PHYSICAL REVIEW A

VOLUME 34, NUMBER 6

DECEMBER 1986

Dynamics of a Lennard-Jones system close to the glass transition

U. Bengtzelius
Institute of Theoretical Physics, Chalmers University of Technology, S-412 96 Goteborg, Sweden
(Received 29 July 1986)

Numerical results on the dynamics in a Lennard-Jones system close to the glass transition are
presented, using a kinetic model presented in an earlier paper. The theory is based on the Zwanzig-
Mori procedure for deriving formally exact transport equations combined with mode-coupling ap-
proximations. Results for a number of different dynamical quantities of experimental interest are
presented and the model is shown to reproduce many of the characteristic features of a liquid-glass
transition. Comparisons are made with available computer simulation data and analytical results

for the same mode-coupling model.

I. INTRODUCTION

Experiments on a variety of glass-forming systems have
revealed some quite remarkable behavior when approach-
ing the glass transition point. Volume, entropy, and free
energy change continuously when passing through the
transition, whereas the compressibility, the thermal ex-
pansion coefficient, and the specific heat seem to change
discontinuously. There is always some smearing of the
transition due to the fact that the cooling rate has to be
compatible with laboratory and glass-forming conditions.
The viscosity increases many orders of magnitude when
approaching the transition point from the supercooled
liquid side and the temperature dependence shows a
characteristic non-Arrhenius behavior. This implies that
the diffusion process is not of a simple activated type.
Extremely slow structural relaxations are observed both
when approaching the transition from the liquid and glass
side and they are of a characteristic nonexponential type.
Structural relaxations are occurring on various time
scales, ranging from microscopic all the way to macro-
scopic times, and various kinds of experimental tools have
to be used to cover this extremely broad time region.

Computer simulations have revealed that even such
simple systems as hard sphere and Lennard-Jones show a
transition from a liquid to a glass, provided that the cool-
ing rate is sufficiently fast to prevent crystallization from
occurring. A remarkable fact is that various kinds of sys-
tems ranging from polymers to computer systems show a
rather universal behavior close to the transition point.
This is particularly apparent if one scales time and tem-
peratures in an appropriate way.! The above facts suggest
that the basic mechanism behind the glass transition is
essentially the same in all cases and does not depend sensi-
tively on the specific form of the interaction. This is cer-
tainly not true for the crystallization rate nor for the abso-
lute values of the relaxation times. Therefore, one should
think of times and temperatures in some scaled units.
One may also have to exclude such glasses which form a
characteristic network, like SiO,.

The theory of dynamics of simple liquids has by now
been brought to maturity. The agreement between the
theory, based on the Zwanzig-Mori formalism and mode-
coupling approximations, and experimental and computer
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simulation data on a variety of properties, are quite im-
pressive.? In a series of recent papers®~> this kind of ap-
proach was extended to describe dynamics of supercooled
liquids and of glass transitions. It was found that the
theory incorporates a mechanism for a transition from a
diffusive liquid state to a glassy state with vanishing dif-
fusivity. The quantity of prime interest is the time-
dependent density correlation function

F(k,t)=%(8n(k,t)8n(—k,O)) ) (1.1)
which has been investigated extensively through light
scattering and neutron scattering experiments and also
through computer simulation. Here 8n (k,?) is the micro-
scopic density fluctuation around its uniform average
value. The glass transition is characterized as a transition
from an ergodic to a nonergodic behavior and the glass
shows up as a time-persistent part in F(k,?). In the works
referenced above, the ergodicity breaking originates from
a strong nonlinear coupling of the density fluctuations.
The theory was later generalized by Bengtzelius and
Sjogren® to include coupling between density and tempera-
ture fluctuations, in this way recovering the complete gen-
eralized hydrodynamic expression for the density correla-
tion function with frequency and wave-vector-dependent
transport coefficients entering.” Although the freezing
condition was unaltered by this improvement, it provided
some exact relations for the discontinuities in the
compressibility, the thermal expansion coefficient, and the
specific heat.

It is important to notice that in the theory of
Bengtzelius, Gotze, and Sjélander" (hereafter referred to
as I) the ergodicity breaking arises from strong coupling
of density fluctuations whose wave vectors are within the
main peak of the static structure factor S(k). These re-
flect the relaxation of the local structure and trigger the
transition. It is of importance to stress that the bracket
( ) used in Eq. (1.1) and throughout denotes an average
over the equilibrium liquid ensemble. In our treatment
the liquid is always the true equilibrium state, since cry-
stallization is prevented, and the transition to a nonergod-
ic state comes out from solving the nonlinear equations
self-consistently. The frozen structure we obtain here
would correspond to the structure one has to introduce a
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priori when a restricted-ensemble approach is used. A
purely hydrodynamic approach as presented by Das
et al.,® Das and Mazenko,” and Siggia'® differs from our
approach on an important point. They consider only the
long-wavelength limit whereas in our case the self-
consistency requires that we consider all wavelengths and
frequencies simultaneously. The hydrodynamics then fol-
lows as a byproduct.

In paper I the density correlation (1.1) was expressed in
terms of a memory function M (k,t). With a mode-
coupling approximation for the latter, taking only pairs of
density fluctuations into account, a closed equation for
F(k,t) was derived with the only input being the static
structure factor. Due to the complexity of this equation,
a simplification was made by replacing S(k) with a &
function positioned at the main peak and ignoring all oth-
er structure in S (k). This yielded an equation identical to
the one analyzed by Leutheusser.’ The analysis led to a
prediction for the density-fluctuation spectrum and to cer-
tain scaling laws. In particular, the viscosity 7 was found
to diverge at the transition point as |e| ~!75, where
€x(Tg—T)/Ty and T, is the glass transition tempera-
ture. The diffusion constant would then vanish as
|e| 7%, Recently the power-law hypothesis for the
viscosity was tested for a number of real glass-forming
substances!! and the exponents were found to lie in the
range 1.6—2.3.

An extended mode-coupling theory was later analyzed
in detail by Gotze,'>!* where the results from the simpli-
fied model>* emerged as a special case.

The purpose of the present paper is to present detailed
numerical calculations on the dynamics based on our full
mode-coupling model in I. Comparisons are made with
the predictions by Gotze'>!® and with molecular dynam-
ics data by Ullo and Yip.!* The system we consider is a
Lennard-Jones system.

The paper is organized as follows. In Sec. II we present
the basic equations used in the numerical analysis, and in
Sec. Il we summarize the main predictions by Gétze.'>!3
Numerical results of our calculations and comparisons
with Gotze’s predictions and with molecular-dynamics
data are presented in Sec. IV. In Sec. V we present the
main conclusions.

II. BASIC FORMULAS

The treatment of the density correlation function
F(k,t) and the corresponding self part F%(k,t) follows
very closely that of Sjogren,! Sjogren and Sjolander,'® and
Wahnstrom and Sjogren.!” We shall consider a monatom-
ic system with the atomic mass m.

One can always write the correlation function in a gen-
eralized hydrodynamic form (see, for instance, Ref. 6)

z+M(k,z)
2_k2/mpBS(k)+zM (k,z) ’

F(k,z)=—S(k) (2.1)
z

where B=1/kpT is the inverse temperature, S(k) is the
liquid static structure factor, and M (k,z) is a generalized
friction term. F(k,z) is defined as the Laplace transform
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Fikz)=i [ " dte™F(k,n, Imz>0 22
and similarly for M (k,z) and other dynamical quantities.
The expression for F*(k,t) is the same as (2.1), except that
S(k) is replaced by unity and another memory function
M*(k,z) enters. The corresponding spectral function is
the cosine transform of F(k,t?), i.e.,

F'(k,0)=ImF(k,z=w+i0") . 2.3
For convenience we rewrite Eq. (2.1) in the form*
R(k,2) — mPBS(k) [z +M(k2)], 2.4)

1+zR(k,z) k2

with R (k,z)=F(k,z)/S (k), and similarly for F*(k,z).

Both M (k,t) and M*(k,t) include effects from single
binary collisions as well as more collective events which
give rise to a decay on a much slower time scale. Consid-
ering glass transitions we need only worry about the slow-
ly decaying part. However, if we want to compare our re-
sults with computer-simulation data we may have to in-
clude the short-time part as well, which is definitely
necessary in the ordinary-liquid region. The collective
events seem to be quite well represented through a low-
order mode-coupling approximation.!> For F*(k,t) the
single binary collisions are well taken care of through a
slight generalization of the ordinary Fokker-Planck equa-
tion, introduced originally by Lebowitz, Percus, and
Sykes'® and Akcazu, Corngold, and Duderstadt.”® Fol-
lowing Sjogren!> and Wahnstrom and Sjogren!” we split
F%(k,t) into a binary-collision part F*3(k,t), being the
solution of our generalized Fokker-Planck equation, and a
more collective part. Using their results and their nota-
tions we obtain after some rewriting

_Rk2) gy | _FPez)
1+2zR (k,z) 1+ZF’B(kyZ)
n mT?-[I‘fl(k,z)—~ I$i(k,2)]
N mii(k)Réo(k,z, (2.5)
and
s sB
Fi(k,2) Fikz)  mBps k2. (26

1+zF5(k,z) = 1+zFB(k,z) = k?

Here I'%,(k,1) and T35(k,?) extend essentially over the time
for a binary collision and the latter one enters in the equa-
tion for F*3B(k,z). Following Ref. 15 we make a Gaussian
ansatz for their time dependence and determine the corre-
sponding relaxation times from the short-time expansion
of R(k,t) and F*(k,t) up to power . When considering
small frequencies we can take the zero-frequency limit of
all the binary parts in (2.5)—(2.6) and we are then back to
the full model in I. The essential dynamics are then con-
nected with collective events entering in R}, and R
For these we make the lowest-order mode-coupling ap-
proximation'
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1 n dk, T ' N ’ ’ 2
= ke (k') +[k-(k—k k—k'|)
Rlo(k,t) B (zﬂ)S{(kk)c( )+ [k-( e (| 1}
XS(k)S(|k—k'|)[R(k",\)R(| k=K' |,t)—RE(k’,)RE( | k—K'|,1)] 2.7
and
dk’' |
Rio(k,t)=—"— k-K')e (k") 2S (K",OR (k' ,)[F*( | k—K' | ,t) —F% | k—Xk'|,1)] . )
So(k,1) me(Zﬂ):"[( )e (k)]3S (k',t)R (k' ,)[F*( | |,6)—F° | 1,01 2.8)

Here, the interaction potential enters only through the
direct correlation function c(k)=[S(k)—1]/nS (k).
Furthermore, FO(k,t)=exp[—k?**/2mpB] is the free-
particle value of F*(k,t) and R5(k,t) is approximated by

RB(k,t)=[FOk,t)/F*(k,t)]R (k1) . (2.9)

The subtractions in (2.7) and (2.8) are necessary in order
to compensate for the fact that single binary events are in-
cluded elsewhere. This implies that the mode-coupling
terms start as t*. It takes a certain time to build up these
collective effects, but once there they will persist for quite
some time. The procedure is such that the frequency mo-
ments of R (k,t) and F*(k,t) are by definition exact up to
sixth order. However, in the present calculation the
binary collision time for I'?, is approximated by that for
3.5 One should be aware of the fact that the short-time
events are included in a realistic way but that the quanti-
tative accuracy is not very high.

In comparing with Ref. 15 we notice that here we have
ignored all mode-coupling terms involving currents.
These would play no essential role for our discussion of
the glass transition, except possibly renormalizing the
transition temperature slightly. The approximations in
(2.7) and (2.8) also imply a neglect of the coupling be-
tween density and temperature fluctuations, and for a gen-
eralization thereof we refer to an earlier paper.® Again,
this is not essential for our present discussion.

Equations (2.5) and (2.6) are now two coupled closed
equations which we have solved through an iteration pro-
cedure. Once the numerical solution was obtained, the
self-diffusion constant, the velocity correlation function,
and the mean-square displacement were calculated from'¢

D =i/[mBT%(k =0,z=0)] (2.10)

=Gk T/m)i [ dte™(v(0)-v(0))
=—1/[z+T%,(k=0,2)], 2.11)

(Ar20)=2 [ dr(t —T)(v(r)v(O) . (2.12)

The glass transition is characterized by the point where
fK)=R(k,t =) (2.13)

changes from zero to a finite value. Similarly we define
fk)=F(k,t=x), (2.14)

and the two form factors give the intensity of the strictly
elastic parts in coherent and incoherent scattering of neu-
trons, respectively.

III. THE PREDICTIONS OF GOTZE

In two recent papers'?!® Gotze has analyzed Eq. (2.4),
considering a more general functional relation between
M (k,t) and R (k,t) than assumed here. Therefore, his
conclusions should have a rather general validity.

Introducing a parameter € to characterize the distance
from the glass transition point—it can be e (T, —T)/T,
or ex(n —ng)/n, depending on whether temperature or
density is changed—he showed that the form factor f (k)
varies as

fo(k)+ae'?h(k), e—0t

where
he(k)=[1—f(k)H(k) (3.2)

and a is a specified number.'>!* Here f°(k) is the limit
value obtained for f(k) when approaching the transition
point from the glass side and /°(k) is the right-hand eigen-
vector of a certain stability matrix. Only the largest
eigenvalue of this matrix and the corresponding eigenvec-
tors are of interest and the glass transition occurs when
this eigenvalue, being less than one in the glass region,
reaches unity.

When restricting ourselves to the form of M (k,t) used
in this paper, the stability matrix is obtained from R}y in
Eq. (2.7). Replacing R (k,t) by f(k) and writing
[mBS (k)/k*|Rb=F(f,) in the matrix form

Fulf)=1 3 Vikia.p)fpfy » (3.3)
9.p
the stability matrix is defined as
oF
Cig=—(1—f, 2= 3 V(k;q,p)f,(1—f,)* . (3.4)
5f, <

Its largest eigenvalue and the corresponding right-hand
and left-hand eigenvectors, denoted by [; and Tk, have
been determined numerically after discretizing the wave-
vector space and introducing a fine mesh. Following
Gotze, we normalize the eigenvectors according to

S hlhe=1, ShEA—fi)=1. (3.5)
k k

The various scaling-law exponents are uniquely deter-
mined by one single parameter
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A= LCrgplely , (3.6
k.q.p
where
1 8f"k

1 VYT F )2
Coar=75 57 37, LS 1=1p)

=1V (k;q,p)(1—f (1= £, . (3.7)

The density-fluctuation spectrum is ruled by two scaling
frequencies

wcx |e]% w.x|e|?, (3.8)

where a=1/(1—x) and y=[1/(1—x)]+[1/(y —1)].

The values of x and y are obtained as the two solutions

for £ of the equation

1+8
2

A=T? / e, (3.9)

where I'(£§) being the y function. A third frequency w,,
being of the order of the Debye frequency, characterizes
the time scale of the true microscopic motion.

In the glass and close to the transition point we have

RU,)=f (k) + A, e2h(k)f , (w.1) (3.10)

for times large compared to 1/wy. On the liquid side we
have

R(k,)=fk)+A_|e|*hk)f _(o,.t)

for 1/wg<<t <<1/w,. The two 4, and A, are unspeci-
fied but interrelated constants and f.(7) are two scaling
functions, which, Laplace transformed, satisfy the equa-
tions

(3.11)

—F O+ 1A+ [ dret =0 (.12

and

FH et [T dre i (1=

with {=z /0, and T=w_t.
In particular, one finds for the corresponding spectral
functions

(3.13)

R, (ko) < (0. /@), o, <o <<®y , .14
R" (k,0) < (0. /0) ¥, o, <o <0y, .

and

R” (ko)< (@, /0) V2, 0! <o <<, . (3.15)

Apart from this, R’; (k,w) contains a strictly elastic com-
ponent with the strength f(k). For R” (k,w) it still
remains to determine the frequency dependence for
0 <o,.

The simplified model in paper I yields the value A=+
and this leads to x =0.209 and y =3.0. f_(w,t) was
found to decay exponentially for ¢ >1/w, and the dif-
fusion constant is proportional to w, leading to the ex-

ponent ¥y=1.76. For the full model in I no exact results
are known in this asymptotically small-frequency region.

IV. PRESENTATION OF NUMERICAL RESULTS

We have considered a one-component system with the
atoms interacting via the Lennard-Jones potential

v(r)=4e[(a/r)'*—(a/r)%] . 4.1)

In the presentation of the data we shall use reduced units,
where €, o, and m are the units for energy, length, and
mass, respectively. For argon the usual choice is
€/kp=120 K and 0=3.4 A. The corres?onding unit of
time is then 7o=(mo?/e)"/?=2.15%x10"'% s and that of
the diffusion constant Dy=5.37X10~% cm?/s. All quan-
tities in reduced units are marked by an asterisk, e.g.,
T*=kgT /¢ for the reduced temperature. The calcula-
tions were carried out for T*=0.6 and e=(n —n,)/n,
close to zero, with ng being the glass transition density.

The static structure factor, which enters as an input in
Egs. (2.5) and (2.6) was calculated separately using the op-
timized random-phase approximation? This was
presented already in an earlier paper’' where results were
given for the glass transition points of some different sys-
tems.

In the three-dimensional mode-coupling integrals (2.7)
and (2.8) one angular integration is trivial and with a suit-
able variable substitution we end up with two-dimensional
integrals in k space (see paper I). These were calculated
employing the Simpson integration procedure. By using a
special technique of storing intermediate results from the
inner integration the computational time increases linearly
with the number of k values rather then quadratically.
The resulting equations for R(k,z) and F*(k,z) were
iterated until convergence was achieved. For the binary
collision parts we followed the numerical procedure of
Sjogren'® and Wahnstrém and Sjogren.!’

The integrations were done up to value k*=30 and
with a mesh of Ak*=0.15 In each iteration the mode-
coupling terms R}y and Rj, in Egs. (2.7) and (2.8) were
calculated in time and then Laplace transformed and add-
ed to the binary parts in order to get the next iterated
values for R (k,z) and F*(k,z). The time integrations had
to be carried out with particular care since a very large
time interval was covered. For that reason the total inter-
val was first split up into several subintervals of increas-
ing length for increasing times. Each of the subintervals
was then given a fixed grid. Correspondingly, the fre-
quency interval was first split into subintervals of decreas-
ing length with decreasing frequencies and each was given
a fixed grid. In this way we could handle simultaneously
narrow quasielastic peaks and broad inelastic bands in the
frequency spectrum. It turned out to be important to
check that the total time interval chosen at the beginning
was large enough. Therefore, after the first iteration pro-
cedure had converged we extended the total time span by
adding one subinterval, implying a splitting of the small-
est frequency subinterval into two, and then continued the
iteration until new convergence was achieved. If neces-
sary, this was continued until no noticeable change was
found in the final results. By transforming from frequen-
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¢y to time and then back to frequency again we could
check the accuracy of our procedure. When carrying out
an iteration for a new density closer to the transition point
we used the previous calculated R (k,z) and F*(k,z) as the
starting point for the iteration. We tested that the same
results for R (k,z) and F*(k,z) were achieved irrespective
of whether the starting values were taken from a higher or
lower density. For the density closest to the transition
point in the liquid, 120 iterations were required, which
took 30 h of computer time on our Gould 32/8780.

The calculations were carried out for liquid and glass
densities for T*=0.6. In the glass the asymptotic values
for Rhy(k,t) and Riy(k,t) were subtracted in each itera-
tion before carrying out the Laplace transformations. The
form factors obtained in this way could then be checked
against those calculated directly as in Ref. 21.

In addition to the calculations above we have deter-
mined the eigenvalues and eigenvectors of the correspond-
ing Goétze stability matrix (3.4). The form factors were
calculated as in Ref. 21 and the transition point was
found from this to lie in the range 0.9601 < n; <0.9602.
The main results are as follows.

(i) For n*=0.9602 the largest eigenvalue was found to
be 0.993, whereas the next largest is 0.283 with a negligi-
ble imaginary part. Changing to a slightly higher density,
n*=0.9603, the largest eigenvalue is 0.986 and it de-
creases to 0.912 for n*=0.9654. This implies that the
glass transition occurs at a slightly lower value than
n*=0.9602. The largest eigenvalue follows very closely a
€!/? dependence as predicted by Gotze.'>!3

(ii) The scaling parameter A in Eq. (3.6) was calculated
to A=0.714, which through Eq. (3.9) gives x =0.358 and
y =2.234 for n*=0.9602 and T*=0.6.

Our main results will be presented through a series of
figures, to which we make appropriate comments. In Fig.
1 we show the calculated static structure factor and the
form factors f(k) and f*(k) at the critical density
ng =0.9602. The right-hand eigenvector I(k), corre-
sponding to the largest eigenvalue of the stability matrix,
is shown in the insert. We find that the form factors ap-
proach their critical values as €!/2 in agreement with the
prediction of Gétze, Eq. (3.1). The form factors are very
similar to those in paper I for a hard-sphere system, ex-
cept in the range 1 < k* <5. This difference is due to the
bump in S(k) in the same k region and could be an ar-
tifact of the optimized random-phase approximation.
Fortunately, this k region has a very small influence on
our main results and has a negligible effect on the value of
our critical density.

Ullo and Yip'* have carried out molecular-dynamics
simulations for a truncated and shifted Lennard-Jones po-
tential. For the same potential we reported a critical den-
sity of ng =0.965 for T*=0.6 in Ref. 21. The values of
f(k) produced by the simulations ranged from roughly
0.5 for small k values to 0.8 around the main peak in
S(k) (k* =~7), which is in reasonable agreement with our
findings. From their data on pressure versus density at
T*=0.6 they estimated an ng ~1.02, whereas their dif-
fusion constant seems to vanish near n* ~1.1. Hence, in
our predictions the transition occurs at a lower density
than in Ref. 14. In Ref. 21 the possible sources of errors

110 L T T
fs(k
(k) ) (a)
107}
f(k) s
05F ~
0 0, 20
0 10 ke 20 30
4 -
S(k)
3t
2 L
1 -
0 10 20 30

k*

FIG. 1. (a) Form factors f°(k) and f*(k) at the glass transi-
tion point ng; =0.9602, T*=0.6. The inset shows the right-
hand eigenvector /(k) of the Gotze stability matrix. Reduced
units are used here and henceforth. (b) S(k) of the Lennard-
Jones system at the glass transition point, calculated within the
optimized random-phase approximation. Main peak position is
at k*=17.0.

entering through our approximations were discussed.
However, the main interest concerns the dynamics close to
the transition and that is not affected by the absolute posi-
tion of this point.

Figure 2 shows the decay of R (k,t) in the liquid region
at k*=7. The various densities are expressed by the
separation parameter €. For comparison we also include
results corresponding to the triple point of argon. The
maximum time probed by Ullo and Yip'* is 487, (~10~1°
s) while our calculations extend out to 0.4 X 1057, (~10~°
s) for the states closest to n;. In order to compare our re-
sults with those obtained by Ullo and Yip (Fig. 3 in Ref.
14) we have to relate their densities to the separation pa-
rameter €. For instance, the value e= —0.052 would cor-
respond to n*=1.04, if their ng' is assumed to be 1.10
and we want to be at the same distance from the transi-
tion point. Even though there is a qualitative agreement
between our results and those of Ullo and Yip, their time
interval seems too short for having a detailed test of the
theory. One should notice that all the curves in Fig. 2
refer to the supercooled liquid state. As we will see, only
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FIG. 2. Normalized density correlation function R (k,t) vs
t* at k*=7.0 and for curve 4, e=—0.00031 (1.099); curve B,
e=—0.0054 (1.094); curve C, e=—0.0106 (1.088); curve D,
e=—0.021 (1.072); curve E, e=—0.052 (1.043). Curve F corre-
sponds to the triple point n*=0.844, T*=0.722 for argon.
The numbers in parentheses give the corresponding reduced
densities in Fig. 3 of Ref. 14, assuming their n; =1.10. Nega-
tive values for ¢ refer to the liquid state.

the top curve is sufficiently close to the transition point to
reveal the interesting asymptotic behavior.

In order to show R (k,t) over a longer time interval we
present in Fig. 3 our data on a logarithmic time scale.
The solid curves are for k* =7.0 and various €, whereas
the dashed curve refers to k*=6.0 and e=—0.00031,
and the two straight lines show the values of the form fac-
tor at the critical density for the two k-values considered.
The longest time considered here corresponds for argon to
10-%s. Being close to the transition point we clearly see
three separate time regions where the first one is truly mi-
croscopic and extends to times of order 7. It is obvious

1.0

R(k,t)

05

log,q t*

FIG. 3. R(k,t) vs logiot* at k*=7.0 (solid curves) and
k*=6.0 (dashed curve) and curve A4, e=—0.00031; curve B,
€=—0.00073; curve C, e=—0.0023; curve D, e=—0.0054,
curve E, £€=-0.0106; curve F, £=-—0.021; curve G,
€=—0.052; curve H, e=—0.00031. The straight lines show
the values of the form factor at the critical density for k*=7.0
and 6.0.

that the initial decrease of R (k,t) is caused by atomic vi-
brations analogous to those in crystals. This part is essen-
tially unchanged when moving into the glass. After a mi-
croscopic time R (k,t) stays approximately constant for a
long time with no noticeable diffusion process occurring
and this part is essentially the same as in the glass. In the
third region R (k,t) decreases slowly to zero due to dif-
fusion, whereas R (k,t) would stay constant in the glass.
The different time evolutions give rise in the spectral
function to two overlapping quasielastic peaks with dif-
ferent widths and a broad inelastic part extending to the
order Debye frequency. For the curves corresponding to
€= —0.0054 in Fig. 2 and Fig. 3, the intermediate time
region cannot really be separated out. The quasielastic
peak in the spectral function would simply be interpreted
as due to ordinary diffusion processes.

In Fig. 4 we show the k dependence of R (k,t) at four
different times, t*=10%, 10°, 10% and 10°, and
€=—0.00031. We notice that for the shortest time,
t*=10% R (k,t) has essentially the same structure as f (k)
in Fig. 1. This tells us that on this time scale the liquid
appears frozen. Another point to notice is that the time
decay of R (k,t) for k values at the main peak in S (k)
(k*~7) is considerably slower than for other k values.
As time increases it seems as if the region of k values of
significance narrows around k*=7. This would become
more obvious if we normalize the curves to have the same
maximum value. One may speculate that for very long
times the dynamics is well described by the simplified
model in paper I where only one wave number entered in
the memory function.

We have made an interesting observation concerning
the k dependence of R (k,t), which is demonstrated in
Fig. 5 for two different times, t*=10° and ¢*=10° and

=—0.00031. For the shorter time R (k,t) is very well
described by (for notations see Sec. III)

R (k,t)=f“(k)exp[ —a ()h(k)/f(k)] , 4.2)

while for the longer time we have excellent agreement
with

R, (k,t)=>b(t)exp[ —c()h(k)/f(K)] , (4.3)

1.0 ™ T

0 10 ™ 30

FIG. 4. R(k,t) vs k* for e=—0.00031 and curve 4,
*=10% curve B, t*=10% curve C, t*=10% curve D, t*=10°
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where a(t), c¢(t), and b(z) are k independent. Here a(t)
was adjusted to give agreement with our calculated R (k,?)
at k*=7.0 and in (4.3) b(¢) and c(¢) were adjusted to
give agreement at k*=7.0 and 24.0. The first ansatz
(4.2) is consistent with the general results of Goétze for
1/wg<<t << 1/, and we obtain Eq. (3.11) by expanding
the exponential term in (4.2) to linear order in a(¢) and
identifying a(t) with 4_ |e|!'?f_(w.t). The same an-
satz is found to hold equally well for #*=10? and is also
reasonable for ¢* =10*. However, when diffusion process-
es become dominant there are large deviations, as shown
in Fig. 5(b), and Eq. (4.3) applies better. The exponential
form seems still to hold but the prefactor becomes time
dependent. Since [h(k)/f(k)] has its minimum at
k*=17.0, R (k,t) decays most slowly for that wave num-
ber and this is consistent with what was found in Fig. 4.
The quantity one normally measures is the spectral
function. Both in order to cover a very wide range of
peak values and frequencies and to extract scaling-law ex-
ponents most easily we plot in Fig. 6 log;oR"(k,»)*
versus log;ow* for k*=7.0. A purely Lorentzian form
for R"(k,w)* gives for large »* a straight line with the
slope —2. As for the simplified model in paper I we find,
when approaching the transition point from the liquid

In R(k,t)

In R(k,t)

0 10 20 30
K*

FIG. 5. (a) In[R (k,1)] vs k* for t* =10 (solid curve). The
dashed curve represents a fit to Eq. (4.2) [completely overlap-
ping InR (k,t)] and the dot-dashed curve a fit to Eq. (4.3). (b)
Corresponding comparison for ¢*=10°.
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log o w*

FIG. 6. (a) logio[R"(k,®)] in reduced units vs log;pm* at
k*=17.0 for curve 4, e=—0.00031; curve B, e=—0.00073,
curve C, e=—0.0023; curve D, e=—0.0054. The dashed lines
indicate the approximately linear regions from where the slopes
—1.63 and —0.9 are extracted. (b) Corresponding curves on the
glass side for the same distances from the glass transition point.

side, a tendency of a quasielastic double-peak structure
[Fig. 6(a). From «curve A4 we can for
—4.5 <logpw* < —3 extract a straight line with the slope
—1.63 and this is not consistent with an exponential de-
cay in time. We notice that the other curves for larger
| €| values give essentially the same value for the slope.
For the simplified model the numerical solution gave a
slope —1.9, where the exact value is —2. The discrepan-
cy shows that one has to be very close to the transition
point before the proper asymptotic value is reached.

The other component of the double-peak structure can
be se¢en from the. approximately straight line for
—1.5<log;pw* < —0.5 with the slope —0.9. The corre-
sponding value for the simplified model is —0.605. No-
tice that the two peaks are much better separated in the
simplified model. One should keep in mind that the
separation parameter € defined in this paper is not identi-
cal with that in paper I. It is obvious that one has to con-
sider extremely small € values in order to see clearly the
double-peak structure. For log;qw* >0 we are in the
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microscopic-frequency region, where phononlike excita-
tions dominate.

The corresponding results for the glass are shown in
Fig. 6(b). Here the narrower one of the quasielastic peaks
on the liquid side has become strictly elastic and is not
shown in the figure. For —1.5<log o@* < —0.5 we can
extract a straight line with the slope —O0.8, which is
roughly the same as for the liquid.

The peak heights are found to scale as 1/ | € | with the
exponent a=1.67 on the liquid side and a=1.5 on the
glass side.

Another way of presenting some of our data is to plot
the half width at half maximum of the spectral function,
A, o, versus e. This is done in Fig. 7 for k*=7.0. For
the glass we have subtracted the strictly elastic part. The
dashed curves are fits to a power law A 0 « | € |7, where
we have extracted a value y=1.68 in the liquid and
y=1.8 in the glass. Since the mode-coupling theories’ >
also predict a narrowing of the spectrum in the glass,
when approaching the transition point, it could be
worthwhile to investigate this point experimentally for
real glass-forming systems. No conclusion can be drawn
from the simulation data of Ullo and Yip!* (their Fig. 4),
since they present results only for one density in the glass.
One should also notice that the density region covered in
Fig. 7 is very narrow, corresponding to n*=1.034—1.122
in Ref. 14. However the corresponding temperature inter-
val, keeping the density fixed, would be larger. From the
calculated liquid-glass phase diagram in Ref. 21 we ex-
tract (AT, /Ang)~4.5 at T*=0.6. The total interval in
Fig. 7 would therefore correspond to a temperature inter-
val of ~0.35 in reduced units. Chen and Huan?? have re-
cently presented results from photon-correlation measure-
ments for dense microemulsions. Their data (Fig. 2 in
Ref. 22) do show a narrowing of the spectrum when the
transition point is approached from both sides.

Both dielectric loss experiments?® and specific-heat
spectroscopy®® can be related to the quantity
X"(k,0)=wR"(k,w). For a purely exponential decay of
R (k,t) the peak in X"'(k,w) is 1.14 decades wide at half
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FIG. 7. Half width at half maximum of R"(k,w) at k*=7.0
vs €. The dashed curves represent fits to power laws | €| with
¥ =1.68 on liquid side (€ <0) and ¥ =1.8 on glass side (¢ > 0).
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maximum. The experiments usually give peaks that are
significantly broader than this. In Fig. 8 we show
X" (k,w) versus log,qw* for four different values of ¢ and
k*=7.0 (solid curves) and for e=-—0.00031 and
k*=6.0 (dashed curve). For k*=7.0 X"(k,») has a
width of 1.28 decades and for k*=6.0 this has increased
to 1.62 decades, thus being broader than the width corre-
sponding to an exponential decay in time. The peak
positions were found to scale as |e|? with y=1.69,
which is consistent with the value of A, in the
liquid. It is common among experimentalists to fit
data to a Kolrausch-Williams-Watts function R (k,t)
a exp[ —( t/‘r)B] where 0<B < 1. For such a time depen-
dence we obtain a perfect fit to the curves in Fig. 8 with
B=0.88 for k*=7.0 and f=0.68 for k*=6.0. Similar
results were found by De Raedt and Gotze* in a some-
what different model.

Concerning a detailed comparison with the predictions
of Gétze'>!3 for | €| —0, it appears that we have still not
come sufficiently close to the transition point. Figure 5(a)
shows that the k dependence is very well represented by
Eq. (3.11). We find this to be true also in the glass, Eq.
(3.10), but due to the fact that R (k,t)— f (k) becomes very
small for small € and large times the numerical uncertain-
ties are larger. As seen from Fig. (6a) the narrower one of
the two quasielastic peaks is well developed and the slope
—1.63 agrees with the value of Gotze, —(1+y)/2
= —1.62. The other peak is still barely seen and a com-
parison of —0.9 with the asymptotic value for the slope,
—(14x)/2=—0.68, may not be meaningful. The peak
values in Fig. 6(a) are found to increase as |e| !,
whereas a naive matching to the asymptotic solutions of
R"(k,») by Gotze gives the value (o.) ' |e| 2. It
seems as if the diffusive peak splits off at a higher fre-
quency than assumed in the matching above. Since the
numerical accuracy of our data for the glass is more un-
certain, we refrain from making any comparisons at this
stage. The main reason for showing Fig. 6(b) is to present
the qualitative behavior and demonstrate that the half
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FIG. 8. X"(k,0)=wR"(k,w) in reduced units vs log,ew®* at
k*=7.0 (solid curves) and k*=6 (dashed curve) for curve A4,
e=—0.00031; curve B, e=—0.00073; curve C, e=—0.0023;
curve D, e=—0.0054; curve E, e=—0.00031.



34 DYNAMICS OF A LENNARD-JONES SYSTEM CLOSE TO THE . . .

width of the quasielastic peak narrows as the transition is
approached.

The experimental data concerning the slow relaxations
in the liquid are, as mentioned above, often interpreted
in terms of the Kohlraush-Williams-Watts function
exp[ —(t/7)#] with B as an adjustable parameter. In Fig.
9 we compare for k*=6.0 our calculated R (k,t) both
with a pure exponential and a Kohlrausch-Williams-
Watts function, taking the value 8=0.68 from Fig. 8. As
seen, we obtain for the latter an excellent agreement over
three decades. Similarly, an agreement was found for
k*=7.0 with B=0.88 taken from Fig. 8, and the same
analyses carried out for k*=0, this being relevant for
comparison with photon-correlation measurements, gives
B=0.75.

If in Eq. (4.2) a(?) is dominated by one term propor-
tional to ¢#, all the k dependence in the exponent can be
included in 7, and B in the Kohlrausch-Williams-Watts
function becomes k independent. Since we find a signifi-
cant k dependence of f3, it implies that a (¢) must have a
more complicated time dependence over the interval con-
sidered. In fact, a closer analysis of our data has shown
that somewhat different B values have to be chosen de-
pending on the time interval considered. For smaller
times we have a smaller 8 and it seems as if B approaches
unity for asymptotic times. Particularly for k*=6.0 B
has a plateau value of around 0.7 over two decades in
time.

In the remaining figures we present results for the
single-particle motion. Figure 10 shows the density
dependence of the self-diffusion constant. A logarithmic
plot is used and a straight line corresponds to a power law
|€|?. We obtain an exponent ¥ =1.66 and this should be
compared with the value ¥ =1.76 for the simplified model
in paper I. In this model the diffusion constant scales
with the same exponent as w;, but this is not the case for
the present model. The value ¥ =1.66 is consistent with
the values y=1.69 and 1.68 obtained from X" (k,») and
A, o in Figs. 7 and 8, whereas for o, we have y=2.37.

R(k,t)
0.4 e -

0.2 A\ b

1 1

2 3 4 5

log,o t*

FIG. 9. R(k,t) vs logiot* at k*=6 and e= —0.00031 (solid
curve). The dashed curve represents a fit to a Kohlrausch-
Williams-Watts function with f=0.68 and the dot-dashed curve
a fit to an exponential.
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FIG. 10. log,cD* vs logjo|€|. The dots are the calculated
values and the straight line through them shows a power-law
behavior with the exponent y=1.66. The dashed curve
represents a fit to the Doolittle function (see the text) with
( Vg. )~!=0.965. The value log,oD* = —1.5 corresponds to the
triple point for argon n*=0.844, T*=0.722.

For comparison we also show the kind of fit we obtain us-
ing the form D =Aexp[—B/(V —V&)] proposed by
Doolittle?® (dashed curve). It would evidently be difficult
to distinguish a power law from a Doolittle behavior in
experimental data.

The velocity correlation is shown in Fig. 11 for
e=—0.00031. It shows a similar time dependence as
found near the triple point, except for the fact that the
negative part is deeper and some slow oscillations appear.
The rapid initial decrease is mainly due to the binary col-
lisions and should be essentially the same as in the ordi-
nary liquid state. We recall that the area under the curve
is proportional to the self-diffusion constant. The corre-
sponding memory function is found to develop an ex-
tremely long time tail for small € and this is required in
order to have a small value for the diffusion constant.
Figure 12 presents results for the mean-square displace-
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FIG. 11. Normalized velocity correlation function vs t* for
£=—0.00031.
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FIG. 12. Mean-square displacements vs t* for curve 4,
e= —0.052; curve B, e=—0.021; curve C, e= —0.00106; curve
D, e=—0.00054; curve E, e=—0.00031. Curve Fis for argon
at the triple point n* =0.844, T* =0.722.

ment versus time for different values of €. For compar-
ison we show also the corresponding curve for the liquid
at the triple point. The oscillations observed close to the
glass transition point are analogous to the ones obtained
in a Debye lattice model.?’

In Fig. 3 one observes for small € a dip in R (k,t) before
it reaches an approximately constant value. A similar
behavior is found for F*(k,t) and this point is more clear-
ly illustrated in Fig. 13. Comparing with the two previ-
ous figures we can certainly relate the dip to the oscilla-
tions in the self-motion. The fact that the dip is larger in
F*(k,t) than in R (k,t) also supports the conclusion that it
is more closely connected with the single-particle motion
than with collective ones.

V. CONCLUDING REMARKS

When judging the present model for a liquid-glass tran-
sition one must bear in mind that the most simple approx-

R(k,t)

Fs(k,t)

t*

FIG. 13. R(k,t) and Fk,t) vs t* at k*=1.0 and
€=—0.00031. Compare with Fig. 3.
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imation has been made for the basic part of the memory
function. There are ample possibilities of generalizing the
model in various directions and one such step was actually
done in Ref. 6. The same model with certain improve-
ments, which do not seem essential in the present case,
has worked very well quantitatively in the ordinary liquid
regime and was found to describe the basic relaxation ef-
fects in a proper way.? The model presented here does not
contain any adjustable parameters and all data were calcu-
lated from the given interaction potential, although ap-
proximately. The particle-diffusion mechanism is of a
nonactivated kind, where an atom has to push the sur-
rounding atoms aside in order to create space for forward
motion. The self-consistency implies that the surrounding
atoms also have to push their surroundings, and so on. In
this way one may argue that the model contains a se-
quence of diffusion steps. This is analogous to the
scenario presented by Palmer et al.??

We have found that the present model reproduces many
of the features characteristic of a system close to the tran-
sition point. The main features are as follows.

(i) A strong non-Arrhenius temperature dependence of
the viscosity and the diffusivity.

(ii) A strongly nonexponential decay of the slow relaxa-
tions in the liquid, following closely a Kohlrausch-
Williams-Watts behavior with an exponent significantly
small than one.

(iii) Two different slow-relaxation processes, one being
arrested at the transition point and the other one remain-
ing on the glass side. This resembles the a and B relaxa-
tions found experimentally.?’

Since our present results refer to a Lennard-Jones system
any quantitative comparisons should first of all be made
with computer simulations. The present theory gives a
liquid-glass phase diagram, which is in reasonable quanti-
tative agreement with simulation data.! Concerning the
basic dynamics, the comparison with data of Ullo and Yip
are inconclusive but does not seem to indicate any major
shortcomings except for one point which we will come
back to later.

The comparison with the predictions from the analysis
by Gotze'>! which gives definite predictions when being
asymptotically close to the transition point, are still in-
complete. For certain quantities we have excellent agree-
ment while for those referring to the glass our numerical
accuracy is not good enough for making definite state-
ments. However, it is evident that the true asymptotic re-
gime is limited to a very narrow region around the transi-
tion point. Our numerical results on the liquid side seem
to indicate some interesting renormalization in k space as
time proceeds that may be worthwhile investigating fur-
ther. The diffusion constant and related quantities are
found to scale differently than what is expected from the
analysis by Gotze. but this could be due to a certain
matching assumption of the asymptotic solutions of his
scaling equation.

Close to the transition point the theory predicts two dif-
ferent slow-relaxation processes. For a multicomponent
system the same qualitative behavior is expected.!> One
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of these exists only in the liquid side and is directly con-
nected with diffusion processes. The only remarkable
point here is the nonexponential decay, showing that the
diffusion is neither of a simple Brownian type nor of a
simple hopping type. This is not that surprising, however,
if we consider the state with e= —0.000 31, where on the
average each atom has moved less than one half of the in-
terparticle distance for log;ogt* ~4.5. For times of the
order log;ot*~5.4 this distance has become larger than
the interparticle spacing and here our results indicate that
the decay has become essentially exponential.

The other relaxation exists on both sides of the transi-
tion and for the liquid it extends only up to times less
than the characteristic diffusion time. The liquid appears
frozen on this time scale, but in order to see this clearly
one has to be extremely close to the transition point so
that the diffusion constant is very small.

It is obviously difficult to draw any firm conclusions
concerning the multiparticle motions from results for the
dynamical structure factor alone. The interpretation of
the second slow-relaxation process must therefore be rath-
er speculative. The quantity S (k)f (k)/f*(k) can be inter-
preted as a structure factor for the frozen structure with
the thermal motion subtracted. This would in a crystal
become a set of 8(q) functions corresponding to the rigid
reciprocal lattice giving rise to the strictly elastic Bragg
peaks. It is this structure that disappears on melting.

The fluctuations of the frozen structure are in our
model described with a dynamical equation that strongly
couple wave vectors within the main peak in S(k). The
inverse width of this is of the order of ten atomic dis-
tances and one might expect the slow motion to be con-
nected with fluctuations in the local ordering over this
distance. The observation that the slow motion extends to
longer times when approaching the transition point would
be due to an incipient structure instability. This is not re-
vealed in the ordinary static structure factor but one may
speculate whether higher-order static correlations become
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singular, perhaps introducing some correlation length
which diverges at the transition point.

Even though there are strong qualitative similarities in
the behavior of large classes of real glass-forming systems
and of the present model, there are also some serious
discrepancies. The experiments do not indicate any
mathematical singularity at the glass transition point but
only some rapid changes. For instance, the viscosity
seems to change from a non-Arrhenius temperature
dependence to an Arrhenius one and this strongly indi-
cates a change of diffusion mechanism. It seems plausible
that such activated processes occur at lower viscosities for
simple monatomic systems since the potential barriers
may be lower compared to those in complex systems.
This would also be consistent with the fact that the bar-
riers for crystallization are much lower. All activated
processes are lost because of our mode-coupling approxi-
mation for the memory function. An improved version of
the theory should therefore include activated processes as
well and this would certainly eliminate the above defects.
As the present model only applies to one-component sys-
tems, an extension to multicomponent systems is urgent.
There is no conceptual difficulty in making such an exten-
sion but it would lead to considerably more computational
work.
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