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Freely suspended liquid-crystal films of the smectic-I phase of HOBACPC [It ( —) hcxyloxyben-
zylidene p'-amino-2-chloropropyl cinnamate] display distinctive stripe aud droplet textures. We
derive these patterns from a Landau expansion of the free energy using a vector order parameter.
Strong pinning boundary conditions lead to boojums in the droplets and stable defect lines between
the stripes. The boojum is a two-dimensional version of its namesake in superfluid He- A. The sur-

face defect in the boojum is expelled from the smectic-I droplet in order to lower the internal gra-
dient energy, leaving a defect-free texture. The expulsion distance and the width of the stripes are
calculated in terms of the elastic constants.

I. INTRODUCTION

Smectic liquid crystals, in which the molecules arrange
themselves in parallel layers, can be drawn into stable
freely suspended films only a few molecular layers
thick. ' In the tilted smectic phases, such as SmC and
SmI, the molecular optical axis n lies at an angle to the
layer normal (see Fig. I}. The direction of the projection
'd of the molecular axis in the plane of the film can be ob-
served by polarized reflection microscopy. Basically, if
the direction of polarization of incident light is parallel or
perpendicular to c, then the polarization is unchanged
upon reflection, whereas if the direction of polarization of
the incident beam is at some other angle, the polarization
is rotated. When viewed through crossed polarizers, those
regions of the film with c parallel to either of the polariz-
ers appear dark. These dark fringes are known as
schlieren lines. s Defects in the liquid crystal show up as
discontinuities or points of convergence of schlieren lines.

Distinctive schlieren patterns have been observed by
Clark, Van Winkle, and Muzny in freely suspended films
of HOBACPC [R(—} hexyloxybenzylidene p'-amino-2-
chloropropyl cinnamateJ, a chiral liquid crystal which
forms ferroelectric phases of SmC and SmI. Both SmC
and SmI are tilted phases; while the nature of the order-
ing in these phases is still under investigation, SmC is
known to have only short-range positional order within
layers, while SmI has a more pronounced hexagonal order
and more translational order than does SmC. In both
cases there exists orientational order between layers. On
cooling a SmC film through 55C small roughly circular
domains of SmI nucleate. The SmI droplets drift away
from their nucleation sites and grow into the SmC. The
droplets are characterized by from one to three straight
schlieren lines which appear to originate at a point off the
edge of the droplet. (See Fig. 2.} The schlieren lines lie at
45' to one another. In circular droplets, relatively free
from the distortions caused by contact with neighboring

FIG. 1. Schematic of the experiment. The smectic film lies
in the x-y plane. The film is viewed by reflection between
crossed polarizers I'l and I'2. The molecular optical axis is
8—the molecule shown hes in the y-s plane. The order parame-
ter c points towards the tops of the tilted molecules, and hes in
the x-y plane. Consequently, when the film is viewed from
below, the order parameter '8 ' is the reverse of 8.

FIG. 2. Polarized reflection micrograph of the droplet tex-
ture. The polarization axes are paralle) to the edges of the pic-
ture. The diameter of the illuminated region is roughly 0.24 cm.
Photo courtesy of N. A. Clark, D. H. Van Winkle, and C.
Muzny.
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droplets, the schlieren lines terminate where the droplet
boundary is parallel to one of the polarizers, indicating
that c is either parallel or perpendicular to the boundary.
Defects never appear inside the droplets.

As the drops grow they merge with one another, form-
ing a striped pattern. (See Fig. 3.) The schlieren lines in-
dicate that the optical axis is parallel to the edge of the
stripe along the edge. Moving across the stripe, the opti-
cal axis rotates through 180' until it is parallel to the op-
posite edge of the stripe. At this point there is a defect
line at which the optical axis reverses itself and a new
stripe begins. The direction of rotation across a stripe is
always the same.

If the same experiment is performed using a racemic
mixture of HOBACPC (equal numbers of right- and left-
handed molecules) the texture within the droplets is uni-
form, with no converging schlieren lines. The presence of
the stripe and droplet patterns in the chiral case and the
absence of the patterns in the racemic case can be ex-
plained by exploiting the different symmetries of the two
systems. de Gennes has suggested that a tilted smectic in
three dimensions might exhibit a finite density of defects
due to the chirality of the molecules. The tilted
HOBACPC film is a two-dimensional realization of this
prediction. In the body of this paper we write down the
most general free energy for a tilted chiral smectic film
and show how it leads to the stripe and droplet defect tex-
tures.

A. Conclusions

We describe the smectic film by a unit vector order pa-
rameter c. There are two contributions to the free energy
of the film —bulk terms involving integrals of gradients of
c over the area of the system, and surface terms involving
line integrals around the boundary of the system. In a
system of size 8 the gradients of the order parameter
scale as

llew.

Since the bulk free-energy density is quad-
ratic in the gradients, the total bulk free energy (integrated

over the area of the sample) scales independently of R.
On the other hand, the surface free energy per unit length
is independent of the system size, so the total surface free
energy scales as E. Hence, for large systems, where R is
much greater than the molecular length, the surface ener-

gy dominates the bulk energy. Strong surface energies im-

ply a strongly preferred angle between c and the boun-

dary. These strong pinning boundary conditions are cru-
cial in determining the patterns that the film can display.

The unusual symmetries of the chiral tilted smectic
film allow the boundary conditions to take an unusual
form. The order parameter at the perimeter of a region
can prefer to point counterclockwise rather than clock-
wise, or vice versa. The assumptions that the SmI drop-
lets are perfectly circular (due to the surface tension of the
SmC-SmI interface) and that c lies parallel to the inter-
face lead to the minimum-energy droplet texture shown in
Fig. 4(a). The order parameter is continuous everywhere
except at a defect at some point on the circumference. To
find the orientation of c at a point in the interior, draw a
straight line from the defect through the point in ques-
tion. The orientation of c at the intersection of this line
with the boundary is the orientation of c at the interior
point. This construction satisfies the boundary condi-
tions, produces straight schlieren lines, and minimizes the
free energy. Most importantly, since the defect lies on the
circumference, it can be expelled from the droplet at a
small cost in surface energy but a great savings in bulk
gradient energy. In Sec. III 8 we show that this pattern is
indeed a minimum of the free energy and calculate how
far the defect is expelled from the droplet.

The strong boundary conditions are also responsible for
the presence of stripes in the film. Each defect-line core
carries a positive free energy Jo per unit length, but be-
cause the boundary condition can be satisfied along both
sides of the defect lines, the net free energy of the lines
may be negative. A negative defe:t energy does not lead
to an infinite density of defect lines, however. In order to
satisfy the boundary condition at both sides of a stripe,
the order parameter must rotate through 180' between de-
fect lines, so narrow stripes entail large gradient energies.
The balance between gradient energies, surface energies,
and defect core energies leads to a finite nonzero stripe
width. This width is calculated in Sec. IIIA.

II. FORM OF THE FREE ENERGY

FIG. 3. Polarized reflection micrograph of the stripe texture.
Photo courtesy of N. A. Clark, D. H. Van %'inkle, and C.
Muzny.

A. The order parameter

I.et the smectic film lie in the x -y plane. At each point
(x,y) in the film denote the local molecular axis of optical
anisotropy by n, averaged over thermal motions and the
depth of the film. It is convenient to visualize n as the
long axis of the molecules, although this does not neces-
sarily coincide with the optical anisotropy axis. Assum-
ing that the molecules are effectively symmetrical head to
tail, there is no distinction between n and —n, so n is a
director rather than a vector. We will describe the film by
a unit-vmtor order parameter c(x,y), or, equivalently, by
an angle P(x,y), where c=xc~+ysinP. c points along
the projection of n in the x-y plane, as sholem in Fig. 1.



34 TEXTURES IN A CHIRAL SMECTIC LIQUID-CRYSTAL FILM 5037

HOBACPC has ferroelectric order, which in principle
leads to nonlocal terms in the free energy. Pindak et al.
found experimentally that they could neglect long-range

dipole interactions in DOBAMBC (p-decyloxy-
benzylidene-p'-amino-2-methylbutylcinnamate), a materi-

al similar to HOBACPC, due to the presence of screening
ionic impurities. Although the dipole moment of
HOBACPC is stronger than that of DOBAMBC, we will

also neglect these long-range forces.

&. Symmetries of the free energy

The free energy of the film is

~[c]=f f dx dyF(c(x, y) )+~d f

where Ws,r, is the free energy of defect cores. The free-
energy density F is a scalar function of c and its gra-
dients, and must be invariant under all coordinate
transformations which leave the x-y plane fixed. These
include rotations about the 0 axis, rotations by 180' about
the x or y axes, and translations in the 2 or y directions.
Chiral molecules are not invariant under reflections, so if
and only if the liquid crystal is racemic, F must be invari-
ant under reflections through the x yplane-.

The free-energy density F can be decomposed into bulk
and surface terms. Bulk terms contribute to the total
free energy over the whole area of the sample, but total
divergences and other surface terms contribute only at
boundaries and defects.

1. Bglk terms

FIG. 4. (a) Texture vrithin an ideal droplet. The order pa-
rameter is everywhere parallel to the boundary at the boundary,
and the orientation of the order parameter is constant along any
straight line passing through the defect point. (b) Computer-
generated schlieren pattern for the configuration of (a).

Because rotating a tilted molecule by 180' around the z
axis (perpendicular to the film) does not return it to its
original configuration, c, unlike n, is a true vector. We
define the head of the vector to point towards the end of
the molecule lying near the top of the film.

Our order parameter does not contain any information
about the translational order of the smectic phases. In
particular, the order parameter cannot distinguish be-
tween Sml and SmC, and hence our theory does not
describe the SmC-SmI transition. The theory requires at
least three elastic constants and ascribes the differences
between SmC and SmI to differences in these constants
rather than variations in the magnitude or form of the or-
der paralxketer.

The bulk gradient free-energy density is given by all
those terms in a Landau expansion which are not total
divergences and are compatible with the symmetries of
the system. A simple scaling argument shows that the
series may be truncated at second order in the derivatives
of c. Consider an nth-order term. The derivatives are of
order R ", where R is the system size. The area integral
in (1) contributes a factor of order R . The complete
term has the dimensions of energy, so the elastic constant
which multiples it must have dimensions of
(energy)X(length)" . The only length which can come
into the prefactor is the molecular size a, so the nth-order
term scales as (a jR)" ~. For systems large compared to
the molecular size, high-order terms can be neglected in
the bulk free energy.

For the system to be stable and have finite gradients in

the bulk, it is necessary to retain terms up to at least
second order. The only allowed nonzero zeroth-order
term, c.c=l, is constant and uninteresting. The first-
order terms are all total divergences and will be treated
later. Hence, the bulk free-energy density is composed
solely of second-order terms.

The most general second-order term, not including total
divergences, is

Fz TjkI(d;cj )(dkci——) .

[Terms of the form cj(B;Bkci) need not be considered be-
cause 8;(cjdkci) =(d;cj )(Bkci)+cj(B;dkc&) is a total diver-
gence. Tjkicj(B;Bkci) is therefore equivalent to (2) as a
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bulk term. ] T~~ki must be symmetric under the simultane-
ous interchange of i and jwith k and /. As shown in Ap-
pendix A, there are only four hnearly independent tensors
of this sort invariant under rotations about 'R, leading to
the following four terms in the free energy:

field, and Kb gives the energy due to bending. It will be
useful to redefine K, and Kb in terms of

(8)

E2 ——K,(B c)~,

F2 ——Kb(B xc)i,
E2 ——Ki(8 c)(BXc),
F', =K,(a;c, )'.

(3a)

(3d)

so that

E,—Eb

E, +Lb

F2 ———,'K(I+p)(B c) + —,'K(1 —p)(BXc) (10)

Note that in two dimensions 8 Xc=e;JB,c& is a scalar. s;J.
is the antisymmetric tensor of rank two. ei2 ———s2i ——1;
~11 ~22

Requiring symmetry under 180' rotations about the 2
axis eliminates the third term. Under such a rotation, c is
transformed to c ' (see Fig. 5 },where

and

c» = —cx(x, —y} (4a)

cy' ——cy(x„—y} . (4b)

This follows from the definition of c points toward
the top end of the molecule, so when the film is turned
over, '8 points towards the other end. Furthermore, c„
reverses upon rotation about 2, leading immediately to
Eq. (4).

Because dldx'=dldx and dldy'= —dldy, we have

8 'c = —r}c'
a Xc =aXc. (5b)

Therefore F cannot contain terms odd in 8 c, and Ki
must be zero.

Since c is a umt vector,

(8;c ) =(8 c) +(BXc) (6)

so F2 is not independent of Fi and E2. Hence the gra-
dient free energy is simply given by

F,=K,(a c)'+K,(a Xc)'.
K, gives the energy due to splaying the order-parameter

FIG. 5. Transformation of the order parameter under a 180'
rotation about %. The x components of the in-phae projections
of the molecular axes are reversed on rotation, but the y com-
ponents are not.

The free-energy density (10}must have a minimum for f-
init 8 c and 8 Xc. Hence, K, and Ks must be positive, so
K &Oand )P~ & l.

Total divergences in the Landau expansion of F are
terms of the form 8 [cg(c)] and 8 X [cg(c)] where g(c)
is any scalar function of c and its derivatives. These
terms are surface terms because

f f dxdy8 [ag(c)]=/ g(c)cxdl (1 la)

x y Xcgc = gcc. (1 lb)

F~(cXn}=2KqcXn . (14}

The elastic constant q has dimensions of inverse length

The path of integration encloses all regions of the film
where c is continuous and differentiable. However, since
not all of the allowed surface terms can be expressed as
area integrals of total divergences, we must consider in
general the line integral of a surface free-energy density.

As shown in Appendix B, the surface free-energy densi-

ty cannot depend on derivatives of the order parameter
normal to the boundary, and the lowest-order nonvanish-
ing tangential derivatives are of higher order than F2
Hence, we can write the net surface free energy as

F,~ c n, cgn (12)

where n is the unit normal to the surface. As usual, E,~
must be invariant under rotation by 180' about the 2 axis.
This rotation maps '8 n~ —c n and c&C n~c X n. Hence
F,~ must depend quadratically on c n. Because
(c n} =1—(cXn), E,~ depends on cXn alone. For
chiral systems with no reflection symmetry

~surf= Fsurr c&I (13)

In racemic mixtures E,~ must be invariant under reflec-
tions, which requires quadratic dependence on cXn as
well.

The absence of the stripe and droplet patterns in racem-
ic mixtures indicates that the patterns are due to terms in
the free energy forbidden by reflection symmetry. In
Secs. IIIA and IIIB me AH demonstrate that this is
indeed the case. Assuming that the surface free energy is
of the simplest form that differentiates between chiral and
racemic mixtures, then
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W= f f dxdyZ(aXc —q)'+W„f g+«nst, (16)

where we have used Stokes Law to write the surface term
as an area integral. This form of W suggests an alternate
interpretation of the total divergence teixu, where q is not
the strength of the boundary condition but rather a spon-
taneous bend in the bulk.

and is a measure of the chirality of the system. For a ra-

cemic mixture q =0. If the angle between c and the
boundary is 8, then q gives the strength of the 82 term in

an expansion of F,~ I.n other words, for small 8, q
behaves like a spring constant tending to restore tangen-
tial boundary conditions.

In principle F,~ can have a minimum at any value of
cXn, if higher-order terms are included in F,~. The as-

sumption (14) is consistent with experiment —cXn is
minimized when c is parallel to the boundary, and leads
to antiparallel boundary conditions for the stripe pattern.
We have no a priori explanation for the experimentally
observed boundary conditions.

Equation (14) leads to the free energy

X p F2 C X,p —2Ãq C X,p ' +P dege(g

(15)

with F2(c(x,y)) given by (10). The surface term in (15)
scales linearly with the system size R. Since the second-
order bulk gradient terms (10) scale independently of R,
for large systems the surface energies dominate (strong
pinning boundary conditions).

If p is near —1, then the total free energy may be writ-
ten

FIG. 6. Geometry of the stripe pattern, showing two stripes

separated by a defect line. The order parameter c makes an an-

gle P{x}with the x axis. At the left-hand edge of a stripe
P= —n/2+8, and at the right-hand edge P=n/2 —5.

P=f Fdx. (18)

We then minimize P with respect to the boundary condi-
tions, since c need not be exactly parallel to the sides of
the stripe, and finally minimize the total free energy with

respect to the stripe width. The end result is the stripe
structure c(x) and the stripe width as functions of the
elastic constants K, p, and q, and the defect core energy.

The Euler-Lagrange formula applied to (17) yields

P sin(2$){(},=[Pcos(2$) —1]$ (19)

III. MINIMIZATION OF THE FREE ENERGY

which has the implicit solution

p(x)
x —xp= 1 — cos 2

Q $(xo)
(20)

A. Stripes

The details of the stripe pattern are determined by the
competition between the bulk free energy Fq and the sur-
face free energy. The bulk energy is minimized by a uni-
form order parameter, but the boundary terms prefer c
pointing in opposite directions on opposite sides of the
stripe. Both conditions can be satisfied arbitrarily well in
arbitrarily large stripes. However, if the cost of a defect
line is not too great, the system prefers to gain bulk gra-
dient energy and defect core energy in order to lose sur-
face energy, and the stripes will have a finite width.

Essentially, the stripe pattern is one dimensional. We
are mainly interested in the variation of c across the
width of the stripe, so we assume that c is independent of
position along the length of the stripe. We implicitly as-
sume that the stripes are infinitely long. If the y axis
points in the direction of the stripes (see Fig. 6) then all y
derivatives vanish, and the bulk free-energy density (10)
reduces to

where Q is chosen so that P(L ) =P i. Substituting

Q„=Q[1—pcos(2$)] '/~ into (17) shows that the free-

energy density across the stripe is independent of x,

F2 ———,EQ =1 E f dP/1 —P cos(2$)
21.' (21)

P,~= —2' (sin/i —sinPo) . (22)

In a system of total width Lo there are Lo/L stripes and
Lo/L defect lines between stripes, each with core energy
Jo per unit length. The total free energy of the system is

f'

Lo X
I. 2I.fii({(}o,P i )—2Kq (sing, —sinPo) +Jo

so the bulk free energy per stripe per unit length P =LF2
is expressed in terms of the stripe width and the boundary
conditions only.

The surface free energy per unit stripe length is, accord-
ing to (15),

F2 = —,
'
&4~ [1—Pcos(2{(})1, (17}

(23)
where c=x cog+ y sing as usual, and {{}„=84 /Bx.
Given a width L and boundary conditions P(0)=go,
P(L) =Pi, we find {(}(x)by minimizing the bulk free ener-

gy per unit length of a single stripe,

'2
fbi(Po, P, }= f dg&1 Pcos(2$)— (24)



STEPHEN A. I.ANGER AND JAMES P. SETHNA 34

First, consider the limit of strong surface energies,

q »1/L. In this case the director is strictly parallel to
the defect lines at the edges of the stripe, so

Lo E
fti( n—/2,.irl2)+ Jo 4I—qI 21.

&I+pcos(25) I 5
2 sin5

(30)

In principle, L and 5 can be measured experimentally, so
(30) relates the elastic constants q and P. In practice,
since 5 is near zero, we can write

W is minimized for I(5)=I(0) 2—5&1+P+0(5'), (31)

fti( ir—/2, m /2 )I. =
4q —Jo/E

(26) e/2
I(0)=I dg&1 —Pcos(2$), (32)

Stripes do not occur (i.e., have infinite width} for
q (Jo/4K.

When q is not large compared to 1/L, the boundary an-

gles Po and Pi can relax to lower the bulk free energy.
From (23) it follows that if Pi ——m/2 —5 is an equilibrium
angle at the right edge of a strip of width L, then

Po ———m/2+5 is an equilibrium angle at the left edge.
(See Fig. 6.) Define

I(5)=I dPv'1 —Pcos(2$) . (27)

The bulk and surface free energy of a single stripe be-

so that

I(0)&1+P
qI. = (33)

If P= —1, then (30}becomes

qL = I(5)=2l
2

(34)

to lowest order in 5 and 1+P.
In general, to find 5 in terms of the elastic constants we

use (30) to eliminate L in (28), giving Wo as a function of

Wo(5,L)= [I(5)]2 4Eq co—s5 .
21.

(2g)
P o(5)=Eq sin5I(5) —4cos5&I +P cos(25)

(35)

The total free energy per unit length is

1.0 (~o+Jo) .I. (29)

The equilibrium condition BP o/85=0 yields a relation-
ship between strip length and edge angle,

Differentiating (29}with respect to 5 and setting the result
to zero gives an explicit equation for the equilibrium 5,

d~o ~o(5)+Jo dL
d5 L(5) d5

'

or, by using (30) and (35),

0=It (5)=(1+P)sin(25}I(5)+4sin 5[1+Pcos(25)]3~2

+ E
—co + ~ +cm + I(5)

(1 p) 5~1 p (25)
2 sin5[1+pcos(25) ]'

I

(37)

We are interested in the zeros of A(5) for 5 & 0, since 5 & 0
adds to the bulk free energy by increasing internal gra-
dients of c. (1+@)and I(5) are non-negative, so the first
two terms are non-negative. Hence, when Jo &4Eq and
the third term is positive, there are no zeros of It and
stripes do not form. This result agrees with that previous-
ly obtained in the large-q limit. Figure 7 shows L and 5
versus Jo/Eq for a variety of P's. Notice that L ~0 and
5~m /2 as Jo-+0. When defect lines are free, the optimal
configuration has an infinite density of defects and zero
bulk gradient energy.

Since, for a given P, the stripe width and edge angle de-
pend only on the ratio Jo/Eq, the large q limit corre-
sponds to the small Jo limit. At first glance this is a
surprising result, implying that the boundary condition is
violated more strongly (5~m/2) as the strength of the
surface term increases (q~ 00 ). We can understand this
result in either of two ways, depending on whether the
chiral surface term (14} is incorporated into the bulk free

energy, as in Eq. (16), or it is treated separately, as it has
been so far. In the former case, the free-energy density
across a stripe is not uniform, but is lower in the center
than at the edges, leading to an effective attractive force
between defect lines. In the latter case, the effective de-
fect hne tension is negative, and the free energy is lowest
when there are a large number of narrow stripes.

When the surface free energy is treated separately from
the bulk, then the effective defect-line tension, according
to Eq. (37), is Jo 4'—q cos5. For large enough q, 5 can be
arbitrarily close to ~/2 while the line energy remains neg-
ative, and as long as the line energy is negative, it is bene-
ficial for the system to increase the number of stripes.
Hence, the stripe width vanishes and 5=m./2 when the
surface energy is infinitely strong.

On the other hand, when the surface terms are absorbed
into the bulk terms in the free energy the line tension is al-
ways positive. Interpreted as a bulk term, the surface en-

ergy (14) contributes an amount 2EqQ coQ—
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FIG. 7. (a) Stripe width I. vs the reduced defect core energy

Jo/Eq for P=O and —0.7. I. diverges when Jo ——4Xq. (b)

Stripe edge angle 5 vs the reduced defect core energy Jo/Xq.

X(1—pcos2$) '/2 to the bulk-energy density (21). This

energy density is a minimum at the center of the stripe,
where /=0. There is an effective attraction between de-

fect lines because by moving the lines closer together [for
a fixed P(x)] a larger fraction of the stripe is made up of
the low-energy region in the center. As q increases, the
attraction between lines increases, so the stripe width de-

creases, in agreement with Fig. 7.
In the racemic case, q =0, and the free energy (28) of a

stripe is minimized when I(5}=0,or 5=rr/2 In other.
words, $0——P i and the order parameter is uniform.
Stripes do not occur in racernic mixtures.

In conclusion, two of the measurable characteristics of
the stripe pattern are the width I. and the angle 5 between
the order parameter and the stripe edge. We have calcu-
lated both of these quantities in terms of the elastic con-
stants. The important quantities are p, the relative
strength of the bulk splay and bend energies, and Jo/Kq,
the ratio of the line defect core energy density to the
strength of the bulk energies times the chirality.

curve of finite extent, whereas the boundary of a stripe is
infinite and open. If c is to be everywhere parallel to the
boundary, then the topology of the droplet requires the
presence of a defect either within (Fig. 8) or on the boun-
dary of (Fig. 4) the droplet. For this reason, the droplet is
a two-dimensional analog of the famous boojum' in su-

perfluid He-A. In He-A the order parameter consists of
a pair of orthonormal vectors P i and Pt. The normal to
these vectors, 1 = P i X P 2, is constrained to be perpendic-
ular to the walls of the container. In a topologically

spherical container, the flow lines of 1 must converge at
some point. Vortex lines in the superfluid draw the point
defect to the wall of the container, producing a boojum.
In the smectic film the lines of c are perpendicular to the

analogous hnes of 1, and there are no vortices, but the re-
sulting defect structure is qualitatively the same. Hu,
Ham, and Saslow" have shown that the surfaces perpen-

dicular to 1 in the 3He-A boojum for a particular (and
possibly unphysical) choice of a parameter ~ are spheres
passing through the defect point, just as the curves paral-
lel to c in the smectic droplet are circles passing through
the defect. The nested circles in Fig. 2 of Hu, Ham, and
Saslow are cross sections of spheres, and are directly
analogous to the nested circles in our Fig. 4. The essential
fact is that in both eases a topological defect escapes to
the boundary of the system.

The winding number s of a defect is the number of
times that the order parameter c rotates through 2m along
any closed path encircling the defect, independent of the
chosen path. Consider an isolated droplet of SmI in a
film of SmC. In the limit of large q (large chirality and
strong boundary conditions), the surface term in (15}re-

quires that c be parallel to the interface. c rotates
through one complete revolution during one trip around
the the boundary, so there must be a defect in the droplet.
A solitary defect in the interior must have s =1. If the

B. Droplets

The fundamental difference between a droplet and a
stripe is that the boundary of a droplet is a simple closed

FIG. 8. Another method of filling a circular region with

tangential boundary conditions. Unlike in Fig. 4(a), the defect
here is trapped within the droplet and cannot escape without in-

ducing large distortions in the texture.
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defect lies on the boundary then the winding number is
not fixed topologicaHy, because no path can encircle the
defect and remain within the SmI droplet.

On the other hand, if there is a natural way to extend
the order parameter field to the exterior of the droplet,
then we can consider the droplet to be a section of a pat-
tern containing a defect with a well-defined winding num-
ber. If the boundary is smooth at the defect, then this
winding number is 2 because c rotates through one com-
plete revolution upon traversing half a path (see Fig. 9}.
If the droplet is circular, then there is a particularly
natural way to fill it with a section of an s =2 pattern.
According to elementary geometry, an angle inscribed in a
circle subtends an arc equal to twice the angle. Because of
this fact, the s =2 pattern given by P(r) =28(r)+ir/2 has
0 tangent to any circle centered an the 2 axis and passing
through the origin (see Fig. 10}. Here 8(r) is the angle be-
tween r and i, and the defect sits at the origin. Since the
surface tension of the SmC-SmI interface will make the
SmI region circular, we expect the SmI droplets to follow
this s =2 pattern.

Droplets farmed of such a pattern have straight
schlieren lines because iI) is independent of r, in agreement
with experiment. The schlieren lines lie at 45' to one
another, also in agreement with experiment. Since, as
shown below, the bulk free energy diverges logarithmical-
ly at a point defect, we expect the defect to be expelled
fram the droplet. '~ The resulting defect-free texture
necessarily violates the boundary conditions at some
point, but the cost in surface energy is bounded, whereas
the cost of a point defect is not.

We now show that the proposed s =2 configuration is

FIG. 10. Why /=28+@ /2 is a natural pattern for filling a
circle with tangential boundary conditions.

The Euler-Lagrange formula in two dimensions

BFQ

dx BP,

t}Fg

ay

t}Fg

~x ~4'»
(39)

applied to (38) yields

+$»»+P[sin(2$)(P„—2$„»—P» )

—cos(2$)(P +2/, $» P~)]—=0 . (40)

Trying a solution of the form ((i =s8+Pc, and substituting

indeed predicted" by our model free energy for a chiral
system, and compute roughly the defect expulsion dis-
tance d. The bulk free-energy density (10) in terms of P is

Fz = I: I 4.'+0-»+Pl(0» 0'}cos(20—)

—2$,$»sin(2$)] I .

S
sli18,

T

f» =—cos8,S

T

(41a)

(41b}

(()~ = —
P»» ———sin(28), (41c)

interface

P~ = ——cos(28)
S

into (40) gives

(41d)

FIG. 9. An s =2 defect. P rotates by 4n along any simple
closed loop encircling the defect. If the defect lies on a smooth
interface, then only half the loop exists. P rotates by 2n along
this half path, making P continuous along the interface.

(s —2s)sin(28 —Q) =0 .
r 2

The allowed winding numbers are therefore s =0 (uni-
form c, P=Po}, s =1 (radial c with /=8, /=8+m-, or
tangential c, / =8+m/2), and s =2. Other winding num-
bers are allowed only if P either does not depend linearly
on 8 or depends on r. (Note that the commonly used "one
constant approximation, " in which E, =Kb and P=O, al-
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lows all values of s and therefore should be used cautious-
ly for general structural calculations. ) Computation of
the second variation of W shows that the s =2 solution is
stable under small perturbations.

The bulk gradient free-energy density according to {38)
is

0 (s=0)
E

i [I+Pcos(24o)] (s =1)

2j, I 1+PAL[2(8+y, )]I (s =2) .

(43)

Integrating Ez over an area including the origin produces
a logarithmic divergence for s =1 and 2 as promised. In
our model, if there are no boundary conditions (q =0) the
uniform s =0 pattarx is preferred, so racemic systems
have texture-free droplets

We now compute the distance d at which the apparent
defect sits outside the circular droplet of radius R for the
case P= —1 and /=28+m/2 We.assume, without apol-
ogy, that although the boundary conditions are no longer
met exactly the SmI region remains circular and the inte-
rior pattern is not distorted. We also assume that the
center of the circle lies on the x axis, at a distance
p=R +d from the apparent defect at the origin.

The bulk free energy is

9 2 ——f r'dr' f d8'4K (44}

(a)

where {r', 8') are the coordinates of a point relative to the
center of the circle, and (r,8) are the coordinates relative
to the origin. (Sce Fig. 11.) Using the laws of sines and
cosines to eliminate 8 and r gives

R 2m 1r'dr' d8'
z 2o o r'~+p2+2r'pcos8

r' sm 8'
(r' +p +2r'pcos8')

(45}

The 8' integrals can be done by contour integration in
g=e', after which the r' integral is elementary. The re-
sult is that

4@@5

+v™Q~

FIG. 11. (a) Geometry of the droplets. P is a function only
of 8. The droplet has moved a distance d relative to the defect.
%'hen d =0 the boundary conditions are met exactly, as in Fig.
4{a). {1)Computer generated sehIieren pattern for the configu-
ration of {a),with d =8 /4.

P2 ——2irK ——ln 1—
P P

(46)

of p is given by the minimum of
The surface free energy is given by

2Kq (tI c dl= —2—Kq f R d8'sin(8' —P) .

which occurs when

R—2$
P

On substituting for P in terms of 8' and integrating, we
find that

R
4nKq (R &—p) '. (4&)

P
The surface free energy is minimized by p=R; the bulk
free energy is minimized by p= ce. The equilibrium value

2—8 alp

1 —R /p

Let 8 p(1+6,). Solving {50)for b„
' 1/2

(51)
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When qp is large, we have 6= —1/(2qp), or

d = —pA=
l

2q

The defect distance is independent of the droplet radius
for large droplets. Because we approximated the relaxed
droplet as a circular section of an undeformed s =2 defect
pattern, and assumed that the droplet remained centered
on the 2 axis, Eqs. (50}—(52) are probably good only to
within factors of 2. However, d should not depend
strongly on P, since Fz varies only by factors of two over
the allowed P's, so Eq. (50) allows the rough magnitude of
the elastic constant q to be determined by direct observa-
tion of d. Examination of the droplets in Fig. 2 that q is
roughly 140+20 cm '. For the droplets in the photo-
graph Eq. {52) is not valid, since qp is only on the order
of 4. If the stripe edge angle 5 can be measured accurate-
ly, then Eq. (30} can then be used to find P, which deter-
mines the elastic constants up to the multiplicative factor
E.

The characters of G are therefore

X( G) =—, I [X(C„Ia C„)]'+X((C„eC„)')J, (A6)

X(G(8))= —,
' [16cos 8+4cos (28}]. (A7)

The number of times an irreducible representation a ap-
pears in a finite group I is given by's

g X(&)X (jI)',
kGB

where 0 (H) is the number of elements in the group. Gen-
eralizing to continuous groups and setting X (h) =1 (since
the one-dimensional scalar representation has X=1) we
have

characters, but the character of a symmetric product of a
group with itself is 6

X(A A) = —,
' [[X(&)]'+X(&')j .

APPENDIX A: ENUMERATING
THE SECOND-ORDER BULK GRADIENT TERMS

2s'

ni —— f X(G(8))d8, (A9)

The most general second-order bulk gradient term is, as
explained in Sec. IIB 1,

which implies that n 1
——4.

Since 5,~ and e,j are rotationally invariant, we can im-
mediately write down four invariant tensors,

Fz Tjki(d;c,——)(dkcI ) . (Al) 1
~ijkl 5ijskl ~ (A10a)

The tensors T~~ can be thought of as elements of a 16-
dimensional vector space T. Each superscript a refers to
a different vector, and the subscripts i,j,k, l =1„2refer to
the 16 components. On rotating the x-y coordinate sys-
tem around 0, the components of 8 and c transform ac-
cording to the two-dimensional continuous rotation group
C„Thevectors Tjkj therefore transform according to
the symmetrized direct-product group

R(8)=
cos8 sin8
—sin 8 cos8 (A3)

The character X of a representation of a group element is
the trace of the corresponding matrix, so

X(R(8))=2cos8 .

The character of a direct product is the product of the

G =(C„NC„)(C„eC„),
where S indicates a direct product and indicates a
symmetric direct product. The symmetric product is used
because of the symmetry of Tjkl under the simultaneous
interchange of i with k and j with 1. The form of Fz is
unchanged by the rotation if and only if T;jkl is invariant
under the action of G.

The vector space T can be divided into a number of ir-
reducible subspaces such that G maps each subspace into
itself. These subspaces correspond to the irreducible re-
presentations of G. ' ' The number of independent and
invariant T;Jki's is equal to the number of n, of irreduci-
ble one-dimensional representations of G. n, is deter-
mined by analysis of the group characters.

The elements of the group C are

~2
~ijkl ~ij ~kl ~

1

~ijkl = I (~ij&kl+sij~kl ) ~

(A10b)

(A10c)

~ijkl ~ik5jl ~ (A10d)

APPENDIX 8: GRADIENTS AND SURFACE TERMS

In this appendix we demonstrate that the surface free-
energy density F,~ cannot depend upon gradients of the
order parameter to lowest order. %'e will describe the
boundary in terms of local coordinates n(x,y) and 1(x,y),
where n is normal to the boundary and 1 is parallel to it
and points counterclockwise. For convenience, we mill
define P relative to n. This definition is unambiguous
sufficiently close to the boundary. (See Fig. 12.)

First, a term in F,~ that is proportional to a derivative
of P normal to the boundary can diverge without affecting
the value of the order parameter in the bulk or at the sur-
face. Consider a film pattern P(x,y) determined by
IlllillnllzlIlg FI with sonic lnlposed boundary colldltloIl.
In a strip of width e along the edge of the film, perturb
the order-parameter field by setting

8 r (B1)Bn

which lead directly to the free-energy terms (3). The
linear independence of these four tensors may be verified
by inspection. Because n

&
——4, these are the only possiMe

independent tensors, and the second-order rotationally in-
variant bulk gradient terms are completely accounted for.
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sume that the curvature of the boundary is small, so that
derivatives of n with respect to l can be ignored. Expand-
ing I',~ in a Taylor series in I,

F mr=fo(c n)+f i(c n)' +
I

(B4)

we wish to show that the first-order term caimot contri-
bute to the free energy. f i can be decomposed into com-
ponents parallel and perpendicular to c,

terfoce [fi(c»))i =f)((c»)ci+fi(c»)sijcj
so that

(BS)

FIG. 12. Defmition of the coordinate system for surface
terms. Derivatives of P with respect to iI diverges as @~0.

The first tenn vanishes identically because c is a unit vec-
tor. cXBc/8/ is symmetric under 1SO' rotations about 2,
so fz(c,n) must also be symmetric. Section II 8 2 shows
that such a function of c and n can be written as a func-
tion of cXn alone. Expanding fi in powers of cXn,

The change in the bulk free energy P z due to this pertur-
bation is of order

biz- dn(e ")2=@' (B2)

and the change in p at the boundary is of order

5Po= I dn e r=e'
0

(B3)

Now let e~O. If 0 ~ y ~ —,', then hPo ——0, so the boundary
condition still holds, and hP'2 ——0, so the pattern still
minimizes the bulk free energy, but the derivative BPIBn
diverges. Similar arguments hold for any derivative
~) PIBn . Hence, any term in F,~ which is proportional
to a normal derivative of the order parameter can diverge
and make the surface free energy negatively infinite,
without affecting any bulk properties of the film. On the
other hand, there is a physical limit to the size of any
derivative. Derivatives of P are not defined on a length
scale smaller than the molecular length a, so mth deriva-
tives should be set equal to a constant factor +a
Since a term containing m derivatives is multiplied by an
elastic constant that scales as a, the fact that a
diverges for large m is inconsequential. In fact, replacing
all normal derivatives by a and letting them cancel
their elastic constants removes all dependence of F,~ on
the normal derivatives.

This argument cannot be extended to cover derivatives
of the order parameter with respect to position along the

buda~, sin~ ay/al cannot diverge in a narrow strip if
P is to be continuous everywhere in the bulk. Hence, F,~
nrn depend on tangential derivatives of c.

Because of rotational symmetry, F,~ can depend only
upon c, n, and derivatives with respect to I. %e will as-

f i(c,n) =y &k(cxn) cx (B7)

and noticing that cXn= —sing and cX(Bc/Bl)=8//Bl,
we find

f i(c,n) =g Aksinkp =—g Ak sin" +'p,
k k +

which is a total derivative. Therefore the net surface en-

ergy vanishes to first order in 8/Bl,

Es~i= i cn ~ =0 (B9)

In the presence of a singularity on the surface (as in Fig.
4), this term is a nonzero constant which merely renor-
malizes the defect core energy.

To lowest order, only second tangential derivatives may
appeiir in the surface free-energy density. However, these
derivatives are of order 1/R, where R is the system size,
so their contribution to W scales like a/R. The second-
order surface terms are a factor of a/R smaller than the
bulk terms in (10) and can be neglected, leaving F,~ free
of derivatives.
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