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Application of the Sturmian expansion to multiphoton absorption by hydrogen
above the ionization threshold
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The convergence of the Sturmian expansion of the multiphoton matrix element for hydrogen is

accelerated by regularizing, in a convenient way, the outgoing part of the stationary wave of the em-

ergent electron. Some results are presented.

I. INTRODUCTION

Since the Sturmian expansion of the matrix element for
multiphoton ionization of hydrogen diverges for positive
intermediate energies, it is necessary to invoke some tech-
nique to analytically continue from negative to positive
energies. However, numerical difficulties persist in all
such techniques adopted so far, and have limited the ap-
plicability of the Sturmian approach to at most two-
photon absorption above threshold. ' l In two recent pa-
pers~ I developed further insight into the divergence prob-
lems attendant to the Sturmian expansion, and introduced
modifications to alleviate these problems. Here I continue
the study by resolving the most serious of the remaining
numerical difficulties, and report results of calculations of
cross sections for multiphoton ionization of ground-state
hydrogen with up to three photons absorbed above thresh-
old.

The Sturmian functions S„"i(r)=(r
~

S„"i) are defined by
the eigenvalue equation (Ti+ A,„tV)

~
S i)=E

~

S„"i) togeth-
er with the normali*ation (Sn t I

V IS«)=P~t5~ and the
boundary condition that Ski(r) is damped by the factor
exp( kr) for r—- oo, where k=v' 2E. (We us—e atomic
units. ) Here Ti is the radial kinetic energy operator and,
in coordinate space, V= Z/r Fo—r E r.eal and negative
the

~
S~) form a complete set in the space Lt'+' of all

piecewise continuous functions f(r)=(r
~
f) for which

(f
~

V
~ f) is finite and f(r)/r'+' is bounded for r-0.

We allow E to be complex, E=
~

E
~

e'e, with k
=.

~
k

~
e '& and P-=(tr 8)/2. With —gi(E) =1/

(E—Ti —V}, i.e., the radial Green's operator, the matrix
element (a

I g, (E)
I
b) can be expanded in the form"'

« ISnt)(Sni lb)
(a [gt(E) ~b)= g, , (1.1)

n =i+ i nl(~nl

where (a
~
b) =I a(r)b(r)dr. I argued previously that

0
this expansion converges if ~a~) and ~b~) belong to
LID@, where (r ~a~)=(re'~ ~a) and (r

~

b&)=(re't'~ b).
Consider the matrix element for two-photon ionization.
Thus suppose that a (r) is (r times) the radial wave func-
tion of the initial state and that b(r) is (r times) the con-
tinuum radial wave function of the emergent electron.
While a (r) is exponentially damped, and belongs to L irv,
b (r} is a statiotiary wave, consisting of both outgoing and
lllgolllg waves, b (r) alld b (r}, rcspcctlvcly Wc thcl'c.

fore decompose b (r) as b+(r)+b (r); since the two ma-
trix elements resulting from this decomposition are relat-
ed to one another, we need only consider b+(r) For .E
in the up er-half complex plane (0 & P & m./2} both
a~(r)=(re'

~
a) and b& (r)=(re'~

~

b+) are exponentially
damped. However,

b&+
(r) is irregular at the origin, and so

does not belong to L ir i . It is the regularization of b~+ (r)
that we examine in Sec. II. Note that while b~+(r)
remains exponentially damped as E approaches the posi-
tive real axis (from above) ai, (r} does not, and a (ir) does
not belong to L'»l . However, as pointed out earlier, we
can approximate

~

a } to arbitrary accuracy by truncating
the convergent expansion

2 (Ct} '(S."i
I a)VIS."i&

n =1+1
(1.2)

II. REGULARIZATION OF OUTGOING %'AVE

Suppose that P photons are sufficient to ionize the
atom. The matrix element M' ' for N-photon absorption
(N &P) from a hydrogenlike ion can be decomposed as
m'~'=m+'"'+m-'"' ~here

(uKL I rgt„,«tv i} . rgt, «p}r
I
a»

~
a)=gt (Et, , )r rgt (Ei)r

~ u„T) .

(2.1a)

(2.1b)

where ~u„-7) represents the initial state of the electron,
~uKL) and ~uKL, ) are the outgoing and ingoing com-

ponents, respectively, of the state vector of the emergent
electron, the EJ are the intermediate energies, and the 11

the intermediate orbital angular momentum quantum

after a sufficient number of terms; provided we choose tc

so that Re(ne'&) &0 this finite series approximation to
a~(r) will be exponentially damped even for p=tr/2.
turns out that with this replacement for

~
a), the Sturmj-

an expansion of (a
~
gi(E)

~

b+ } converges for real positive
E even without regularization of b+(r). In fact, in our
previous work we did not regularize b+(r). However,
the convergence was rather slow and the expansion is an
alternating series consisting of large terms which cancel in
the sum, so that extended precision is required in the com-
putations. We will see below that these drawbacks are
greatly reduced when b+(r) is regularized.
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numbers. We have u g+g(r) =Nxl. W„„(2Kr), where

W„&(z) is the irregular Whittaker function, v=Z/K, and

p =L +—,; here K= i—+2E&, with EN the (positive) en-

ergy of the emergent electron and L, its orbital angular
momentum quantum number. The normalization is on
the energy scale, with Nxl. the normalization constant.

We replace r
~

(2) by a truncated expansion of the form
displayed in Eq. (1.2), so that

~
a~) belongs to L)/v for

t(=)m/2, where /=lp. For r-0 we have (recall we use
atomic units}

uxL(r)=Nxl. e ' g b r +O(r +'lnr), (2.2a)

( —1) + (2K) (L —m)!
I'(L+1 Z/K—) (L+m)!

and so r ~u)rr, ) does not belong to L)zv, where now
1 =lN i. [Here (a) is the Pochhammer symbol. ] We
introduce a regularized vector

~

u ~+I, ),

I
u xc ) =

I
ua~L, } Nxl. I

(t/'—»
I-2

(r ~it))=e " g c r
m =-L

m+6 (k K)m+6 —P
&rn = bp

(m +L —/2)(

(2.3a)

(2.3b)

(2.3c)

To any particular solution of this equation we can add
a Wzqk i+)q2(2kr), this being an outgoing wave solution to
the homogeneous equation. The constant a is determined
by the behavior of X(r) at r -0. To find a particular solu-
tion we write X(r)=e "f(r); we have

1 d kd 1(/+1) Z '
+)+ r = cmr

2 dr2 dr 2r2 r

where k= i+2EN —
1 and 1=/)() i. (The reason for

choosing the exponent to be k, rather than K, will become
apparent shortly. Were I to set k =K I would obtain
c =b .) For r -0 we have ru i++I (r) =O(r i}, noting that
1 —1 &I., and hence r

~
u + ) belongs to L izv. Therefore

the matrix element M+', obtained by replacing
~ uxor. )

by
~
u z+r ) in Eq. (2.1a), is expected to have a rapidly con-

vergent Sturmian expansion.
We must now take into account the subtraction term

~(!t). We introduce tX)=gI(E„,}r ~|/). With EN, on
the upper edge of the positive real axis, ( r

~
X) is an outgo-

ing wave and behaves as r for r-0 (This can. be seen

by expressing g)(E) in coordinate space in the form of the
product of the regular and irregular Whittaker functions. }
Now (r

~
X) satisfies the differential equation

r

1 d 1(/+1) Z 1+———k X(r) =rP(r) .
dr 2r

f(r)= g f r +'. (2.6a)

I —1

X(r) =am~„,+„2(2kr)+e k' g-f rm+'. (2.7a)

We must choose a so that the terms labeled by
m = —1 —1 through 1 Lcanc—el with the corresponding
terms in the Whittaker function so that X(r) behaves as
r ~ for r-0. In fact, a is fixed by the requirement that
just the m = —1 —1 term cancels,

a= —[(2k)il(2/)l]I (1+1 Z/k)f —I (—-(2 7b)

That further terms cancel with this choice of a, to give
the correct behavior of X(r) for r-0, may be verified
from the recurrence relations (2.61) noting that c =0 for
rn ~ —J.

It follows that2

M+(")=M+(")+(aN /N }M+(~-"
I —]

+N)rL, g f F'" "
m =-I—1

(2.8a)

F' '=(r +'e ""
~
rg(', (E)v 2) . r

~

(2) . (2.81)

This relationship expresses M+' ' in terms of M+' ',
which is easily calculated, and quantities related to an
(N —1)-photon process. The matrix elements M+(+) can
therefore be calculated recursively down to N =8+1. It
is straightforward to calculate the Fm

" recursively us-
ing the same procedure. Thus we introduce

= (((t)
~ g)„ ,(E ) ' ' '

~
), (2.9 )

I' —2
rm+1e —

e k'r y d „m—'+1

Nf =Nf

d =(k' —k) m/(m' —m)!,

(2.91)

(2.9c)

where k'= i+2E~ 2 and—/'=/~ 2 We have . that
rf&(r) behaves as r for r'-0 and it therefore belongs to
L )gv so that F' " can be easily calculated. Following
the same procedure as above, we find that

F(N —1) F (N —1)+(a~ /N )M+(x —2)

Substituting this form into Eq. (2.5) we obtain a re-
currence relation for the coefficients f
—,'[m(m+1) —l(1+1}]f +(—mk+Z)f 1

——c

(2.61)
This recurrence relation can be started at rn =1. Note
that c( 2+0 and that f~ ) is uniquely defined. Also,
since c =0 for m ~ 1—2 and rn & L(—and hence
m & —1 —1) we necessarily have f =0 for m ~ / —1 and
m & —1—1.

The complete solution is

(2.5} F(N —2) (2.10)

The absence of a constant term on the left of this equation
is a cons((xluence of choosing the exponent in p(r) to be k,
rather than E, and it allovrs us to write the particular
sollitloll ill the fornl

= —[(2k') /(2/')!]I (/'+ 1 —Z/k')g $ 1 and
where the gmm satisfy a recurrence relation (in m') simi-
lar to that satisfied by the fm. Knowledge of M+'p' and
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the F' ', which are easily calculated, therefore allows us
to generate all the M+' '.

We finally require M' ' of course. This can be ob-
tained from M+' ' through the relation '

N —P
M'"'= 2 Re[M+'"']—2~i. g Z,'"'M'"-", (2.1 la) g (A) 1300

TABLE II. Generalized cross sections (in units of
em~~sec~ ') for two-, three-, four-, and five-photon ionization
of ground-state hydrogen at wavelengths where the minimum
number of photons required to ionize the atom is two. Square
brackets indicate powers of ten, e.g., 1[5]= 1 X 105.

&'"'=(uxL
I ra„,«w i} ' -' '

xgI„,„«N. +i)—r.I uk„, ,i„,. )'
urer. Ir lu

(2.11b)

(2.1lc)

02
03
0'4

0'g

1.3[—49]
1.4[—83]
1.3[—117]
1.1[—151]

2.9[—50]
5.6[—84)
6.8[—118]
7.9[—152)

1.8[—50]
4.8[—84]
7.4[—118]
1.1[—151)

where k~ = i +2—EJ and where the stationary wave vec-
tor

~
uk i ) represents a photoelectron emerging with ener-

J J
gy EJ. The matrix element J ' can be evaluated by first
using the expansion

n =l&+1

where g and ~ are restricted by the conditions listed in
Eqs. (2.17) of Ref. 4(b). Provided that these conditions
are satisfied, we obtain a convergent expansion of
(ural ~

r rgb (EJ+i)r ~
uk i ) by truncating the expan-

sion of Eq. (2.12) and using the Sturmian expansions of
the Green's functions together with the procedure, out-
lined above, for regularizing

~
uxL, ).

III. APPLICATION

The exponent ~ which appears in the truncated expan-
sion of

~

a)—see Eqs. (1.2) and (2.1b)—was chosen to
have the form a =ykr i+5k&, with y and 5 in the range
[0,1]. The coefficients y and 5 were, in fact, chosen
empirically at each wavelength to achieve good conver-
gence while keeping the number of terms in the expansion
of

) a) small (typically ten).
The exponents g and ~ in the truncated expansion of

~
uk. )—see Eq. (2.12)—were chosen to have the form

J

g=g(kj+kj+i),
with g and g real and positive. Note that here g and a are
pure imaginary (and differ from the choice made in Ref.
4). In most cases we chose g= —,

' so that both inequalities
(2.17a} and (2.17c) in Ref. 4(b} were satisfied. The coeffi-
cient rl can be chosen so that a —g'=k~+i,' this particular
choice results in a considerable simplification in the

TABLE I. Generalized cross sections for one-, two-, three-„
and four-photon ionization of ground-state hydrogen by circu-
larly polarized light at various wavelengths A,. Units of cr~ are
cm sec '. Square brackets indicate powers of ten, e.g.,
1[5]=1X10'.

evaluation of the integral

and in fact leads to I„„vanishing for n'& n +2. Howev-
er, it is not always advantageous to choose x —g=kz+i
since, with this choice,

~ I„„~ can for some wavelengths
become very large for n ~~1, and this results in extensive
cancellation elsewhere in the sum. [The principal source
of cancellation throughout the calculation is the subtrac-
tion indicated in Eq. (2.3a), which arises in the regulariza-
tion process. ] Typically we chose q to be between 1.5 and
3, which in most cases limited I„„to reasonable values;
note that I„„decreases with increasing i} and is zero for
g-00. However, occasionally, in order to restrict the
magnitude of I„„,it was necessary to choose g» —,'; with

larger values of g, inequality (2.17a) in Ref. 4(b) is satis-
fied by a wider margin but inequality (2.17c) is then
violated, and this slows down (but does not destroy) the
convergence of the Sturmian expansions of the Green's
functions in the matrix elements J

In Tables I and II I present results of calculations of the
generalized cross section cr~ for X-photon ionization of
ground-state hydrogen by circularly polarized light. All
computations were done without using extended precision
(only 16 significant figures were retained in the computa-
tions}. The convergence of all intermediate sums was
rather fast; in most cases it was unnecessary to retain
more than 30 terms in any sum, although in the evalua-
tion of the matrix elements J ' it was sometimes neces-
sary to include up to 50 terms in some sums. The results
for o3 in Table I agree (to the two figures presented} with
those of Klarsfeld and Maquet and Aymar and Crance,
where comparison is possible. At high energies Q, &500
A) or near threshold (e.g., A, -900 A) it is necessary, for
X—P =3, to use extended precision in the computation;
this increases the computation time significantly. For
X—P & 4 or X~ P ~ 2 it is necessary to use extended pre-
cision at all wavelengths. We have not performed calcula-
tions for ionization of excited states, but we do not antici-
pate difficulties for I' = 1 and N & 2 or perhaps 3, and for
excited states with principal quantum numbers & 10.
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