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The shifted 1/N expansion has been used for solving the Schrodinger equation for exponential
cosine screened Coulomb potential. The analytic expressions for the energies E„I yield fairly accu-
rate results for a wide range of values of n, l and the screening parameter A,. The energy values ob-
tained by this method have been compared and found to be in excellent agreement vrith the Pade-
approximation calculations.

I. INTRODUCTION

Recently, the shifted 1/N expansion has emerged as an
extremely powerful technique for determining energy
eigenvalues of the Schrodinger equation with fairly good
accuracy. ' s The shifted 1/N expansion differs from the
ordinary large-N expansion4 in the expression for the ex-
pansion parameter. In the former case the expansion pa-
rameter is 1/k where k ~N+21 —a, whereas in the latter
case it is 1/k where k =N+21, N being the number of
spatial dimensions, 1(l +N —2)i}1 the eigenvalue of the
square of the N-dimensional orbital angular momentum,
and a the shift chosen by requiring agreement between the
1/k expansions and the exact analytic results for the har-
monic oscillator and Coulomb potentials. '

One palpable advantage of choosing 1/k as an expan-
sion parameter is that unlike the ordinary Rayleigh-
Schrodinger perturbation theory which requires an expan-
sion in powers of the coupling constant, the shifted 1/N
techmque can be used for problems which do not mani-
festly involve a small coupling constant. Hence, one is
not restricted only to those problems in which the Hamil-

tonian is the sum of two terms —one of which is solvable
and the other is small enough to be treated as a perturba-
tion.

In the present work, we shall show that the shifted 1/N
expansion provides remarkably accurate and simple ana-
lytic expressions for the energy eigenvalues of the
Schrodinger equation with the exponential-cosine screened
Coulomb potential (ECSC), i.e.,

V(r)= ——e ""cos()l,r) .
r

This potential has received much attention in recent
years' " because of its frequent occurrence in solid-state
physics

II. THE METHOD AND CALCULATIONS

The radial Schrodinger equation in N spatial dimen-
sions in terms of the shifted variable k =N+21 —a is

A'2 d2 k 2[1—(1—a)/k][1 —(3—a)/k]i}1
2m dry Smr

where V (r) is given by Eq. (1)
In order to get uMful results from a 1/k expansion, the large-E limit of the potential should be suitably defined.

Since the angular momentum barrier term behaves like k 2 at large k, so should the potential V(r). This will give an ef-
fective potential which does not vary with k at large values of k, resulting in a sensible zeroth-order classical result.
Hence, we consider the following equation:

R2 d P(r) k 2 f2[1—(1—a)/k]f 1 —(3—a)/k] V(r)
dr Smr

where Q is a constant to be specified later.
The shifted 1/N expansion method consists in solving

Eq. (3) systematically in terms of the expansion parameter
1/k. The leading contribution to the energy comes from
the effective potential

V.ff(r) =
2 +fP U(r)

(4)
Smr

4mroV'(ro)=Pi Q „ (5)

where ro is the root of the equation

Now it is assumed that V(r) is sufficiently well
behaved so that V,z(r) has a minimum at r =ro and there
are well defined bound states. Then the following rela-
tionship is valid:
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1/2
ro V"(ro)

%+21—2+(2n+1) 3+
r 1/2
4mroV'(ro)

(6)

The shift a is chosen so that this contribution vanishes.
Therefore

a =2—2(2n + 1)mao/A' . (9)

The successive contributions to the energy are deter-
IQined by substituting

Once ro is determined, the leading term in E is given
by k 1/2

x= (r —ro) (10)

k ' 6 roV«o}
k V,rr(ro) =

r02 Sm

The next contribution is of order k and is given by

(n +T)Rco-k i (2—a)h

~o
' 4m

in Eq. (3) and expanding about x =0 in powers of x.
Since the algorithm for the shifted 1/N expansions has
been developed previously, we present here only the
essential steps.

The energy eigenvalues are given by an expansion in
powers of 1/k where k =%+21—a as

r KV(ro} p"' p"'
+ + +, +0

Sm g k k

where

1
[e /+ 6(1+2n)eieq+ (11+30n +30n 2)eq],

P' '=(1+2n)52+3(1+2n+2n )54+5(3+Sn+6n +4n )56

[(1+2n)e 2+12(l+2n+2n e}'z e4+2( 21 +59n+51 n+34n )e 4+2'&5&

+6(1+2n)e&53+30(1+2n+2n )e,5 3+6(1 +2n) e53& +2(11 +30n+30n )e353

+10(13+40n+42n'+28n')eA]+, [~ ie2+36(1+2n)&i&2e3(~)'
+8(1l+30n +30n )eqe3

+24(1+ 2n)e fe4+ 8(31+78n +78n 2)e ieqe4'

+12(57+189n+225n 3+150n')e 3m~]

1

(~)'3 [Se ~e3+108(1+2n)F~F'3+48(11+30n +30n )e)e 3+30(31+109n+141n +94n )E 3],

(2m')/A}I~ (2m')/fi}I~

(13)

(14)

and where

(15}

ro V'"(ro }

2m 6Q
(18)

(2—a)fi
2'
3A (2—a)

4m
(17)

Sm 24Q

(1—a)(3—a)fP
5(———

4m

(19)
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FIG. 1. The ground state (1si energy as a function of the screening parameter A,. The solid iine corresponds to the shifted 1/E ex-

pansion and the ~bshed hne corresponds to the Pade-approximation energies. The energies are given in atomic units.
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FIG. 2. The percent error in the shifted 1/N expansion for the ground state (1s) energy vs A,. The curve indicated by I. corre-
sponds to the leading-order energy values. The curve indicated by 1st (2nd) corresponds to the leading order plus one (two} correc-
tions.

TABLE II. Energy eigenvalues for the 2s and 2p states in
atomic units.

E (Pade)

0.06
0.08
0.1

0.2
0.3
0.4
0.5
0.6
0.7

—0.440201
—0.420466
—0.400 891
—0.306416
—0.219751
—0.143455
—0.080 546
—0.036 561
—0.026 375 0

—0.440201
—0.420464
—0.400 885
—0.306 335
—0.219416
—0.142439
—0.077 680
—0.028 244
—0.000 168

TABLE I. Energy eigenvalues for the 1s state in atomic
Units.

E (Present) 0.02 2s
0.02 2p
0.04 2s
0.04 2p
0.06 2s
0.06 2p
0.08 2s
0.08 2p
0.10 2s
0.10 2p
0.15 2s

E (Present)

—0.105 103
—0.105074
—0.085 762
—0.085 560
—0.067 388
—0.066783
—0.050288
—0.049014
—0.034 721
—0.032 509
—0.004 561

E (Pade)

—0.105 104
—0.105 075
—0.085 769
—0.085 591
—0.067421
—0.066778
—0.050387
—0.048 997
—0.034941
—0.032469
—0.005 250
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TABLE III. Energy eigenvalues for the 3s, 3p, and 3d states
in atoImc units.

TABLE IV. Energy eigenvalues for the 4s, 4p, 4d, and 4f
states in atomic units.

0.02 3s
0.02 3p
0.02 3d
0.04 3s
0.04 3p
0.04 3d
0.05 3s
0.05 3p
0.05 3d
0,06 3s
0.06 3p
0,06 3d
0.07 3s

—0.036016
—0.035 966
—0.035 850
—0.018702
—0.018430
—0.017685
—0.011316
—0.010879
—0.009 563
—0.005013
—0.004 387
—0.002 324
—0.000086

E (Pade)

—0.036025
—0.035 968
—0.035 851
—0.018823
—0.018453
—0.017682
—0.011576
—0.010929
—0.009 555
—0.005 461
—0.004471
—0.002 308
—0.000740

0.01 4s
0.01 4p
0.01 4d
0.01 4f
0.02 4s
0.02 4p
0.02 4d
0.02 4f
0.03 4s
0.03 4p
0.03 4d
0.03 4f
0.04 4s

E (Present)

—0.021 433
—0.021422
—0.021 397
—0.021 357
—0.012 517
—0.012465
—0.012 306
—0.012038
—0.005 052
—0.004947
—0.004 523
—0.003 750
—0.000342

E (Pade)

—0.021 438
—0.021 424
—0.021 398
—0.021 358
—0.012 572
—0.012486
—0.012 310
—0.012038
—0.005 270
—0.004033
—0.004 539
—0.003 748
—0.000 119

3( 1 —a)(3—a)i)t

Sm

(2—a)A
53 ——

5(2—a)i)I
54 ———

4m

roI""'«o)
4m 120Q

roI" '(ro)

Sm 720Q

(21)

(22)

(24)

rn. RESULTS

For any given choice of n and I, Eq. (6) becomes a tran-
scendental equation which can be solved numerically to
obtain ro. Substitution of ro into Eqs. (5) and (11)—(25)
immediately gives the energy eigenvalues. In all our cal-
culations, we have used atomic units so that fi= m =1.

We list our energy values for various states in Tables
I—IV and compare them with the Pade-approximation
calculations. s The variation of the ground state (ls) ener-

gy with the screening parameter A, is shown in Fig. 1.
Also, to see how closely our results agree with the Pade-
approximation calculation we have plotted the percent er-
ror of our results (for the ls state) in the region A, &0.5.
It is clear from Fig. 2, that for A, & 0.4, the successive con-
tributions from the perturbation series are substantial and
one needs to consider higher-order terms in 1/k expansion
to get better accuracy. In this context it has to be kept in
mind that the shift a is chosen in such a way so as to
reproduce the exact analytic results for the Coulomb po-
tential. ' Consequently, the energy values we have ob-
tained are especially accurate for small A, . However, as is
evident from Table I, the shifted 1/N expansion, to the
order considered here, still predicts that the ls state for A,

as large as 0.7 is a bound state, which the ordinary pertur-
bation theory does not.
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