Comments

Comments are short papers which comment on papers of other authors previously published in the **Physical Review**. Each Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Comment on "Renormalization-group analysis of the global structure of the period-doubling attractor"

Erik Aurell

Institute of Theoretical Physics, Chalmers University of Technology and University of Göteborg, 412 96 Göteborg, Sweden (Received 9 April 1986)

It is shown how to calculate any generalized fractal dimension of the Feigenbaum attractor from the trajectory scaling function. The Hausdorff dimension is determined.

Bensimon *et al.*¹ have developed a renormalization technique to compute, using universal quantities, the generalized fractal dimensions of the attractor at the accumulation point in period doubling, first calculated by Grassberger.^{2,3} We wish to point out that these numbers can be calculated in a much simpler way using the Feigenbaum trajectory scaling function⁴ and the thermodynamic analogy developed by Vul *et al.*,^{5,6} and we compute one of these dimensions, the Hausdorff dimension. The input in our calculations is Lanford's⁷ high-accuracy approximation to the Feigenbaum function.

The formula for the generalized fractal dimension¹⁻³ D_q , at level N, as a sum over intervals *i*, with lengths l_i and weights p_i

$$\sum_{i=1}^{2^{n}} p_{i}^{q} / l_{i}^{\tau_{q}} = 1; \quad \tau_{q} = (q-1)D_{q}$$
(1)

can, for the period-doubling attractor, be rewritten^{5,6} as

$$\sum_{i=1}^{2^{N}} e^{-\beta W(i)} = 2^{-NF(\beta)} , \qquad (2)$$

where $\beta = -\tau_q$, $F(\beta) = -q$, $p_i = 2^{-N}$ for all intervals on level N and $i = i_1 2^{N-1} + \cdots + i_N$; $i_j = 0, 1$;

$$W(i) = -\ln |l(i_1, \dots, i_N)|$$

$$\approx -\ln |\sigma(i_1, \dots, i_N)\sigma(i_2, \dots, i_N, 0) \dots l_0|.$$
(3)

Here $\sigma(i_1, \ldots, i_N)$ is the Feigenbaum trajectory scaling function with argument $\sigma(i/2^{N+1})^4$. Hence $|\sigma|^\beta$ plays the role of a transfer matrix,⁶ and $F(\beta) = -\ln\lambda(\beta)/\ln 2$, where $\lambda(\beta)$ is the largest eigenvalue of the matrix. The Hausdorff dimension $D_0 = \beta_0$ is defined by $F(\beta_0) = 0$. It is therefore the value of the parameter β for which the largest eigenvalue of the transfer matrix $|\sigma|^\beta$ takes the value 1.

We compute successive approximations to D_0 by increasing the number of significant bits in σ , or, equivalently, by truncating the transfer matrix at higher

orders, and we extract the leading eigenvalue by Gaussian elimination. The results are summarized in Table I.

The deviation in β_0 from the asymptotic value is proportional to the error in σ , and one may show that the error due to not taking the full structure of σ into account goes to zero with level *n* at least as fast as 2^{-n} . In practice the errors are much smaller, the change in β_0 at a given level being roughly -6 times the change in the next. To find a better approximation to the asymptotic value, we apply a series of Shanks transformations.⁸

We have thus the following estimate of the asymptotic value of the Hausdorff dimension of the Feigenbaum attractor: $\beta_0=0.5380451435$ (1). The computation is essentially limited by the finite accuracy in the polynomial expansion of the universal function $g_{pd}(x)$. The errors thus introduced in g_{pd} grow, as many iterates of the function g_{pd} have to be computed to find σ in level *n*, roughly as β^n , where β is a universal constant^{5,9-11} with numerical value ≈ 6.6 . This induces an error in σ roughly ($\beta \alpha_{pd}$)ⁿ where α_{pd} is the Feigenbaum constant. As Lanford's⁷ data are good to one part in 10⁻³⁰ we are limited to something like 15 levels and 15 digits in the calculation of β_0 .

 TABLE I. The approximation to the Hausdorff dimension as a function of level index.

Significant bits in σ	$\beta_0 = D_0$
2	0.537 843 517 84
3	0.538 103 284 69
4	0.538 037 608 94
5	0.53804671378
6	0.538 044 902 91
7	0.538 045 188 26
8	0.538 045 136 24
9	0.538 045 144 88

34 5135

- ¹D. Bensimon, M. H. Jensen, and L. P. Kadanoff, Phys. Rev. A 33, 3622 (1986).
- ²P. Grassberger, J. Stat. Phys. 26, 173 (1981).
- ³P. Grassberger, Phys. Lett. 107A, 101 (1985).
- ⁴M. J. Feigenbaum, Commun. Math. Phys. 77, 65 (1980).
- ⁵E. B. Vul, Ya. G. Sinai, and K. M. Khanin, Uspekhi Mat. Nauk 39, 3 (1984) [Russian Mathematical Surveys 39, 1 (1984)].
- ⁶M. J. Feigenbaum (unpublished).
- ⁷O. E. Lanford III, Bull. Am. Math. Soc. 6, 427 (1982).

- ⁸C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978), Chap. 8, pp. 368-374.
- ⁹J. Crutchfield, M. Nauenberg, and J. Rudnick, Phys. Rev. Lett. 46, 933 (1981).
- ¹⁰B. Shraiman, C. E. Wayne, and P. C. Martin, Phys. Rev. Lett. 46, 935 (1981).
- ¹¹M. J. Feigenbaum and B. Hasslacher, Phys. Rev. Lett. 49, 605 (1982).