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Effective classical partition functions
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%e present a method by which a quantum-mechanical partition function can be approximated
from below by an effective classical partition function. The associated potential is obtained by a

simple smearing procedure. For a strongly anharmonic oscillator and a double-mell potential, the
lowest approximation gives a free energy which is accurate to a few percent, even at zero tempera-
ture.

The path-integral representation of a quantum-
mechanical partition function'

xvexp — ~ +Vx rx (r)
o

involves an infinite product of ordinary integrals which,
after a Fourier decomposition of the periodic paths
x(r)=xo+ g„",(x„e " +c c )w.ith. co„=2nn/P can
be written as follows

dx ~ dx dx

At first sight, introducing W(xo) may seem of little use
since the integrals over all x„, n&0, collected in W(xo)
are, in general, impossible to perform. The purpose of
this paper, however, is to show that for smooth potentials,
V(x), there exists a simple way of evaluating these in-

tegrals approximately to a very high accuracy, leading to
an upper bound for W(xo), to be denoted by Wi (xo), and
to be found according to the following rules.

(1) Calculate a smeared version of the potential V(x) as
follows:

V, ,(x)—=f, exp — (x —x') V(x')
(2ma )'i 2a2

(4)

with an as yet unknown width parameter a .
(2) Introduce a second parameter Q and form the auxi-

liary potential

The x„appear implicitly in x (~), the argument of V. If
we were able to perform the n&0 integrals, this would
leave Z as a simple integral

Z= e
dxo pn(» ~

(3)
2nP

In the high-temperature limit we are able to do so. The
kinetic terms to„~ x„~, n&0, develop very sharp minima
around zero. The x„are always small [of order
1/(co„~P)] and may be neglected in V(x(r)). The in-
tegrals over dx„' 'dx„' become trivial, resulting in the
well-known classical limit W(x)~V(xo) as T~oo:

dxo
Z~Zd —— exp — V xo

v'2mP

Because of the similarity between this and (3) we shall
refer to the function W(xo) as the effective classical po-
tential and to the integral (3) as the effective classical
partition function.

1 sinh(PQ/2) Q zWi(xo, a,Q)= —ln — a + V 2(xo) .
Q/2 2

(3) Consider a, Q as functions of xo and calculate, at
each xo, the minimum of Wi(xo, a (xo),Q(xo)) with
respect to the parameters a (xo) and Q(xo). The result is
the desired approximate effective classical potential

Wi(xo)= min I Wi(xo, a (xo),Q(xo))] .
a~(xo), Q(xo)

Explicitly, the minimization with respect to Q gives, at
each xo, the following relation between Q and a:

1

PQ
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while the minimization in (I determines Q as a function
of the smeared potential:

8 =a'
Q (xp) =2 V I(xo)= I V,(x()) .

()II Bx()

The derivation of these rules starts out with a trial par-
tition function Zl in which the effect of the potential en-

ergy upon the n&0 components x„ is approximated by a
Gaussian potential as follows:

pp P
Z&=—e '= x ~ exp

0

QI(xo)

2 2
+ [x (r) —xp] —PL1(xo) (9)

where Q (xp} is an arbitrary local curvature of the poten-
tial and Ll(xp) is a trial potential depending only on the
average coordinate xp. Both functions Q(xp) and L1(xp}
will be determined by an extremal principle.

The ansatz (9) has the virtue that all x„with n&0 can
be integrated out leaving only an integral over xp

Moreover, it is straightforward to calculate, within the
trial partition function Zi, the expectation of the differ-
ence between the true and the trial potential

r

Q'(xo)
V(x(v) ) — [x (r) xp]— L i (xp—)

2 1

dxo PQ(xo)/2 pl, ,(x )—
v'2Irp sinh[pQ(xo)/2)

(10)
where

p „I(,) Q'(x, )
&O)I=Z1 ' f &x(r)0 exp —f dr + [x(~)—x()] —pL)(xp)

2 2
(12)

Indeed, if we use the Fourier representation of the paths and for V(x(r)) a Fourier representation in space, writing

P r

dq- ~ l N~ f'
V(x(r))= V(q)exp iq xp+ g x„e " +c.c.

21T n=1
I~

the expectation of V(x(I ) ) can be brought to the form

real d im

( v(*( ))) =z ' f flf," f v(r) *p ag [ '. +(l'(*—)i)*.)' Pr (*o)—
v'2Irp „, Ir/(~'„) 2Ir

*

+iq xp+ g x„e' "'+c.c.
n=1

(14)

in which all x„, n&0, can again be integrated out. The
result is

&V( ())&
dxp PQ(xp }/2 pl, („)—ZJ

v'2Irp sinh[pQ(xp)/2]
e ' 'V& (xp),

wllcrc V I( )(x()) ls thc smeared potclltlal (4) wltll0 (Xo)

2 " 1a (x())=—gP „ i p)„+Q (x())

This can be summed up to give the expression (7}.
The Gaussian potential —,

' Q (xp)[x(~)—xp] can be

considered as a particular case of V(x (r) ) and its smeared
version V &(,(xp) becomes simply —,

' Q (xo)(I (xp).

Hence, the expectation (11) reads

dxp PQ(xo)/2 pI, („
Zf

v'2mP sinh[PQ(xo)/2]
1 0

r

Q (x())
X V 1 (x())—

0) 2
(I (xo ) —L 1 (xo )

The unknown functions Q (xp), L, (xp), are now deter-
mined by using the extremal principle explained in Ref. 1,
Sec. 10.3. It is based on the well-known inequality for
convex functionals which states that the true partition
function Z is bounded from below by
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Z~ZI exp — v. V x v'
Q (xo)

2
[x (r) —xo]

(1S)—L ((xo}
1

Using (10) and (17) and performing the variations in
Q(xo) and L((xo) we see that the best lower bound is ob-
tained when the integrand of (17) vanishes identically in
xo. Thts fltxes

V 2 ———,'a + —,'ga" +—,'(1+3ga2)x~+ —,'gx4,

from which we find, via (S), Q =1+3ga +3gx . We
now solve Eqs. (7) and (S) at each xo by iteration, and cal-
culate W&(xo) from Eqs. (5) and (6). The free energies F&
resulting from the integral (3) are shown in Fig. 1 and
compared with the exact F,„,the classical F,l, and an ear-

Q'(xo)
L((xo)= V, 2(„)(xo)— a (xo) .

Equation (10) has the form (3) with W(xo) being bounded
from above locally by W( of E9. (5). The bound is fur-
ther improved by minimizing W& with respect to Q(xo)
which yields 8'((xo) and thus the result stated in the be-
ginning.

As an example, let us apply the procedure to the anhar-
monic oscillator with V(x)= —,'xz+ —,'gx . The smeared
potential (4) is

lier upper bound Fo, derived via the method of Ref. 1,
Sec. 10.3, which corresponds to the special nonminimal
choice for Q, Q=0, so Eq. (7}gives a =P/12.

Even for strong anharmonicity (g =40), the result is
good down to T =0, up to 3% accuracy. The high quali-
ty of the approximation can be understood by observing
that, in general, the T~O limit of F, is

F( —+ E = minty'((xo) jT-+0 T=0

= min I V,+1/Sa I
Q 2

which is the same as the minimal expectation value of the
Schrodinger operator H= ——,'() + V(x) in a Gaussian
wave packet (2na )

'~ exp(4a x ). For the anharmonic
oscillator, the minimum is reached at
a =[2(1+3ga )'~ ] '. A Gaussian wave packet is
known to give extremely good ground-state energies for
many smooth symmetric potentials. Table I compares the
energies obtained in this way with the known ground-state
energies of the anharmonic oscillator' up to g =4000.

Another example is the double-well potential
V(x)= ——,'x + —,'x +1/4g. When solving Eqs. (7) and

(S), the quantity Q (xo} may become negative for xo-O.
This, however, presents no problem since there is always a
solution Q (xo ) which remains in the interval
Q2G( 4n T2, (e—) for which a~pO [see Eq. (16)]. The
various free energies F~ are shown in Fig. 2. They are in
slightly worse agreement with the exact ones than those in
Fig. 1, although our approximation is quite reliable up to
p=5. Notice that at T =0, the quantum fluctuations
wipe out the double well for large g &0.36 (see Fig. 3).
For g &0.36, the two off-centered minima survive. They
become lower than the central minimum for g & 0.325. In
each case, the absolute minimum gives the position of the
optima1 Gaussian wave packet. Table II compares the en-

ergy E with the true ground-state energies E,„which
shows that the worst possible ( T =0) error of our approx-
imation is &16% for g=0.4.

Our method can easily be extended to the n-

dimensional Schrodinger problem in which x; =(x); is an
n-component vector and trial frequency [Q (xo)];J in (9)
an n &(n matrix. In the special case that V(x;)= V(x ) is
rotationa11y symmetric, we may introduce 1ongitudinal
and transverse parts of Q;I via

--- F,
Fex

Fc(

Q; —=QL (xo)xo;xo /xo+Qz (xo)(5; —xo;xo /xo)

and 8'~ becomes

0 2 3
t) -1/ T

4 sinh(PQL /2)

pQL /2

FIG. 1. Different approximate free energies Fl (ours); Fo
(earlier Feynmann's), F,~ (classical); compared with F,„(exact),
for the anharrnonic oscillator potential V(x) =

~ x + 4 gx, as a
function of P—:l/T, with anharmonic couplings g =0,2,4,40.
Notice that F,l lies far belo~ the exact curve, awhile Fo lies far
above it. The new F~, on the other hand, fits extremely well, up
to a few percent, for all g and down to zero temperature. For
g &4, the difference between Fl and F is hardly visible.

sinh(PQz /2)
+(n —1)ln

Tn

—
& [QL aL +(n —1)QraT]+ V 2,2(xo)

where the smeared potential is
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FIG. 2. Same plot as in Fig. 1, but for the double-well poten-
tial V(x)= —

z x + 4gx +I/4g.
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FIG. 3. Effective classical potential 8'~(x) at T =0 ( )

and (N (- - -) [where Wj(x) = V(x)) for the double-well potential
V(x)= —

~
x'+ 4gx +1/4g at various values of g.

2(x )= 1 1

a&,a& (2 u2)1/2 (2~+2 )1/2(n —1)
1T L O'QT

g exp —
z

g' —g glxx x+QT ~~
—xx x x —x V x

In principle, it is possible to generalize our method and
treat also a few components x„with N & n ~ 0 more accu-
rately. Using an Ansatz similar to (9), but with trial func-
tions Q (njj, . . . ,x~), I.j(xjj, . . . ,xN). The additional
work, however, proliferates rapidly. The improvement
proceeds from high to low T and the T~O limit is the
same for any finite N.

Notice that the Ansatz (9) carmot be improved by al-
lowing the trial function Q2(xo) to be a matrix Q„„(xjj)in
the space of Fourlcr components x [1.c., by using

g „.Q„„(xo)x„x„ instead of Q (xjj)g„~x„~ ] which
would also lead to an exactly integrable trial partition

function. After going through the minimization pro-
cedure, we would fall back upon our solution
Q (xo)=5„„Q2(xo).

Let us further point out that by inserting an external
source it is possible to calculate approximate correlation
functions

(x(x)x(0))i=( xo—, +G( ()x1

pQ2(xo) 1

where G(r) is the periodic temperature Green's function
which includes the zero-frequency part

TABLE I. Comparison of exact ground-state energy (Ref. 3) E with the limit E = limq DFi which is equal to the minimum of
S'&(xD) at T=0 and can be obtained by minimizing the energy expectation of a Gaussian wave function centered at xp =0. ~e also
have listed the energy of the first two excited states E~ and E„.Level splitting to the first excited state is given in column 6. %e see
that it is weH approximated by the values of Q(0) at T =0, as it should, due to Eq. (22).

El ED

2

40.0
4000.0

0.7017
0.8125
1.5313
6.8279

0.696 176
0.803 771
1.50497
6.69422

2.32441
2.737 89
5.321 61

23.9722

4.327 52
5.17929

10.3471
47.0173

1.628 23
1.934 12
3.81694

17.2780

1.627
2.000
4.000

18.190

0.2991
0.2500
0.1250
0.0275
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TABLE II. Same comparison as in Table I, but now for the double-well potential (Ref. 4). At small g, the minimum of the effec-

tive classical potential at T =0 lies at xo ——+x .„+0.
1 0E E

0.1976
0.4
4.0

40.0

0.650
0.549
0.598
1.409

0.6192
0.4709
0.577 28042
1.377 81685

0.6730
0.767 76
2.083 052 12
4.995 66652

1.51
1.63485
4.253 571 28
9.894 742 35

0.0538
0.296 86
1.505 77
3.617 85

0.891
1.164
3.676
8.517

1.943
0
0
0

1.255
0.486
1.634
3.829

0.397
1.030
0.3059
0.1306

G "(t)=e(t)&x(t)x(0) &,

(e(() — sin(Q(xolt))
1

Q(xc) 1

(22)

showing that, for T=0, the quantity Q(xo) at the poten-
tial minimum x;„gives an approximation to the energy
difference between ground and first excited state. In
Table I we see that for the anharmonic oscillator this ap-
proximation is quite good. For the double-well potential,
it is only good at large g. At small g, when the central
barrier is very high, our approximation lacks the ability of
describing tunneling. Therefore, Q(x~;, ) at T =0 is not
the small level splitting caused by tunneling but the dis-
tance between the lowest and the second pair of almost de-

generate energy levels. (See Table II.)
Finally, let us remark that the method is useful also for

some singular potentials as long as the smearing pro-
cedure makes sense. An example is the Yukawa potential
V(r) = e™/rwhe—re

2e~ 0 l2
~

x
~

y(gg2)1/2
2 2

V t(x)=- dt
o

ms)x)2
+exp — t +

4t

1 iu„r 1 1 sinh[(P —r)Q/2]
p ~ ta2+Q2 pQi sinh(pQ/2)

whose r =0 value is at+1/pQ2. This can be continued
analytically to the real time retarded Green's function

which in the Coulomb limit m ~0 reduces to —I/~ x
~

times the error function erff
~
x

~

/(2a )'~ ]. In the latter
case, the limit (19) becomes

E = min + V,(0)
Sa

3 2 1

ga 2 ~~ (2 2)1/2

The minimum is reached at a;, =9m./32 and gives
E = —4/3m. This is only 15% different from the true
ground-state energy ——,

' such that, after subtracting the
continuum contribution, the effective classical free energy
Fi of a Yukawa potential obtained by our method is, at
any temperature, more accurate than this.

We do not want to end without mentioning a number of
papers which all have added improvements to our first
attempts' at calculating an effective classical potential. It
appears to us that our approximation IVi(xc) is both
more accurate and easier to handle than any of its prede-
cessors [we were able to use a simple home computer for
doing the iteration of Eqs. (7) and (8) and the numeric in-
tegration (3)]. It will be interesting to extend the method
to quantum field theories and to models of statistical
mechanics. s
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