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Solution of Percus's equation for the density of hard rods in an external field
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The theory of a one-dimensional fluid of hard rods has received much attention because it often

yields exact results vrhich serve as a guide to understanding the properties of more complicated
fluids. Of particular interest recently has bccn the density distribution of nonuniform fluids in

external potentials or between solid walls. The purpose of this paper is to report an explirit solution

of the nonlinear integral equation derived by Pereus for the density distribution of hard rods.

h(x)=
1 — n (x')dx'

we can transform Eq. (1) to the form

h(x)=e (" "' ')exp — h(x')dx'
X —0'

(2)

(3)

which admits analytical solution for potentials such that

From the work of Percus' and the later work of oth-
ers, ' it follows that the equihbrium density n (x) of hard
rods in an external potential u (x) obeys the nonlinear in-
tegral equation

pp, =pu (x)+inn(x) —ln 1 —f n (x')dx'

8+0
( w)d n

X

where p is chemical potential (relative to a convenient da-
tum), tr the rod length, P= 1/kit 7; ka Boltzmann's con-
stant, and T the absolute temperature.

By introduction of the density functional

e ~"'"'=0, x ~0, x ~I.
=e-'"', O~x ~L, , (4)

l'(x) =h(x)l(x) —l(x +o )h (x +o ),
where l(x}=n (x}/h (x). Equation (4) implies the boun-
dary conditions

h (0}=e@" ~' '}, n (L)=h (L) or 1(L)=1 .

Thus, we can find h (x) by solving a nonlinear first-order
equation and then obtain n (x) as the solution of a linear
flirst-order equatton.

The formal solutions to Eqs. (5) and (6) are

where P(x) is continuous and piecewise differentiable. In
this case h (x}=n (x)=0 for x &0 and x )L.

Equations (2} and (3) can be differentiated and rear-
ranged to yield

h'(x) = —h (x)[pp'(x)+h(x) —h(x —o')]

aQd

X

exp pp(x)+ f h—(x' —o)dx'
Xo

II

[e '/h(xz)]+ f exp —@k(x")+f h(x' o)dx' dx"—
4

X X X

l(x)=l(xa)exp f h(x')dx' —f exp —f h(x')dx' l(x"+o)h(x" +o)dx" .

Beginning at x =0, Eq. (8) can be solved in the successive intervals jcr&x &(j+1)o,j=0, 1,2, . . . . In the interval
O~x ~o, wc obtain

—(X)
hc(x) = e-+'+ "e-&'*'dx'

0

(10)

Then

hj(x) =
exp —(x)+ f h ((x' o)dx'—J—

X X
[e ++~'/h. i(jo)]+ f exp —pp(x")+ f h i(x' o)dx' dx"—
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L —(j+1)o&x &L —jo, j=0, 1,2, . . . . The result is
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lq(x)=exp I h(x')dx', L cJ&—x &L

lj(x) =l i(L —jcr)exp h(x')dx'J J- L —Jcf
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exp — h(x')dx' IJ,(x"+cr)
X
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FIG. 1. Density profiles for L =4o and pp =2 and 4.

j=1,2, . . . . The solution l (x) is then l(x) =lj(x)
L (j +—1)o &x &L jcr, j—=0, 1,2, . . . . The density pro-
file is, of course, given by n (x)=h (x)l(x).

In the case of hard walls, !(}(x)=0, Eqs. (10) and (11)
yields for j=0 the solution

for j=1,2, . . . . The full solution is thus h(x)=hi(x),
jcr&x &(j+I) crj=0, 1,2, . . . . When L is not a multi-
ple of cr, then the last interval is No &x «L, where N is
the divisor of L with a positive remainder less than o.

Equation (9) can be solved in the successive intervals

I

and for j& I

(14)

hj(x) = (x —jo)
ln 1+hj,(jo) x —jo+h i((j —1)o)

0

+h, i((j —2)cr) +

In particular for j= 1 and 2,

(x —jcr) '
h ( }

(x —jcJ)l (x jcr)I+'—
(j—1)! j! (j+1)! (15)

hi(x}= ln 1+ho(cr) x —o+ (x —cr } ePP
2 (16)

Density profiles computed from Eqs. (12)—(15) are
plotted in Fig. 1 for L =4cr and pp, =2 and 4. As expect-
ed the density profile is highly structured, with maxima
and minima that become more exaggerated with increas-
ing Pp. The pressure [PP=n(0)], of course, increases
monotonically with pp.

Percus has given formulas relating the direct correla-
tion functions of all orders to the density distribution.
Thus, the exact solution given here for n(x) provides
direct correlation functions. The importance of exactly
solvable models is that they provide tests and intuition for
the development of approximate theories of more realistic

I

and therefore more complex systems. In a forthcoming
publication we explore density profiles and direct correla-
tion functions for several approximate theories that at-
tempt to model real fluids.
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