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Exchange and correlation potential for a two-dimensional electron gas at finite temperatures

3. Phatisena, R. E. Amritkar, and P. V. Panat
Department ofPhysics, University ofPoona, Ganeshkhind, Pune 41I 007, Maharashtra, India

(Received 15 October 1985; revised manuscript received 18 June 1986)

Calculations for an inhomogeneous electron gas using density-functional theory require suitable

exchange and correlation potentials. We present here the local exchange and correlation potential

( V„,) for the two-dimensional electron gas over a vride range of temperatures and densities based

upon summation of ring graphs. A suitable parametric fit for V„ is presented which is good to
within 2% of the exact values. Various limits and graphs of the polarizability are presented.

I. INTRODUCTION

There has been a considerable surge of interest in the
properties of two-dimensional (2D) electron gas (EG).'

This is due ta the fact that the electrons trapped on the
liquid-hehum surface or in the inversion or accumulation
layer of metal-oxide-semiconductors (MOS) structures or
in superlattice structures of GaAs-A1As can be approxi-
mately modeled as a 2D EG. What is interesting is that
the electron concentration of these two-dimensional layers
can be varied to almost any level by appropriate doping in
the semiconductors. Thus we get any situation from a
nondegenerate to a highly degenerate electron gas in two
dimensians2 that has very large mobilities in the plane.

The density-functional theory has been very successful
in the analysis of electronic properties of various inhomo-
geneous systems such as atams, molecules, surfaces, etc.
For a recent review of its various applications see Rajago-
pal. The finite-temperature generalization of density-
functional theory has been given by Mermin. The finite-
temperature theory is finding its use only recently. This is
partly due to the fact that appropriate exchange and
correlation potentials at intermediate degeneracy for three
dimensions are appearing only recently. s s

Study of the many-body properties of two-dimensional
electron gas was initially done by Stern. ' Subsequently,
Isihara and his co-workers ' and others" have extensive-
ly studied the many-body aspects of 2D EG at low tem-
peratures. Thermodynamic potential (Q) has been studied
by Fetter' at high temperatures and he has obtained the
equation of state and also the structure factor S(q, to).
Czachor et al. '3 have studied pair-correlation-function
and plasmon-dispersion curves of 2D EG at T=O. Ra-
jagopal et al. ' have studied spin-polarized 2D EG in
random-phase approximation (RPA) for possible
paramagnetic and ferromagnetic ordering.

As was noted earher, for 2D EG in a wide density
range, we need the evaluation of exchange and correlation
potential over a wide range of temperatures and densities.
The impurity potential {IP) crucially depends on electron
density, and IP is required for calculations of scattering
cross section which in turn is required for the evaluation
of mobility. It is also well known that the bound energy
levels of impurity are affected by the presence of electron
gas which in turn can be obsamed in x-ray photoelectron

spectroscopy. The calculations of core-hole energies as
well as the screening in the spirit of density-functional
theory requires suitable, preferably local exchange and
correlation potential. Ta our knowledge, so far, such po-
tential is not available for 2D EG over a wide range of
density and temperatures and hence this paper.

II. FORMALISM

Let us first consider the calculation of effective single-
particle potential that enters in Kahn-Sham equations in
exchange approximation. It is a functional derivative of
thermodynamic potential (Q, ) with respect to density (n).
In Fock approximation, Q, is given as'

f(k ) = [exp(sk —p)P+ 1]

where sk ——A kz/2tn and Is is the chemical potential.
Evolution of Q„[n,T] at zero temperature is elementary.
It 1S

2 eikF'
Q fn, T]=——,T=OZ (4a}

k =(2mn}'r

In terms of r„ the interparticle distance per Bohr radius,
Qz is expressed as

4 2 e
Q [n, T=O]= — r, '.

Z

For finite temperatures, it is convenient to scale momenta,
temperatures and chemical potential as x =k jkF,
t=T/TF, and a=@,/kttT= Pp, where TF is t—he Fermi

Q, [n, T]=— g V( ~k —k'~ )f(k)f(k'),
2A

where V{
~
k —k'

~
) is a Fourier transform of the

Coulomb interaction in twa dimensions. It is

V(
f
k

f
) =2srei/

f
k

f
.

The factor of 2 arises from spin degeneracy.
At absolute zero, f(k), the Fermi functions, are

Heaviside's 6 functions and at finite temperatures they
are well-known Fermi factors
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"'E 4y +y
2 x+g

Xf(x)f(y)dx dy,

where

temperature. Converting the sum over k and k' to an in-

tegral and carrying out the angular integrals, we
transform Eq. (1) to

Q, [n, t]
Q„[n,O]

K{V'4xy /(x +y)) = 1+ y e(x —y)K(y/x)

1+—e(y x)—K(x/y) .

Equation (5}then transforms to

Q„[n,t] =3 f dx x f (x) f dz zf (xz)K(z) .

f(x) (ex /t —a+ 1)—1 (6)
The exchange potential V [n, t] is then given by

and K(x) is the complete elliptic integral of the first kind
which can be simplified as'

V„[n,t] =5Q„[n,t]/Sn .

Thus, from Eqs. (4), (7), and (8) we get

(8)

V„[n,t]
V„[n,O]

Q„[n,t]
XX X Z XZ 1 — XZ Z X Z —

)/ E Z
Q [nO] t o o

1/t

+ f dxx f(x)[l—f(x)] x —,, f dzzf(xz)K(z)

2e'
V„[n,o]= — (2~n )»' . (10)

and

ao 1 co 1 z +y8= dx dy ln
0 e +1 0 eP+1

The chemical potential p=akttT, the reduced tempera-
ture t, and the density n are related by

n= f dik f(k} .
(2m)

The integral can be evaluated exactly to yield

a=in(e'~' —1) .

=0.4224309 .

The ratio V, [n, t]/V, [n,O] behaves, in the same limit, as

V[ t] 1 m~1——A+ t — t 1nt as t~O.
V [n 0] 3 8 48

At high and low temperatures a is very simply related to t
by

(12a)
In the high-temperature limit

Q„[n,t]
A2 for t »1

Q, nO t

(14)

(15)

a- —lnt as t +00 . — (12b) where

The low- and high-temperature limits of expressions (7)
and (9) can be gotten with lengthy algebra (see Appendix
A). Thus

Q [n, t]
Q, [n,O] 16

~1+At + — t 1nt as t~O

The exchange potential is then

V„[n,t]
+4Azt ' —for t »1 .

V„n,O
(16)

3A=—
2

1——2ln2
12 2

m D 8
(1—4')+—+—

24 2 4

4'=0.577216 . is Enler's constant,
co ( 1)kD= g ink= —0.1013161

k=i

The detailed plot for Q„[n,t]/Q„[n, O] and V„[n,t]/
V„[n,O] is shown in Fig. 1. The low-temperature limit of
Eq. (7) was also obtained by Isihara and Ioriatti. ' How-
ever, our method of obtaining Eq. (13) is different from
theirs and hence is presented in Appendix A.

I.et us noir calculate the correlation energy in random-
phase approximation by summing the ring graphs. It is
given by'
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(),"= g f dq f)n[( —V(q)II' '(q, v~)]
2P, „o 2n

&.5

+ V(q)II' ](q,vt) I, &.0

where vt 2n——.l /Pfi and l =0, 1,2, . . ..
II' ](q,v&) is a proper part of the polarization propaga-

tor due to density fluctuation in the system. It has a
orm,

~]o) 2 f d'p f(p+q}—f(p}
(2tr)2 ikvt —(ep+q —es)

(18)

This propagator can be analyzed for the static case (vt ——0)
and for the dynamic case (vt&0) separately. Equation
(18) can be simplified for the static case to

FIG. 1. Universal curves for scaled exchange part of thermo-
dynamic potential Q„[n,t]/Q„[n, O] and exchange potential

V, [n, t]/V„[n, O] vs t

II' '(q, O)= f dppf(p) f d8

The angular integral is easily carried out to lead to
2n/(q —4p )'/ w—ith the upper limit of p integration

becoming q/2. Scaling q and p to Q =q/kF and
x =p/k~, respectively, the static part II'o'(q, O) becomes

II' '(Q, O) = — f dx . (19)
«2Q o (g2 4x2)1/2

The dynamic palarization part on the other hand is

II'o](q, vt)= — f dppf(p) f d8 +C.C.
2~&r

(q +2p cos8)+

where c.c. denotes complex conjugate. The angular integral, by residue theorem, is 2n cosP/pR, where
' 1/4

2

2p

Pl V~—1 +

and

tan(2$) = m v) /tip

Upon scaling Q =q/kz and x =p/kF, the dynamic polarization propagator becomes

—4m ~ xf (x)cos(I()

[(g'—4x'g' —4l'Hi'}2+16i'Hr'g']]/4 '

where II' ](Q)~— +O(e ]/'), as t~O for Q (&2
2&

(22a)

tan( ) = 402lmI,

Q 4xzg2 4l Hr— — (21) 11' '(Q)
1 1

Q2 Qt 3

as t~O for Q)&2 (22b)

Following are the various limiting forms of II' '(Q, vi) (in
the units of fi =2m = 1, e =2).

(a} Static polarization.
11"'(Q) — 1—,as i ao and Q 0 (22c)

2mt 6t
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0.16'

II (Q,vt)-—(0) 1 Q
4m. l~t

2

C)
II

g 0.08.

0,04

In the range of large Q values for any t,

11'"(g,v, )=— —+ ' J dy
mg 2 Q o e~ +1

(23b)

FIG. 2. Variation of static part of polarization propagator
IIN'{Q, v~ ——0) with Q for various values of t

11"'(g)
~Q2 Q2

as t~ ao and Q~ 00 for t & Qt . (22d)

It must be noted that the polarization becomes indepen-
dent of t as Q&&1. Figure 2 shows the behavior of
II' '(Q, l =0}versus Q for different values of t.

(b) Dynamic polarization. In the case of dynamic po-
larization, a small Q limit can be obtained for all of the
nonzero-t range. It is

II'"(Q vt)~ —,1+, 1+
g 'Q

as t~0 for Q ~pl (23c)

II' '(Q, v))~ — 1+
ng Q

for 1 « t & Qt . (23d)

Carrying angular integration and taking a functional
derivative of Eq. (17) with respect to n, we obtain static
and dynamic parts of the correlation potential as

It is interesting to note that there is no l dependence in
11' '(Q, vt) for large Q. Equation (23b) can be easily
analyzed for low- and high-t limits as

e'/' 1 V(Q)II' '(Q) &/2 xf (x)[l —f(x)]
e' '—1 0 Q 1 —V(Q)II' '(Q) 0 (Q —4x }' (24)

and III. RESULTS AND DISCUSSION

V,'"'(1@0)=SkF

where

V(g) 11'"(g,v, )

o 1 V(g)II{o~(g v&)

(25)

V(g)=4tr/Qkp

g(g, t, t)

xf (x)[l—f(x)]cos4
[(Q4 4x2Q2 4$2~2t2)2+ 16l2+t2Q4]1/4

The numerical values of 0,'"'/N, II„/X, V,",and V„ for
the physically interesting range of r, and t values are
given in Table I. The total 0„,=0„+Q," and
V„,= V„+V,

'"' are also given in the table.

Before we start discussing our results, it is to be noted
that we have taken a to correspond to the noninteracting
value of n Correctio. ns to a and to 0 are discussed by
Dharma-%'ardhana and Taylor. However, it can be
shown that these corrections are not important in the cal-
culation of V„,. Since our main interest here is the calcu-
lation of V„„we have not evaluated the correction fac-
tors.

It should be pointed out here that our results corre-
spond to realistic semiconductor situations. The densities
of electrons trapped on the surface of liquid He, which are
of the order of 10 cm are not the aim of the calcula-
tions of this paper. This is a very low density electron
gas. Typical densities which exist in superlattices or at
the interfaces of MOSFET junctions are of the order of
10"—10' cm . The medium here is that of semicon-
ductor, the effective mass m ' (=am, ), and the Coulomb
interactions are such that e is scaled by e /e and
m =am, where e is the static dielectric constant. Our
calculations are made with a vacuum as medium. Howev-
er, if we take the units
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—V„

(total)

TABS.E I. Values of the exchange-correlation potential V„, and the thermodynamic potential 0„,as a function of I; for several
electron densities. Correlation andexchangecontributionsarealso tabulated. (AB units are Rydbergs. ) (a), (b), (c), and(d) correspond
to r, =0.195 (n =3X10' cm ); r, =1.066 (n =10' cm ); r, =3.372 (n =10' cm ); and r, =4.998 (n=4.55~10' cm ), respec-
tively, when e =1, m =m. Corresponding densities in realistic situation of semiconductor with e„=8, m =0.2m are r, =0.195
(n=1.87)&10' cm ); r, =1.066 (n =6.26&10' cm ); r, =3.372 (n=6.25X10"cm ); and r, =4.998 (n=2.85)&10"cm ~).

g t.~) O(r) n," n„ 0„, «A p) (p)—V,
' —V„,

N
t (l =0) (1&0) (total) (I =I (I~Q)

0.1
0.4
0.8
1.0
1.4
1.7
2.0
2.4
3.0
3.5
4.0
4.5
5.0

10.0

0.2660
0.8812
1.1612
1.1956
1.1885
1.1557
1.1150
1.0581
0.9768
0.9159
0.8616
0.8131
0.7699
0.5083

0.3431
0.1476
0.0803
0.0651
0.0473
0.0392
0.0333
0.0279
0.0223
0.0192
0.0168
Q.0149
0.0134
O.OQ66

0.6091
1.0288
1.2415
1.2607
1.2358
1.1949
1.1483
1.0860
0.9991
0.9351
0.8784
0.8280
0.7S33
0.5149

(a) «, =0.194654 (n=3.0X
6.0432 6.6523
5.1724 6.2012
4.2560 5.4975
3.9364 5.1971
3.4615 4.6973
3.1982 4.3931
2.9865 4.1348
2.7597 3.8457
2.4989 3.4980
2.3300 3.2651
2.1913 3.0697
2.0745 2.9025
1.9747 2.7580
1.2537 1.7686

10'7 cm )

0.0498
0.5017
1.1240
1.2983
1,4791
1.5310
1.5450
1.5315
1.4791
1.4244
1.3676
1.3121
1.2592
0.8882

0.4845
0.2706
0.1550
0.1265
0.0927
0.0772
0.0658
0.0552
0.0443
0.0381
0.0334
0.0297
0.0267
0.0133

0.5343
0.7723
1.2790
1.4248
1.5718
1.6082
1.6108
1.5867
1.S234
1.4625
1.4010
1.3418
1.2859
0.9015

9.2504
8.9082
7.8101
7.3365
6.5734
6.1266
5.7556
5.3504
4.8741
4.5597
4.3005
4.0789
3.8898
2.7994

9.7847
9.6805
9.0891
8.7613
8.1452
7.7348
7.3664
6.9371
6.397S
6.0222
5.7015
S.4207
5.1757
3.7009

{b) r, =1.06616 (n=1.0X10' cm ~)

0.1

0.4
0.8
1.0
1.4
1,7
2.0
2.4
3.0
3.5
4.0
4.5
5.0

10.0

0.1264
0.4227
0.5887
0.6226
0.647S
0.6479
0.6402
0.6240
0.5949
0.5699
0.5459
0.5233
0.5022
0.3587

0.2839
0.1383
0.0782
0.0638
0.0467
0.0388
0.0331
0.0277
0.0223
0.0191
0.0168
0.0149
0.0134
0.0067

0.4103
0.5610
0.6669
0.6S64
0.6945
0.6867
0.6733
0.6517
0.6172
0.5890
0.5627
0.5382
0.5156
0.3654

1.1033
0.9443
0.7770
0.7187
0.6320
0.5839
0.5453
0.5039
0.4562
0.4254
0.4001
0.3788
0.3605
0.2289

1.5136
1.5053
1.4439
1.4051
1.3265
1.2706
1.2186
1.1556
1.0734
1.0144
0.9628
0.9170
0.8761
0.5943

0.0366
0.2605
0.5534
0.6467
0.7620
0.8089
0.8355
0.8511
0.8506
0.8387
0.8216
0.8020
0.7814
0.6023

0.3972
0.2477
0.1490
0.1227
0.0909
0.0761
0.0651
0.0547
0.0441
0.0379
0.0333
0.0296
0.0267
0.0133

0.4338
0.5082
0.7024
0.7694
0.8529
0.8850
0.9006
0.90S8
0.8947
0.8766
0.8549
Q.8316
0.8081
0.6156

1.6889
1.6264
1.4259
1.3395
1.2001
1.1185
1.0508
0.9768
0.8899
0.8325
0.7852
0.7447
0.7102
0.5111

2.1227
2.1346
2.1283
2.1089
2.0530
2.0035
1.9514
1.8826
1.7846
1.7091
1.6401
1.5763
1.5183
1.1267

(c) r, =3.3715 (n=10)&10's cm ~)

0.1

0.4
0.8
1.0
1.4
1.7
2.0
2.4
3.0
3.5

4.5
5.0

10.0

0.0619
0.2114
0.3099
0.3357
0.3639
0.3735
0.3774
0.3774
0.3713
0.3635
0.3546
0.3453
0.3360
0.2603

0.2124
0.1208
0.0732
0.0607
0.0452
0.0379
0.0325
0.0273
0.0220
0.0190
0.0166
0.0148
0.0133
0.0066

0.2743
0.3322
0.3S31
0.3964
OAQ91

0.4114
0.4099
0.4047
0.3933
0.3825
0.3712
0.3601
0.3493
0.2669

0.3489
0.2986
0.2457
0.2273
0.1998
0.1847
0.1724
0.1593
0.1443
0.1345
0.1265
0.1198
0.) 140
0.0724

0.6232
0.6308
0.6288
0.6237
0.6089
0.5961
0.5823
0.5640
0.5376
0.5170
0.4977
0.4799
0.4633
0.3393

0.0226
0.1353
0.2818
0.3333
0.4046
0.4393
0.4634
0.4842
0.4999
0.5044
0.5041
0.5009
0.4956
0.4196

0.2956
0.2079
0.1360
0.1144
0.0868
0.0734
0.0632
0.0535
0.0433
0.0374
0.0329
0.0293
0.0264
0.0132

0.3182
0.3432
0.4178
0.4477
0.4914
0.5127
Q.5266
Q.5377
0.5432
0.5418
0.5370
0.5302
0.5220
0.4328

0.5341
0.5143
0.4509
0.4236
0.3795
0.3537
0.3323
0.3Q89
0.2814
0.2633
0.2482
0.2355
0.2246
0.1616

0.8523
0.857S
0.8687
0.8713
0.8709
0.8664
0.8589
0.8466
0.8246
0.8051
0.7852
0.7657
0.7466
0.5944

0.1
0.4
0.8
1.0
1.4

0.0467
0.1608
0.2400
0.2621
0.2884

0.1865
0.1124
0.0709
0.0588
0.0443

0.2332
0.2732
0.3109
0.3209
0.3327

(d) r, =4.998255 (n=4. 55~10'" cm }

0.2353 0.4685 0.0180
0.2014 0.4746 0.1037
0.1657 0.4766 0.21S4
0.1532 0.4741 0.2558
0.1348 0.4675 0.3138

0.2564
0.1889
0.1286
0.1094
0.0843

0.2744
0.2926
0.3440
0.3652
0.3981

0.3603
0.3469
0.3042
0.2857
0.2560

0.6347
0.6395
0.6482
0.6509
0.6541
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g(r)
C

N
(I =0)

O(r)
C

(I~O)

g(&)

N
(total)

TAIPEI.E 1. (Continued)

(I =0)

V(r) V(r)

(total)

—V„ —V„,

1.7
2.0
2.4
3.0
3.5
4.0
4.5
5.0

10.0

0.2988
0.3044
0.3074
0.3061
0.3022
0.2970
0.2911
0.2848
0.2283

0.0372
0.0321
0.0270
0.0219
0.0188
0.0165
0.0147
0.0133
0.0066

0.3360
0.3365
0.3344
0.3280
0.3210
0.3135
0.3058
0.2981
0.2349

0.1245
0.1163
0.1075
0.0973
0.0907
0.0853
0.0808
0.0769
0.0488

0.4605
0.4528
0.4419
0.4253
0.4117
0.3988
0.3866
0.3750
0.2837

0.3434
0.3649
0.3847
0.4021
0.4093
0.4122
0.4124
0.4106
0.3615

0.0716
0.0622
0.0527
O.Q429

0.0370
0.0326
0.0291
0.0263
0.0131

0.4150
0.4271
0.4374
0.4450
0.4463
Q AAA8

0.4415
0.4369
0.3746

0.2386
0.2241
0.2084
0.1898
0.1776
0.1675
0.1588
0.1515
0.1090

0.6536
0.6512
0.6458
0.6348
0.6239
0.6123
0.6003
0.5884
0.4836

e =2, A =1=2m'=2am, ,

then the Bohr radius is (e„/a) times 0.529X 10 cm and
the unit of energy is (a/e„)X13.6 eU. Under these
circumstances ac ——(e„/a)ao and the redefined

r, =(1.0665X10/v n) a/e where n is the number of
carriers per square centimeter. Typical, in the semicon-
ductor inversion layer' e„-8,a-0.2. For this particu-
lar case, we easily see that when the above values of
dielectric constant and effective mass are used the r, and
Tr values for various realistic densities can be calculated.
Typical values of r, and TF are given in Table II. Our
fitted formula for V„, can be directly used with appropri-
ate r, and TF values and the corresponding energy unit.

The experiments on heterojunctions are usually done
below 100 K. The values of Tr critically distend upon
the medium through m' and e„. As can be seen from
Table II, at such temperatures any degree of degeneracy is
possible. The region of intermediate degeneracy
(1(t(10) is inaccessible by any limiting formula. The
value of our work lies in giving V„, in parametric form
for the range of intermediate degeneracy.

I.et us start by considering the exchange contribution to
the potential as shown in Fig. 1. The curves in Fig. 1 are
the universal functions of the variable t and are indepen-
dent of n. This is the artifact of the exchange model and
the similar result is also obtained in three dimensions. "
In the quantum regime, i.e., t &~1, V [n, t] is a proxi-
mately constant and tends to zero slowly as t ' when
t »1 [see Eqs. (14) and (16)]. The limiting behavior for
small t agrees with that given by Isihara and Toyoda.
The effect of exchange is normally not included for t » 1.
However, our result shows that the exchange contribution
is not negligible.

The behavior of the static and dynamic parts of polari-
zation as a function of Q are shown in Figs. 2 and 3,
respectively. The various limits of II' ' have been already
given in Eqs. (22) and (23). Static part of II' ' is approxi-
mately constant up to Q=2, its value being 0.159 in the
low temperature limit. This behavior is in agreement with
that calculated by Maldague. ' Contrary to the static
part, the dynamical polarization goes to zero for all t at

TABLE II. Values of realistic densities that occur in semi-
conductor 2D EG. Densities are in cm and corresponding
values of r, and T~ are calculated with e„=8, m =0.2m. The
conversion factors are r, =(1.0665 X 10~/V n )(a/e„), unit of en-

ergy is R~ = 13.6(a/e ) eV, Tr ——(0.316066X 106/r, )(a/ e„).
Density
(cm )

1011

2X 10"
5X 10"

10"
10"

5~10"
10'4

8.43
5.96
3.77
2.67
0.84
0.38
0.27

13.89
27.79
69.47

138.94
1389.40
6947.70

13 894.00

Q=0. It is seen from Fig. 3 that the peak in II'"'(Q, vi)
shifts to larger values of Q as 1 increases and also as t in-
creases. The widths of the peaks in II' '(Q, vt) become
broader with increasing 1 and increasing t.

Numerical evaluation of Eqs. (24) and (25} has been
carried out for various values of n and t and the total
correlation potential is displayed in Fig. 4 for three typical
densities as a function of t. The exchange potential is also
displayed for comparison in the same figure. It is seen
from the figure that the exchange part dominates over
correlation at smaller values of t and the behavior is re-
versed for large t values. The crossover of the dominance
of exchange over correlation occurs approximately near
the degeneracy temperature. The crossover temperature
tc shifts to higher values as the density increases. A simi-
lar behavior is noted in the three-dimensional case by
Gupta and Rajagopal. 6 Our results of 0',"' at low tempera-
tures agree with those of Isihara and Toyoda and they
agree with those of Fetter'z in the high-t limit.

In general, evaluation of Eqs. (24) and (25} is fairly
complicated, particularly at low t because of the sharp fall
of f(x). This difficulty has been overcome by dividing
the range of integration into different parts depending on
the shape of f(x) and II' '(Q, vt). The 32-point Gaussian
quadrature was used to carry out the integrations.
Evaluation of V,

'"' is further complicated by the infinite
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TABLE III. Comparison of calculated values of V„,[n, t]/V„[n, 0] with those obtained by fitting formulas (Bl) for several physi-
cally interesting densities.

r, =0.19
Calculated Fitted

r, =1.06
Calculated Fitted

rg =3.37
Calculated Fitted

r, =5.0
Calculated Fitted

0.1

0.4
0.8
1.0
1.4
1.7
2.0
2.4
3.0
3.5
4.0
4.5
5.0

1.0578
1.0465
0.9826
0.9471
0.8805
0.8362
0.7963
0.7499
0.6916
0.6510
0.6164
0.5860
0.5595

1.0632
1.0458
0.9964
0.9647
0.8962
0.8460
0.7998
0.7462
0.6831
0.6437
0.6134
0.5900
0.5718

1.2569
1.2639
1.2602
1.2487
1.2156
1.1863
1.1554
1.1148
1.0566
1.0119
0.9711
0.9334
0.8989

1.2499
1.2539
1.2470
1.2385
1.2131
1.1881
1.1597
1.1191
1.0575
1.0097
0.9667
0.9292
0.8969

1.5957
1.6056
1.6266
1.6312
1.6308
1.6223
1.6082
1.5852
1.5441
1.5075
1.4704
1.4336
1.3981

1.5912
1.6089
1.6255
1.6301
1.6316
1.6257
1.6142
1.5917
1.5473
1.5061
1.4651
1.4267
1.3921

1.7619
1.7754
1.7992
1.8068
1.8156
1.8141
1.8077
1.7927
1.7623
1.7316
1.6997
1.6665
1.6334

1.7631
1.7799
1.7982
1.8049
1.8127
1.8130
1.8086
1.7959
1.7655
1.7342
1.7012
1.6693
1.6398

moves in the Hartree field of all other electrons. The
RPA is very successful in the long-wavelength limit in ex-
plaining plasmon modes and screening. However, RPA
has some shortcomings. It does not take short-range
correlations into account adequately. Jonsoni2 has shown
that RPA is less satisfactory in two dimensions than in
three dimensions. The analysis presented by Jonson is
valid for T=O. Since RPA fails to describe short-range
correlations, the pair-correlation function g (r) does not go
to the value —,

'
but becomes negative at r =0. As a matter

of fact this negativeness of g (r) around r =0 is more pro-
nounced in two dimensions than in three dimensions.
Various different remedies have been suggested to im-
prove RPA results. To take exchange contribution to the
dielectric constant into account, one writes

e(q, co) =1—V(q)II(q, ai)[1—G(q)],
where G(q) is a correction factor; clearly with G(q)=0
we recover the RPA result.

Different forms of G(q) give different approximations.
Historically Hubbard was the first to give a correction to
RPA in three dimensions. However, one of the best
corrections to RPA is due to Singwi, Tosi, Land, and
Sollander (STLS), whereby g (r) turns out to be positive
around r =0 in three dimensions. Similar results are true
in two dimensions also. Jonson compares RPA, Hubbard,
and STLS approximations to the correlation part of inter-
nal energy in two dimensions. %e have plotted E, as a
function of r, of the result. Clearly V, is proportional to
dE, /dr, . The T=O results indicate that, if we assume
STI S results are correct, then V, is overestimated by
about 30—40 %%uo by RPA in the range of r, under con-
siderations in two dimensions. There is no detailed inves-
tigation of this problem at finite temperature. We have
not done such detailed investigation at finite temperatures
but we believe that similar trends may persist.

Then there is one more problem of charge-density wave
(CDW). Maldague has investigated first-order exchange
to polarization propagator at T=0 He finds that II."'(q)
has a sharp cusplike peak at q=2kr. At this point

II' '(q) falls monotonically. In three dimensions, howev-
er, II"'(q) has no sharp cusplike singularity. From
Maldague's analysis, it appears that in two dimensions
II"'(2kF) exceeds II' '(2k~) for r, & 1. There are "ladder"
contributions to Il(q) and they are approximately taken
into account by Maldague. The analysis shows that
Il(q) is singular for r, =0.9. This certainly will be reflect-
ed in Q and V. There is no detailed analysis, however.
At finite temperatures we expect that such singularities
will be blunted out and we feel that RPA will not be as
bad. At least so far, no CDW is positively observed ex-
perimentally. In our paper, we have initially used finite
temperature RPA for 2D EG and our V„,[n, T] should at
least be useful as an initial starting potential for local-
density-functional calculations.

As indicated in the Introduction, the present calculation
will be useful to obtain the nonlinear response of electrons
due to impurity as well as the binding energies. The cal-
culations in these directions are in progress.
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APPENDIX A: LOVE- AND HIGH-TEMPERATURE
LIMITS OF Q„[n,t] AND V, [n, t]

I.ow temperatures. Equation (5) for Q„[n,t] can be
written as

Q. [n, &l
dQ du g(u, u)

Q [n 0] 8 o eu —a+1 0 eu —a+1

where we have used x /t =u and y /r =U and
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K(2(uv)'~ /(~u+~v })
g(upv)=

and thus we get

~x —a+ 1

I(t) Ii(t)+Iz(t)+I3(t)+I4(t)

where

I,(t)= f du f dvg(u, v),
a a

I2(t)= —2 f du f dv g(u, v),

The Fermi functions in (A 1) can be simplified as

co 1 a a 1
dx = dx — dx

e —+1 o ~a—x+ 1

(A2)

I2+I3 =4 z, ——2 ln2 ——1nz+ —na1 z 1 1

e'+1 a

4 m 1 n D——21n2 — (1—V)+-
a

lna
6

where the constant 4' and D are given in Sec. II.
To calculate I4 we use the same procedure as in Iz and

I3 and after some algebra

I4- 1
dg' dg ln

o et+1 o

l, ()) 2J du =f dr (((u, v),

a 00 1
I&(t)= du — du4 o a-m+1 a I—a+1

V „ g Q, V

The term Ii simply becomes 8a / /3. The second and

the third terms Iz and I3 can be simplified by using the
substitutions a —v =z and v —a=z, respectively. Carry-

ing out the u integral we get
I

I2 ——4v a f —dz Ev'a z /v a, —
~s+ 1

00

I3 ——4 z a+zE a a+z
O

1'X3 4 2+ ln
22y4 z' 1+2

1

3X4

2
4 1K(z}=ln —, +z' 2

r

r

1~3 4+ ln

ln z*
2 lQ

1X2
'

t4

1X2 3X4

K(V'a/(a+z) )a+z
where E is the elliptic integral of the second kind. The
upper limit in the integration I2 can be approximated to
()() with only exponential errors. The elliptic integrals
have the series expansions'

E(z)=1+—ln
1 4 1 z'
2 z' 1&2

where B is given by Eq. (13).
Adding I„ I2, I3, and I4 and with a-1/t we get

Eq. (13) and the corresponding Eq. (14). The high-
temperature limit is obtained by using a straightforward
procedure and hence not discussed.

V„,[n, t] B(r, )
=A(r, )+

V [n,0] ' [t —to(r, }]'+C'(r,}
'

where

A(r, )=az+bzr, czr, , —2

B(r, )=att bttr, +ctt tan—h(dttr, ),
C(r, ) =ac+bctanh(ccr, ),
to(r, ) =ar+brr, cTr, , —2

(B1)

and to is the maximum of the ratio. The numerical fit-
ting values are as follows:

ag ——0.428 837, bg ——0.238 679,

eg ——0.007 816, ag ——1.142 037,

btt ——0.899 895, ca ——8.949 627,

da =1.123990' ~c=1.582764

bc ——2.219435, cc——1.507 691,
aT ———0.153783, bT ——0.567 801,

e~ ——0.044 602 .

APPENDIX 8: CURVE PITTING OF V [n, t]/ V„[n,0]

The ratio V„,[n, t]/V„[n, 0] at various r, and t is tabu-
lated in Table III. The simple Lorentzian equation to fit
this ratio is of the form

z'=(1—z')'" .

Retaining only the lowest-order terms, we get
The values obtained using Eq. (Bl) are tabulated in
Table III.
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