff dimension Do ——Po is defined by F(Po) =0. It
is therefore the value of the parameter P for which the
largest eigenvalue of the transfer matrix

~
cr

~

~ takes the
value 1.

%e compute successive approximations to Do by in-
creasing the number of significant bits in cr, or,
equivalently, by truncating the transfer matrix at higher

where P= qq, F(P)=——q, p;=2 for all intervals on
level N and i =ii2 '+ . +iN , ij ——0, 1';

W(i)= —ln
~
l(ii, . . . , lent) (

orders, and we extract the leading eigenvalue by Gaussian
elimination. The results are summarized in Table I.

The deviation in po from the asymptotic value is p«-
portional to the error in o, and one may show that the er-

ror due to not taking the full structure of o into account

goes to zero with level n at least as fast as 2 ". In prac-
tice the errors are much smaller, the change in 13o at a
given level being roughly —6 times the change in the

next. To find a better approximation to the asymptotic
value, we apply a series of Shanks transformations. '

We have thus the following estimate of the asymp«tic
value of the Hausdorff dimension of the Feigenbaum at-

tractor: po ——0.538045143 5 (1). The computation is
essentially limited by the finite accuracy in the polynomi-

al expansion of the universal function g~(x). The errors
thus introduced in g~ grow, as many iterates of the func-
tion g& have to be computed to find tr in level n, roughly
as g, where P is a universal constant ' "with numerical

value =6.6. This induces an error in cr roughly (Pa~)"
where a~ is the Feigenbaum constant. As I.anford's

data are good to one part in 10 s we are limited to some-

thing like 15 levels and 15 digits in the calculation of Pp.

TABLE I. The approximation to the Hausdorff dimension as
a function of level index.

Significant bits in o.

0.537 843 51784. . .
0.538 10328469. . .
0.538 037 608 94. . .
0.5380467137&. . .
0.538 044902 91. . .
0.538 045 18826. . .
0.538 045 13624. ~ .
0.538045 14488. . .
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