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We consider several aspects of the irreversible deposition of particles on surfaces. We show by
direct numerical simulation that the we11-known "tangent rule" for the orientation of the columnar

microstructure is only qualitatively correct. We demonstrate that the interface width of the deposit
for normal incidence scales according to the hypothesis of Family and Vicsek. This means that the
width scales as K for short times and I for the steady state where K is the mean height and i the

width. We find by simulation v 3,a= 2 in two dimensions (20) and v= 4,a=—, in 30. We give

an analytic treatment which maps the problem onto a spin model. We find v= 3,z=. z for 20 in

agreement with our simulations but v=O, u=0 for 30.

I. INTRODUCTION

In recent years considerable interest has developed in
the formation of random structures under nonequihbrium
conditions. Much of our understanding of the geometry
of these structures and its relationship to their formation
mechanism has come from the study of simple models by
means of both computer simulation and theoretical
methods. One of the most fundamental of these models is
the ballistic-aggregation model in which particles are add-
ed to a growing structure via linear (ballistic) trajectories.
Other simple models which have been studied intensively
include the Eden' model, diffusion-limited aggregations
(DLA), and diffusion-limited cluster-cluster aggrega-
tion. ' Each of these models was originally developed to
explore cluster growth and later modified to study growth
from surfaces.

The ballistic aggregation model was first developed by
Voids and Sutherland6 in order to develop a better under-
standing of colloidal aggregation. In this model particles
are added one at a time to a growing cluster or aggregate
of particles using linear trajectories which have randomly
selected positions and directions. In the most extensively
studied version of this model the particles are hyperspher-
ical and all of the same size. This model leads to clusters
with a complex porous structure which has sometimes
been described in terms of a fractal dimensionality (D)
which is smaller than the Euclidean dimensionality (d) of
the space in which the simulation is carried out. Howev-
er, based on recent larger-scale computer simulation, s '

and theoretical arguments' a consensus that the fractal
dimensionality of ballistic aggregates is equal to their Eu-
clidean dimensionality has now developed. This means
that the internal structure of ballistic aggregates is uni-
forin on all but short-length scales. Balhstic addition of

particles to a growing cluster does not provide a realistic
model for colloidal aggregation. However, this model did
provide an important step towards the development of
more successful models for colloidal aggregation. ' ""

Although Void' did study the deposition of particles
onto surfaces, most of the early work on ballistic aggrega-
tion was concerned with cluster formation. More recently
the development of processes for the manufacture of opti-
cal and electronic devices using vapor deposition has
stimulated interest in ballistic deposition onto surfaces.
One of the main objectives of this work has been to
develop a better understanding and control over the
characteristic columnar morphology' '9 which is associ-
ated with vapor-deposition processes. This columnar
morphology is observed in both two-dimensional (2D) and
30 computer simulations and experiments and is most
distinctive when the particles are all added via ballistic
trajectories from the same direction with a large angle of
incidence (u). In both the experiments and computer
simulations it is found that the angle (P) between the
growth direction of the columns and the normal to the
surface is smaller than the angle of incidence. From care-
ful measurements made on vapor-deposited aluminum
films Nieuwenheuzen and Hannstra' found that the angle
of growth (P) is empirically related to the angle of in-
cidence (a) by

tan(P) = —,
' tan(a) .

This relationship, known as the "tangent rule, "was inves-
tigated further by Leamy and Dirks' using vapor-
deposited and sputter-deposited rare-earth-metal
—transition-metal thin films. The result obtained by
Leamy and Dirks was found, by them, to be consistent
with the tangent rule and with 20 and 30 computer simu-
lations. ' ' ' %bile the tangent rule can be supported by
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where h; is the height of the active zone at the position of
the ith site on the original surface and h is the mean
height of the active zone. They found that the depen-
dence of g' on h and I could be expressed in terms of the
scaling relationship

g'- I~f(h l1"), (3)

where the scahng function f(x) has the pmperties

f ( x)=const for large x and f(x)-x" (v=a/y ) for smaB
x. This means that for small heights (h « I) g'-h " and
for large heights (h &~I") g'-I . From their numerical
results Family and Vicsek found that a=0.42+0.03 and
v =0.30+0.02.

It has recently been shown that the width of the active
zone~6 for the 2D Eden model with strip geometry can be
described by the same scaling form [Eq. (3)] as the
balhstic-deposition model with scahng exponents (a and

y) which seem to be approximately equal for both
models. ' Recently Kardar, ParIsl, and Zhang have
proposed a model for the evolution of the active zone for
both the Eden groMh and ballistic-deposition processes.

simple arguments based on the idea of shadowing, ~i'zi it
has not been thoroughly tested using large-scale simula-
tions or established on a rigorous theoretical basis. A
mean-field theory of balhstic aggregation has been
developedii based on the tangent rule. This theory suc-
cessfully reproduces many of the qualitative features seenI both computer s1HlulatIons and vapor-deposition exper-
iments.

The universality of the tangent rule has been questioned
on the basis of both experimental studies (see, for exam-
ple, Refs. 24 and 2S) and more elaborate and realistic
computer models. ' In this paper we show that the
tangent rule is not quantitatively correct even for the most
simple off-lattice 2D models for ballistic deposition.

The ballistic-deposition model can be simphfied consid-
erably by confining the particles to sites on a square (or
cubic) lattice. The particles then follow trajectories which
are normal to the surface and stick permanently when
they reach an unoccupied site which is "adjacent" (the
term adjacent will be precisely defined later) to an occu-
pied site. Since it is necessary to know only the maximutn
height at which sticking can occur for each of the original
surface sites this model can be made very efficient and
structures containing more than 10 occupied sites can be
generated in both two and three dimensions.

Like the off-lattice models these on-lattice ballistic-
aggregation (or deposition) models generate porous struc-
tures which are uniform on all but short-length scales.
However, the active zone (sites at which further growth
can occur) exhibits nontrivial sealing behavior. The active
zone for two-dimensional square-lattice ballistic deposi-
tion was first investigated by Family and Vicsek using
deposits grown to a mean height h on strips of width I
with periodic boundary conditions in the lateral direction.
Family and Vicsek measured the "width of the active
zone" (f) defined by

A Langevin equation is proposed for the local growth of
the active zone which leads to the result a = —,

' and y = 1.S
which are consistent with available computer simulation
results for both models if the possibility of significant
corrections to scaling in the computer simulation results
are taken into account. Even for very simple models such
as Eden growth and ballistic aggregation, corrections to
the asymptotic scaling behavior can be important and
have frequently led to erroneous interpretations of com-
puter simulation results. One of the main objectives of
the work reported in this paper is to test these ideas using
large-scale simulations of ballistic deposition.

If the active zone for ballistic aggregation were a self-
similar fractal we would expect to find step sizes in the
height of the active zone {5h;=

~
h; h;+—i ~

) which could
take on arbitrarily large values (for sufficiently large
values of h and I). Instead we find that the distribution
of step sizes (5h) is an exponentially decaying function of
5h so that the large step sizes are extremely improbable.
In fact, we shall show the step size to be bounded. This
means that the active zone of ballistic aggregates should
be described in terms of self-affine rather than self-similar
fractal geometry. 7'i ' However, in preference to becom-
ing involved in the niceties and possible controversy of
precise terminology we will simply describe what quanti-
ties have been measured and what has been found con-
cerning their scahng behavior.

Because of the possible significance of the distribution
of step sizes we have also investigated a 2D model in
which all the 5h values are restricted to a constant value
of 1.0. In this model we start with a "surface" which has
a height of 0 at odd values of i (the index describing the
position along the surface) and 1 at even values of i Sur-.
face sites are then selected randomly and the height is in-
cremented by two lattice units if and only if the height of
both of the next-nearest neighbors is greater than that of
the randomly selected site (i.e., if h;+ &

—h; = 1 and
h; i

—h; =1}. The extension to 3D is straightforward.
The active zone for this model exhibits the scaling
behavior given in Eq. (3}with numerical values for the ex-
ponents a and y very close to those predicted by Kardar
et al. 2 In this paper we show how this modified
ballistic-deposition model can be mapped onto a spin ex-
change model and derive values for the exponents a and y
which are in good agreement with the theoretical results
of Kardar et al. and with our simulations. In contrast, in
3D our analytic results from the spin exchange model do
not agree with simulations or with Ref. 32. {However,
Ref. 32 does not agree with our simulations either. The
situation in 3D is, at the moment, very puzzhng. )

II. SIMULATION METHODS

Efficient computer algorithms for the simulation of
off-lattice ballistic aggregation have been described previ-
ously. For the purposes of the work described in this pa-
per these algorithms were modified to simulate ballistic
deposition in strip geometry with periodic boundary con-
ditions. Particles are started at randomly selected posi-
tions at a height of hm, „+1particle diameters from the
original surface (h,

„

is the maximum height for the
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center of any particle in the deposit which has already
grown on the surface). The particles then follow a linear
trajectory with a prescribed angle of incidence until they
contact either a particle in the deposit or reach the origi-
nal surface. The particles are stopped at the point where
they first make contact and become part of the growing
deposit. Most of our 2D simulations using this model
were carried out using double-precision arithmetic with a
"surface" either 2000 or 4000 particle diameters long (de-
pending on the angle of incidence} and 200000 particles
(disks of unit diameter) were added. Except for very large
angles of incidence these simulations required less than —,

h of CPU time on a VAX 8600 computer.
Figure 1 shows an early stage in a 2D simulation of

ballistic deposition carried out using the lattice model.
Similar models have been described previously ' and only
a brief discussion is given here. The sites occupied by the
original surface and sites which have already been occu-
pied are indicated as shaded lattice sites. In this particu-
lar model, the adjacent unoccupied sites are those which
are nearest neighbors to an occupied site and which
comprise the active zone (those at the largest height for
each position measured along the original. surface}. They
are indicated by a cross (X). This model will be referred
to as the nearest-neighbor or NN model. If the next site
to be occupied (a site selected at random from those in the
active zone} is the one indicated by a circle as well as a
cross, then the new active zone sites are those indicated by
a circle only. It should be noted that there are always 1

sites in the active zone and that at most, three active zone
sites need to be updated after each growth event. Since we
need to record only the height of each of the l sites in the
active zone, this algorithm is fast and requires relatively
little information storage. Using a relatively inefficient
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FIG. 2. Schematic representation of a small-scale simulation
carried out using the single-step ballistic-deposition model on a
square lattice. The sites are labeled in the same way as those in

Fig. 1.

random number generator, deposits can be grown (and
analyzed} at a rate of about 45000 sites per second on an
IBM 3081 computer.

%e have also carried out simulations with a second ver-
sion of this model in which adjacent sites include both
nearest-neighbor and next-nearest-neighbor sites. This
model will be referred to as the next-nearest-neighbor or
NNN model. Extension of these models to higher dimen-
sions is quite straightforward; we will present results ob-
tained only for the three-dimensional NN model.

Figure 2 shows the "single step" ballistic-deposition
model. In this model two sites are added at a randomly
selected active site, defined such that the height of the
deposit is greater at the two neighboring positions (i.e.,
h;+; ~h; and h;; &h;). The simulation starts off with
sites of odd index (i) having a height of 0 and those of
even index having a height of 1. At this stage there are
il2 sites in the active zone. This is the maximum number
of sites in the active zone and in general there are consid-
erably fewer (Fig. 2). In this model, the height of the
deposit at the ith position always differs from the height
of its nearest neighbors by exactly one lattice unit

~
h; —h;+I

~

= l. In 3D we have the same condition with
its four next-nearest neighbors. As in our other ballistic-
deposition models periodic boundary conditions are used
in the lateral directions. In order to improve the efficien-
cy of the program a list of active zone site positions is
maintained and updated as the simulation proceeds.

III. RESULTS

FIG. 1. Schematic representation of a small-scale simulation
of ballistic deposition onto a line using a square lattice. Sites oc-
cupied by the original surface and the growing deposit are shad-
ed and the sites in the active zones are indicated by crosses.
Periodic boundary conditions are used in these simulations and
are explicitly shown in the figure. If the site indicated by a
cross and a circle is the next to be occupied the two sites indicat-
ed by circles alone become new active zone sites and the old ac-
tive zone sites at the same position (but lower height) disappear
from the active zone.

A. Tangent rule
for 20 off-lattice ballistic deposition

Figure 3 shows the results of a relatively small-scale
simulation of 2D off-lattice ballistic deposition using a
fixed angle of incidence (a =67.5') for all of the particles.
In this figure the inward pointing arrow indicates the
direction of the ballistic trajectories and the outward
pointing arrow indicates the angle of growth (P) predicted
by the tangent rule [Eq. (1)). A distinct columnar mor-
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FIG. 3. Results from a small-scale simulation of 20 off-

lattice balhstic deposition with an angle of incidence of 67.5. In-
ward pointing arrow indicates the direction of the incoming par-
ticles and the outward pointing arrow indicates the angle of
growth predicted by the tangent rule. At this angle of incidence
agreement with the tangent rule is quite good but this agreement
is not exact and must be regarded as accidental.

phology can be seen in this figure and the direction of
growth of columns is qualitatively consistent with the
tangent rule.

In off-lattice ballistic depesition the incoming particles
make contact with only one particle in the deposit (or
with the original surface) and the deposit can be can-
sidered to consist of "trees" of connected particles with a
"root'" at the surface. For large angles of incidence these
trees may be identified with the columns. In the larger-
scale (200000 particle) simulations the qmmtities
&x; —xtp& and &y; —y;o& were determined for each 2000
particles added. Here x; and y; are the coordinates of the
ith particle. x;e and y;e are the coordinates of the first
particle to be added to the tree containing the ith particle
(i.e., the coordinates of the root of the tree) For e.ach

0.48 ~

0 10 RO 50 40 50 80 70 80 90 100
INlROQO

FIG. 4. Dependence of the ratio R = (yi y—io) /(»i »—io) on
the deposit mass for a 20 off-lattice simulation of deposition
onto a line of length 2000 particle diameters using a fixed angle
of incidence of 80'.

group of 2000 particles the quantity R given by

R =&y; —y;o&/&» —xic&

was determined. Typical results for an angle of incidence
of 80' are shown in Fig. 4. Note that R approaches a con-
stant for large deposits and its value, R, estimated by
averaging over the last 100000 particles added. The angle
of growth for the trees (which can be identified with the
angle of growth for the columns at large angles of in-
cidence is giveil by

P'=tan '[(R) '] . (5)

We have also measured a second angle using the quanti-

S=&y; —y &/&x; —xt, &,

where x„andyz are the coordinates of the particle in the
deposit to which the ith particle becomes attached. The
angle given by

8=tan '[(S) 'j

is called the angle of attachment.
Table I shows the results obtained for both these angles

TABLE I. Some results obtained from two-dimensional simulations of ballistic deposition with a
constant angle of Incidence.

Angle of
incidence

(~)
Cdeg)

10
20
30
40
50
55
60
65
70
75
80
85
87.5

Mean angle of
tree growth

(deg)

11.5S
16.17
23.94
31.02
39.46
43.91
47.13
51.24
55.46
59A4
63.93
69.00
71A7

Tangent rule
prediction

(deg)

5.04
10.31
16.10
22.76
30.79
35.53
40.89
47.00
53.95
61.81
70.57
80.08
85.0

—1.55
3.83
6.06
8.98

10.S4
11.09
12.87
13.76
14.54
15.56
16.07
16.00
16.03

Mean angle
of attachment

(deg}

9.11
18.67
27.90
36.92
46.72
51.16
55.65
60.33
65.53
69.74
74.36
79.98
82.53
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22.5'

FIG. 5. Results of a small-scale off-lattice simulation of 2D
ballistic deposition with an angle of incidence (inward pointing
arrow) of 22.5. Direction of growth predicted by the tangent
rule is indicated by the outward pointing arrow.

for various angles of incidence. At large angles of in-
cidence, where the definition of the direction of columnar
growth is unambiguous and coincides with the direction
of tree growth, the deviation from the tangent rule is quite
strong. A better empirical rule seelns to be

(8)

where C is a constant angle of approximately 16'. At
smaller angles of incidence the definition of the angle of
growth becomes quite ambiguous and there seem to be
two angles which can be associated with the morphology
(Fig. 5). We have tried (so far unsuccessfully} to develop
(nonvisual} methods that determine the angle of growth at
small angles of incidence. In any event our results indi-
cate that 2D simulations of ballistic deposition are not
consistent with the tangent rule. Although we have not
carried out 3D off-lattice simulations it seems most prob-
able that similar results will be found. Consequently, we
conclude that the success of the tangent rule in predicting
the morphology of a large range of real systems cannot be
explained in terms of simple models for ballistic deposi-
tion. It also seems most probable that the tangent rule is
not a universal rule for vapor-deposition processes.

B. Scaling of the interface
for 20 square lattice simulations

In order to estimate values for the exponents a and y
[Eq. (3)], simulations were carried out on a square lattice
eath particles sticking at nearest-neighbor positions only.
The exponent v was first obtained using very wide strips
(2' sites long) on which particles were deposited until a
mean height (h ) of 5000 lattice units was reached.

At this stage each deposit contains about 6& 10 occu-
pied sites. Figure 6 shows a section taken from the sur-
face of one of these deposits. Unlike real surfaces gen-
erated by ballistic deposition which look like the head of a
cauliflower and have a noticeable anisotropy, the surface
shown in Fig. 6 does not appear to be anisotropic. How-

I 0 000 LATTICE UNITS

FIG. 6. Section from the surface of a 2D square-lattice de-

posit gro~n to a height of 5000 lattice units on a base 2" lattice
units long.

ever, we have not made a quantitative study of this aspect
of the surface structure.

For active zones with a mean height in the range
50 & h & 500 lattice units we find that the exponent v has
an effective value of 0.331+0.006 and for active zone
heights in the range 500 & /i & 5000 we find
v=0. 308+0.011. The range of uncertainty given here
and elsewhere in this paper represents the 95go confidence
limit. The value obtained for v is in good agreement with

the result obtained by Family and Vicsek (0.30+0.2)

from smaller-scale simulations and is also in good agree-

ment with the results obtained by Meakin, Jullien, and

Botet (v=0.307+0.007) from large-scale simulations us-

ing version C of the Eden model. Since the structure
generated by ballistic models is uniform on all but short-

length scales, we have M-/i and Eq. (3) can be rewritten

where M is the deposit mass (number of occupied»tes).
If the argument of the scaling function, f(x), is small we

expect to find f(x)-x~ with v'=a'/y'. Since h -M we

expect that a'=a, y'=y, and v'=v. A direct measure-

ment of the effective value of v' from the dependence of g
on M gives v'=0. 307+0.013 for 6 X 10 & M & 6 X 10 and
v' =0.335+0.006 for 6X 10 & M & 6X 10 deposited sites.

To obtain an estimate for the value of the exponent a,
Eq. (3), deposits have been grown on strips of width /

(/=16—2048 lattice units). For / &512 deposits have

been grown to a height much greater than /r (a conserva-
tive estimate of —,

' for the value of y was used) and the

dependence of the width of the active zone, g, on / was
determined only for deposit heights greater than 20/".
For 1=1024 and 2048 this procedure was not possible
and the width of the active zone ($0) was determined by
fltting the dependence of g on M by a function of the

)=go(1+AM ) .

In this equation g is the measured width of the active
zone and go is the asymptotic (M~ao} value for the
width of the active zone if Eq. (10) correctly represents
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TABLE II. Width of the active zone ((0) in the limit h » I"
for strips of width I. The results shown in this table were ob-

tained on a square lattice for the NN model.

220000—

i 1 1 i I l I i l i I I I i I I I i i

0.236 81+0.000 16
1.919620.0006
2.8878+0.0016
4.061+0.005
5.652%0.015
7.83+0.05

10.85+0.20
14.84+0. 15
21.28

140000 )

IOO000 I i I i i I I i i i i i I I I I I I t

0 10 20 50 40 50 60 70 80 90 100
h

FIG. 8, Dependence of the sum of the step heights (ddt) on
the mean surface height (K) for s 2D square-lattice simulation
carried out using .the NN model with a base 2"(262144) lattice
units wide.

the form of the finite-size correction. For I = 1024 the re-

sults from six deposits (M=SXIOs, SXIOs, 3XIOs,
3X10, 3.75X10, and 4.4X10) were used and for
I =2048 the results from four deposits (M=SXIOs,
2.8X10, 3.2X10, and 4X10) were used. Table 11
shows the dependence of the width of the active zone (gc)
on l.

The dependence of the width of the active zone (gu) on
the strip width (I) is shown in Figs. 7(a) and 7(b). In Fig.
7(a) the results of an attempt to fit the dependence of
In(g'c) on In(l) using a straight line (with a ruler) is shown

go NH QNLY

and in Fig. 7(b) the results of a nonlinear least-squares fit-
ting to a function of the form

go ——ali'(1+Sly' )

is shown. Taken together these results indicate that the
asymptotic dependence of gc on I can be expressed as
gc-I where the exponent a has a value of about 0.47.
This value is much closer to the theoretical valuei of 0.5
than the result a=0.42+0.03 obtained by Family and
Vicsek.

A quantity which is of interest in understanding the na-
ture of the surface of ballistic aggregates is the distribu-
tion of step heights, 5h, in the active zone, where
5h;=

~
h; —h;+i ~. In Fig. 8 we consider the sum of the

step heights (ddI) defined by

~II= go~, . (12)

1.0-
0.5 ~~
00 a i

P,.O 2.5 5.0

LOPK ~ 04?5

5.5 4.0 4.5 50 5.5 6:0 6.5 TO 7.5 80
Ln (L)

The length of the interface in an L' metric is ddt+I.
This quantity might depend on the mean height of the ac-
tive zone (Ii ) given by

I
1'i= g h; I .
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FIG. 7. (a) Dependence of the saturated ()i~ aa) width of the
active zone (g'0) on the strip width / from 2D simulation of
ballistjc deposition on a square lattice. (b) Result of an attempt
to fit this dependence by a function of the form

go
——Al "(I +Bl").

12

~10
40

8

6

2
0 10

FIG. 9. Distribution of step heights, X(5A,M), for 2D
square-lattice deposits of various masses, M, grown using the
NN model using a substrate 2'~ lattice units long.
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TABLE 111. Dependence of the width of the active zone (go)

on the strip width (l) in the limit K ~~1'~' for the NNN model.

I ) I [ f

8
16
32
64

128
256
512

1024
2048

1.840 96+0.00046
3.1411+0.0009
4.6354+0.0023
6.4727+0.0068
8.860+0.024

12.148+0.042
16.609+0.070
22.40
30.69

l4

40 ~~

~)QX

8

20 5 10 15 20 25 50 55 40 45 50 55 60 65 10 75 80
Sh

FIG. 10. Limiting (K~ ao) step height distribution obtained

from 2D simulations carried out on a square-lattice strip 2048
lattice units wide using the NNN model.

The results shown in Fig. 8 are from a single simulation
with a strip width (l} of 2' . They show that ddt at first
increases rapidly with increasing deposit thickness (h } but
soon approaches a limiting value. Least-squares fitting
straight lines to the dependence of ln(~) on ln(h) for
deposit heights in the range 500&h &5000 lattice units
for five simulations gives a value for the effective ex-
ponent il, defined by

of 0.00278+0.00024 indicating that btl becomes in-

dependent of h. For deposit heights in the range
2500—5000 lattice units b,H /l has the value of
1.13600+0.00005. Thus the length of the interface does
not grow with h and is proportional to l.

We have also detimnined the distribution of step sizes
at various stages during the deposition process. Figure 9
shows these distributions. In this figure N(5h, M) is the
number of steps of height 5h obtained for deposit masses
in a small range (M+5M) of masses (5M is about
0.025M). It is apparent from this figure that the depen-
dence of N(5h, M} on 5h can be expressed as

l)l (5h,M)=Ae (15)

and as the deposit mass increases the constant k decreases
but the distribution retains its exponentially decaying
form and the decay constant {k) seems to be approaching
a constant value of about 0.39. This indicates that large
steps are {exponentially) improbable and that the surface
of the ballistic aggregate is not a self-similar fractal.

A similar equally extensive set of simulations were car-

ried out using a modified version of square-lattice ballistic
aggregation in which particles were allowed to stick if
they were on unoccupied sites which were either nearest
neighbors or next-nearest neighbors to occupied sites.
This NNN model gives structures which have a lower
density than the NN model described above (0.2469 for
the NNN model versus 0.4684 for the NN model). How-
ever, the structures generated by both of these models are
very similar and the results for the NN and the NNN
models are summarized in Tables II, III, and IV.

Tables II and III show the dependence of the width of
the active zone (in the limit h &~l ~ } on the strip width l.
Table IV compares the exponents which describe the
structure of the active zone for both the NN and the
NNN square-lattice ballistic-deposition models.

For both the NN and the NNN models the distribution
of step heights was determined in the limits h « I (Fig. 9,
for example) and h p~l ~ . Figure 10 shows some results
obtained for the NNN model with a strip width of 2048
lattice units. 2X10 sites were added before the step size
distribution X(5h) was determined and was measured as
the next 1.2&& 10 sites were added. Except for small step
heights (5h) our results again strongly suggest an ex-
ponential distribution for step sizes which, in this case,
can be expressed as

N(5h)=Ae "" (k=0. 192) .

This is similar to the results obtained for the NN model.

TABLE IV. Effective values for the exponents which describe the structure and growth of the active zone for the NN and NNN
models for square-lattice ballistic deposition.

Exponent Range

0.01h & K &0.1h

0. 1h &K &h,
„

32 & I & 2048
Nonlinear fit
0.1h
O. lh &h &h

0.331+0.006
0.308+0.011
0.47+0.01
0.476+0.003
0.467
0.002 78+0.000 24
1.50+0. 1

0.323+0.004
0.309+0.011
0.4S+0.01
0.452+0.003
0.445
0.003 66+0.00033
1.45JO. 1
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C. Discussion of 2D simulation results

The foregoing results on step size distribution are rather
unexpected. As me have remarked, there are a very small
number of large steps. The surface cannot be a self-
similar fractal. In fact, we will prove a stronger result:
The asymptotic value of the length of the surface is pro-
portional to 1.

The proof of this bound on the length of the interface is
simple, if, as proved for ballistic aggregation, m the density
of the aggregate does not indefinitely decrease. The
essence of the argument is that if a particle is deposited on
the edge of a step of height 5It, then the mean height of
the interface h increases by SIl /I where I is the width of
the sample. Thus if Il is the number of particles deposited
per unit of substrate and p is the density of the deposit we
have

-(51 ),l
{17)

p Bn

where (Sh ) =ddt/I is a uniform average over the inter-
face. Of course, l((5h )+1}is the length of the surface,
as above. A rigorous analysis (see Appendix) gives for the
d =2 NN model.

——i&(SI )&—,1
(18)

P P
but the argument should hold in any space dimension.

One can also present a simple argument for the distri-
bution of step heights 5h as follows. Qualitatively each
step can do two things: it can grow in height by accreting
a particle on top of itself and it can advance in the direc-
tloll lt faces by eccl'ctlng a partlclc oil its Icadlllg cdgc
The latter process necessarily entails collision with anoth-
er step (albeit perhaps of zero height). Since opposite fac-
ing steps approach each other systematically whereas
similar facing steps have only a diffusive relative motion,
we will focus on collisions of the former pairs. We intro-
duce the notation Pa(5h), PL, (5h) for the statistical distri-
butions of left and right facing steps (which should in fact
be equal). Then we have the equations of motion:

Bn t}x
Pg (x}= Pa —2'(x) Q Pr (y)

TASI.E &. Dependence of the width of the active zone {go}in
the limit K&&I on the strip width {I) for the single-step
ballistic-deposition model.

8
16
32
64

128
256
512

1024

0.806 20%0.000025
1.13561+0.000 12
1.614+0.004
2.2957+0.0017
3.254+0.004
4.608+0.019
6.49020.037
9.065%0.015

ballistic aggregation. We now turn to a discussion of
simulation results for the single-step case.

D. Single-step model in 20

A similar set of simulations to those discussed above
has been carried out for the single-step model in 2D.
Double sites were added to a line 2' (262144 sites) wide
until the deposit grew to a height of 5000 lattice sites (i.e.,
until about 6.5 X 10s double sites had been added). In this
model, the density of the deposit is 1.0. From 15 simula-
tions the result v=0.332+0.003 was obtained for the ac-
tive zone of deposits which had grown to heights in the
range 0.01h,„&Il&O. lh . For deposits with heights
in the range 0. 1 h & Il &h,

„

the result was
v=0.330+0.012. These results suggest that the asymp-
totic value for the exponent may be exactly —,

' for this
model. We have also determined the dependence of the
width of the active zone, g, on the strip width I for strips
of width 8—1024 lattice units. The results of these simu-
lations are shown in Table V. For this model, the depen-
dence of ln(g'c} on ln(l) is almost perfectly Hnear and the
effective value for the exponent a is 0.5029+0.0009 for
8 & I & 1024, 0.500+0.0015 for 64 & I & 1024, and
0.504+0.0024 for 8&1&64 lattice units. These results
strongly suggest that the limiting value for the exponent a
may be exactly —, for this model. We conclude that v= —,',
a= 2, md y= 3Y for the single-step myel.

+2g Pa(x +y)PI. (y), (19)

and symmetricaHy for PI (x). The terms are, respectively:
increase of 5h, loss by collision, and gain by collision with
a larger step. For a steady state with Pa PL, P/2 we-—
then have in a continuum approximation:

—2 P(x) —2P(x)+2 f dy P(x +y)P(y) =0,
Bx 0

which has an exponential solution P{x)=ke with
k =—,'. The value of k compares fortuitously well with
the observed hmiting slope of Fig. 9, k,b, -0.39 for the
NN model. Thus we have good evidence both from simu-
lation and analysis that small steps dominate the fluctua-
tions in height. This fact leads us to suspect that the
single-step model should be essentially identical to true

P.. Three-dimensional ballistic deposition

Simulations of ballistic deposition were carried out on a
3D cubic lattice with periodic boundary conditions in the
lateral directions. In this model the adjacAmt sites at
which particle sticking occurs are unoccupied sites with
one or more occupied nearest neighbors. The surfaces on
which the deposition process was simulated were of size
I XI lattice units with I =8, 16, 32, 64, 128, 256, 512, and
1024. For surfaces in the size range 8 X 8—512X 512 the
deposition promms was carried out until the mean height
of the active zone had reached heights which were very
much greater than I". For the case 1=512 more than
5X 10 sites mere deposited. Table VI showers the depen-
dence of the width of the active zone (gc) on ln(1) and sug-
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TABLE VI. Dependence of the saturated width of the active
zone (go) obtained from 3D simulations of ballistic deposition
onto i/I surfaces using a cubic lattice model with nearest-
neighbor sticking.

1.4557+0.0007
1.9895+0.0036
2.5540+0.0058
3.250+0.016
4.080+0.029
5.227%0.040
6,476+0.020

gests that the asymptotic value for the exponent a [Eq.
(3}]may be close to —,

' . We have also measured the depen-
dence of the width of the active zone g') on the mean
height of the active zone using simulations carried out on
a 1024X 1024 surface. Figure 11(b) shows the results ob-
tained from this simulation which suggests that the ex-
ponent v may have a value close to —,'. However, in this
case, it is difficult to approach the limit h « 1" and still
be at heights which are sufficiently large to see the correct
asymptotic behavior (i.e., we need to satisfy h »1 and
h «P simultaneously).

F. Three-dimensional single-step model

A three-dimensional version of the single-step model
described above was also investigated. In this model (il-
lustrated in Fig. 12) we start with a checkerboard of
raised and lowered sites [Fig. 12(a}]. Positions on the I X I
surface are selected randomly and the height at these posi-
tions is raised by two lattice units if all four nearest neigh-
bors have a height which is greater than that of the select-
ed site. Simulations were carried out on 1 XIXh simple
cubic lattices with 1=8, 16, 32, 64, 128, 256, and 512.
For the case 1 =512 lattice units, a total of 2X10 pairs
of sites were added (h=1.6X10 =41 ~). For smaller
values of / the limit h » I" was approached more closely.
These simulations gave results which were very similar to
those obtained from the ordinary 3D ballistic deposition
model [Fig. 11(a)] and a value of 0.363+0.005 was ob-
tained for the exponent a.

Simulations were also carried out using 1024X1024
surfaces. In this case, we cannot approach the limit
h » lr and these simulations were used to investigate the
dependence of the surface height variance g on the mean
surface height h. Five simulations were carried out in
which deposits were grown to a height of 1000 lattice
units. Again, the results obtained were very similar to
those for the 3D NN model [Fig. 11(b)] and an exponent v
with a value of about —,

'
was obtained assuming that the

dependence of g on h is described by Eq. (3). For mean
heights in the range 5 & h & 50 lattice units v has an effec-
tive value of 0.221+0.003 and for 50&v(500 lattice
units h =0.2303+0.0006. These uncertainties are stan-
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FIG. 11. (a) Dependence of the saturated width of the active
zone (go) on the substrate size (l X I) obtained from 3D cubic lat-
tice simulations using the NN model. (b) Shows how the width
of the active zone (g) depends on the mean height of the active
zone (K) for a simulation carried out on a base of 1024X 1024
lattice units.

NOT All ONED

FIG. 12. (a) Initial configuration of the surface of the single-
step model in 3D. (b) Mapping of the surface to a vertex config-
uration. {c) Six allowed vertices. {d) Allowed transitions of a
plaquette.
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dard errors obtained from the least-square-fitting pro-
cedure. The true statistical uncertainties are substantially
larger and systematic errors are probably even more im-
portant. In three-dimensional simulations it is particular-
ly difficult to satisfy simultaneously the conditions

Ti &&lr and h ~~1.

h = go;~hi, (21)

where o;=+1. Also go, =go, follows from periodic
boundary conditions. Now suppose that after many spin
exchanges the system approaches the equilibrium of the
spin model. In this "long-time" limit we would have

(0 f 0j ) —5ij

Then we have from Eq. (21):

(23)

This is the definition of a self-affine fractal'~ i5 with a
fractal dimension of —', . Also, it follows at once that

g' =((ji —h)')-I,
so that a= —,'. Now, we can show that the spin system
maintains equilibrium, where every configuration such

G. Analytic results for single-step models

Since the single-step models both in 2D and 3D have
similar scaling behavior to fllll ballistic aggregatloii, we
are motivated to devise analytical treatments for these
simpler processes. In the process we wiii produce an al-
most trivial proof that a= —, in 2D in agreement with
simulations and Ref. 32. We will show in the next section
that there is a relationship between u and y, so that we
can give a full treatment in this case.

The single-step model in 2D can be mapped onto a spin
model with an up-spin representing a step up in the inter-
face and down-spin a step down, see Fig. 13. Growth at a
site is represented by a biased nearest-neighbor spin ex-
change with an up-spin moving only to the left and a
down-spin to the right. The opposite sense of spin ex-
change would correspond to a lowering of height which
we do not allow. The interface dynamics in the moving
frame h =0 is now a spin exchange problem. The height
at site m is given by

that the magnetization is zero is equally likely from the
following observations.

(a) Every configuration can be formed by one deposi-
tion in one way for each maximum of its interface.

(b) Every configuration can form, by one deposition,
one new configuration for each minimum of its interface.

(c) The number of minima and maxima are always
equal.

It follows that if every allowed configuration is equally
likely, then every configuration is as likely to be formed as
lost, and equilibrium preserves itself.

In 3D the single-step interface can be mapped onto the
six-vertex model with equal vertex energies; see Fig. 12.
The initial configuration [Fig. 12(a)] is mapped onto the
vertex configuration Fig. 12(b}. Looking down on a ver-

tex and sweeping close around it anticlockwise, a step-up
is denoted by outwards arrow and a step-down by an in-
wards arrow. The allowed vertices are those with equal
numbers of incoming and outgoing arrows, as shown in

Fig. 12(c). Thus the arrows constitute a conserved
current, and it is easy to see that the difference in height
between two sites is the net transverse current fiowing
across a line between them. The allowed growth step is to
reverse all the arrows of a local cycle (plaquette} from
clockwise to anticlockwise (but not vice versa), as shown
in Fig. 12(d) and may be viewed as a simultaneous hor-
izontal and vertical biased spin exchange each as in the
2D case. The height at site n, m is

h(n, m)= g o,"i+ g o"„j+h(1,1), (25)
i =1 j=1

where cr" and o" are the vertical and horizontal arrows
with values +1. Once more, if we know the equilibrium
arrow correlation function, we can calculate a.

Finding the equihbrium of this vertex model is not as
easy as the 2D case. We should note that the ways of
forming a configuration are in correspondence with the
maxima of its interface (anticlockwise plaquettes) and the
ways it can grow with the minima (clockwise plaquettes)
as before. Thus if the ensemble of all possible configura-
tions (equally weighted) has predominantly nearly equal
number of maxima and minima, then at long times our
system probably reaches a good approximation to the
equilibrium of our 3D model. Since maxima and minima
are features of the local geometry, this assumption is like-
ly to be justified in the limit of a large system.

If we do assume that all configurations of the vertex
model are equally likely, then using the result of Suther-
land for the arrow correlation in the six-vertex model,
we obtain the result of Beijeren for the body-centered
solid-on-solid model in the limit of infinite temperature

(b) ((ji,—hs) )—In(R, i, ), (26)

Allowed

(c)

Not All@wed

FIG. 13. 4,
'a) Initial configuration of the surface of the single-

step model in 20. {b) Mapping of the surface to a spin configu-
ration. (c) Allowed spin exchanges.

where A,b is the distance between sites a and b. The re-
sult is also obtained for the discrete Gaussian model
which we beheve to be in the same universality class. We
can understand this equation by noting that the long
wave-vector components of a conserved "current" density
are correlated. In fact, if all allowed current configura-
tions are equally likely the correlation function in real
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space ls

&j(Oj ( r) & —1/r2, (27)

neglect the noise, then there only exist nontrivial solutions
to the above with the scaling form

which is also the arrow correlation result of Sutherland.
This logarithmic law corresponds conceptually to a=O
and is rather difficult to test; we have seen that our data
does not support it.

Kardar et al. obtain a= —,
' for this case as in 2D.

Their result is different from ours (a=O) and from the
simulation data (a= —,'). We have no explanation of this
multiple discrepancy.

whereupon f(y) obeys

vf(y) y-—f(y)= f(y)
v 8 8
tx By By

(34)

(35)

(36)

H. Continuum approximation and scahng

With both simulation and theory suggesting universali-

ty for the asymptotic scaling of the interface thickness (at
least in d =2) it is natural to look for simplified equations
of its motion on the large scale. The observed exponents v
and a are less than unity. Thus g/l, g/h ~0 as g~ 00 so
that coarse scale derivatives dh/dx exist, and the proof
that the step heights are bounded shows that dh/dx still
exists even locally. Thus we are led to consider differen-
tial equations. For the NN model we have a growth rate,
averaged over temporal noise, given by

Bh
=&&h &i.s~-&~h &o(i+&

I
~h

~

' ' ' ) (28)2

8ll

where & &Lsd is the local spatial average e
~

Vh
~

is the
first term in a gradient expansion.

For the single-step model we have

cycle

where i ranges over the d —1 types of links in the sub-
strate lattice and c', (c', ) is the local probability for such a
link to be downwards (upwards); we have assumed the
links to be uncorrelated locally. We also have

c', +c', =1, i =1,2, . . . , d —1, (30)

=Cg —Cg (31)

glvlng

L

Bh

(32)

(33)

where the noise ri(x, t) is such that & ri(x, t) & =0 and

& ri(x, t)ri(x', t') & =2D5 (x—x')5(t —t') .

Here we observe that if for large-scale solutions we can

where the last expansion is in the small gradient limit.
Subtracting the advance of a flat interface, both equations
can be rescaled in the weak gradient hmit to give the form
considered by Kardar ef al. ,

IV. DISCUSSION

In our analysis of the lattice inodels for ballistic deposi-
tion we have assumed that the scahng form found by
Family and Vicsek is correct and have attempted to mea-
sure the exponents 0., v, and y by approaching as close as
possible to the asymptotic limits available to us. To deter-
mine the exponent v we require i"))h and h &) 1 and to
determine a we require h » ls~' and i &&1. Clearly, very
large-scale simulations are needed to satisfy these condi-
tions. Despite the fact that we have grown very large
deposits (in some cases deposits containing more than 10
occupied sites) it is clear we have not reached the asymp-
totic limits and that the values we have obtained for the
effective exponents a, v, and y should be regarded as esti
mates. In the case of the single-step model the corrections
to the simple scaling picture are very much smaller and
we believe that our results for this model are quite accu-
rate. In any event, our results from all of the 2D models
are consistent with the theoretical work we have presented
and that of Kardar et al. (a= —,', v= —,', y=1.5). How-
ever, for both the NN and the NNN 2D ballistic deposi-
tion model the exponent a is smaller than —,

'
and seems to

be decreasing with increasing l. It would be desirable to
carry out simulations with larger values of i but this does
not seem to be practical since much larger scale simula-
tions would be needed to approach the asymptotic limit
and even for the largest-scale simulations the statistical
uncertainties become larger with increasing I (see Tables
II, III, and IV).

In this case of the three-dimensional NN model and the
single-step model our results suggest that a=—, and v 4.
However, in three dimensions it is even more difficult to
approach the asymptotic limits in which we expect to find
the simple behavior

g-h " for h &) 1 and h « lr, (37)

g-I for h &)lr and i))1 . (38)

This scaling law is consistent in two dimensions with the
results of Kardar et al. i2 and our simulation data. For
the single-step model in d =2 where we have 0, = —,

'
expli-

citly, it determines v= —,.
For the single-step model in d =3, where we have

presented an argument that a~O, it follows that v~O
also. However, y=a/v, the crossover exponent should
approach y=2. This may ultimately be the clearest pre-
diction to test in this case.
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Our observation that the distribution of step heights,
X(5h), in the ballistic-deposition models is an exponen-
tially decaying function of 5h indicates that the surface of
2D ballistic deposits is not a self-similar fractal. The fact
that large steps are exponentially improbable for the
square-lattice ballistic-deposition models strongly suggests
that these models and the single-step model should belong
to the same universality class. If this is the case we expect
to find a= —, and v= —,

' for 2D balhstic deposition .Re-
sults we have obtained for 2D square-lattice ballistic-
deposition models are very similar to those found in 2D
Eden models carried out in a similar manner on about the
same scale. This supports the idea that both the Eden
model and the ballistic-deposition model belong to the
same universality class (D, =Db d, ——a, =ab ———,',
v, =vb ———,

' ). In the case of the Eden model, Plischke and
Racz have measured the exponent y from the dynamics of
the "normal modes" which describe the evolution of the
surface. Using a strip geometry like that einployed for
the ballistic-deposition simulations described above they
find y=1.55+0. 15 in good agretuiient with other mea-
surements of y for Eden models2s ~ and our indirect
determination of y (y=a/v) for the ballistic-deposition
models. For the NN model we find y = 1.50+0.1 and for
the NNN, y=1.45+0.01. For 3D the situation is much
less clear. Neither our analysis nor that of Ref. 32 agrees
with our dli'ec't slnllllatloils. Furthel' work oil this case
(which is, after all, the one of most direct physical in-
terest) is needed.

Our results for the dependence of the angle of growth
on the angle of incidence for 2D off-lattice ballistic depo-
sition indicates that the well-known "tangent rule" is not
quantitatively accurate. Nevertheless„ the tangent rule ap-
pears to be a useful empirical rule which summarizes ap-
proximately the behavior observed in a variety of real sys-
tems. Our simulation results suggest that for large angles
of incidence (a) the angle of growth (P) is related to a by

(19')

where the angle C has a value of about 16'. This angle is
not much differtmt from the limiting fan angle for deposi-
tion onto a single particle (18.3+1.5') (Ref. 23} obtained
from off-lattice computer simulations. Indeed for grazing
incidence (a=90'} we expect that the angle of growth
should be given by

(20')

where 8 is the hmiting fan angle.
¹te added in proof. In this paper we have consistently

used the width of the active zone to define a and v. One
could also use the variance of the height itself. In 2D this
scheme leads to a slower approach to the same asymptotic
values (a=0.5 and v=0.33}. In 3D the apparent ex-
ponents are smaller than what we have quoted here. This
will be the subject of further work.

APPENDIX

We show that the length of the interface of a ballistic
deposit; g„(1+~

h„—h„~
~

) is not characteristic of a
self-similar fractal, but is proportional to l, the width.
This is achieved by showing that the mass per unit sub-
strate,

= &1+
I
h. — (A 1)

lies within bounds of the reciprocal density of deposition,

p
' = (max(h„+i —h„,h„ i,h„,1 ) ) .

Note that this is just the average increase in column
height per deposition on the substrate. Defining
5„=h„—h„ i, s„=)5„(,and t„=max[5„+ ,i—5„,1j, we
have

p=(1+s.),
-'=(t. &,

where s„=t„if and only if s„&s„+i. Defining

(A3)

(A4)

s„if s„&0 and s„&s„+&sn= '

1 otherwise,

it is clear that

&s.') =(t.&,

which together with

&s.') ((1+s.),
yields the result

P QP.

(A5)

(A8)

To establish an upper bound on p„consider the set of
steps such that s, & 0, which is some fraction g of the in-
terface length in lattice units. Let g' be the fraction such
that s„=s„.Dividing the fraction g into three parts:

I.=g —g'

P=2g —g,
(A9)

where H is the fraction of steps such that s„&s„i, I.
such that s„~s„+~and I' such that s„=s„+~.We now
have the expressions

& t„)=(1—g')+(2g' —g) &s. &/+(g —g') &sn &H (Alo)

from which we get

(s.&=(2g' —g)&s„),+(g —g')(.„& +(g —g')(s. ), ,

(Al 1)
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p —1(2(g'—1+p '),
which with g'& j. gives

p&2p +1

(A12)

(A13)
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