
PHYSICAL REVIE%' A VOLUME 34, NUMBER 6 DECEMBER 1986

Onset of the first instability in hydrodynamic flows: Effect of parametric modulation
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%'e treat the effect of parametric modulation on the onset of instability in Rayleigh-Benard and
Taylor-Couette geometries. Closed-fore solutions are obtained for the case of realistic rigid-
boundary conditions. The high-frequency limit of the effect in the Taylor-Couette Aow differs from
that of Hall.

I. INTRODUCTION

(D —a ) D —a ——w=8, (2.1a)
The problem of the effect of modulation of the control

parameter on the onset of the first instability in various
hydrodynamic systems is currently receiving considerable
attention, spurred by new generation of experimental mea-
surements which will accurately determine the magnitude
of the effect. The theoretical treatment' of this effect is
based either on the full hydrodynamic equations' or a
few-mode truncation thereof. While the few-mode
truncation always yields a closed-form expression for the
effect, the hydrodynamic equations seemed to yield
closed-form solutions only when the idealized free-
boundary conditions were used. In this paper, we show
how accurate closed-form expressions for the effect can be
obtained, by using the proper rigid boundar-y conditions
We treat both the Rayleigh-Bi:nard (RB}and the Taylor-
Couette (TC) problems.

We follow a technique used by Chandrasekhar' to ob-
tain the critical Rayleigh and Taylor numbers in closed
form with the proper rigid-boundary conditions. The hy-
drodynamic problem reduces to a pair of coupled partial
differential equations in two variables: the vertical com-
ponent of velocity and the temperature in the RB problem
and the radial and vertical velocities in the narrow-gap
TC problem. The rigid boundary conditions are that both
fields vanish at the edges, while it is required that one of
the fields has a vanishing first derivative at the edges.
Chandrasekhar's approximation consists of Fourier ex-
panding the field on which the only requirement is the
vanishing at the edges and truncating the expansion at the
first term. The remaining field is then exactly determined
from one of the differential equations and the critical
Rayleigh or Taylor number determined self-consistently
from the other. The procedure yields these numbers to
within 1% as shown in Secs. II and III. It is this approxi-
mation that we use to study the modulation effects in
both RB and TC geemetry. The result for the Rayleigh-
Benard geometry agrees very mell with the numerical
work of Rosenblat and Herbert. The result for the
Taylor-Couette flow differs qualitatively from Hall' s
pioneering investigation" of this problem in that at high
frequencies we find a stabilization as opposed to the desta-
bilization reported by Hall. "

II. RAYLEIGH-BENARD PROBLEM

The linearized hydrodynamical equations for this sys-
tem in the standard form are

D —a —tr—8= —Ra w .2 2 2 (2.1b)

The symbols have their usual meaning: w is the Z com-
ponent of velocity (gravity is in the Z direction), 8 is the
deviation of the temperature from the steady conduction
state profile, D=—d/dz', where z=Z/d (d being the
separation between plates), a is the dimensionless wave
number of the convection rolls, t is the time in dimension-
less units, o is the Prandtl number and R =a(b, T)gds/A v
is the Rayleigh number, b, T=Ti —T2 the temperature
difference between the plates, with Ti and Tz being the
temperatures of the lower and upper plates, respectively.
The conduction temperature profile T, in the steady state
IS

T, =Ti b, T(z+ —, )— (2.2)

where a2= ito/AT—he line, a. rized equations of modulat-
ed hydrodynamics now become

t

(D a) D2 a2 ——— w=8-,a
(2.4a)

D a o' 8= ——IIa 2—[1+—eRef (z)e '"']w, (2.4b)

where

f(z) = . cosh[ad( —, —z}] . (2.5)

What we need to find is the critical value of 8 at which
the conduction state m =8=0 is destabilized. %e do this
within perturbation theory by expanding m, 8, and 8 in
powers of e. The resulting equations to O(e ) are

and 8 is defined as T(r, t) —T, .
We now consider the system with the lower plate tem-

perature modulated as T=Ti+Ree(b T)e'"' The.
steady-state temperature profile is now given by

1 sinhad(-, —z)e'"'
T, =T, bT z+ —+—eRebT . (23)

sinhad
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(D —a ) D —a ——wp ——Hp,
2 2 2

D —a —0' 8()=—Boa No,2 2 — = 2

(2.6a)

(2.6b)

We will look for solutions which are time independent
(principle of exchange of stabilities) and symmetric be-

cause they are the ones that are obtained at a lower Ray-
leigh number. The approximation will consist of a
single-mode truncation of the Fourier expansion for Hp(z),
1.e.,

(D —a ) D —a ——w&=8&,z 2 2 z (2.7a) Hp(z) =A cos(mz) . (2.11)

D —a —0—8& ———Boa N1 —R1a No
2 2 — = 2

Inserting the above in Eq. (2.6a) the solution for wp with
the boundary conditions (2.10b}becomes

—~pa zRe( fwpe ) (2.7b)
w p ——8 cosh(az) +Czsinh(az) + A cos(nz)

( +a')'
where

28 = —C tanh(a /2)

(2.12)

(2.13)

(D —a ) D —a ——w2=822 2 2 2

t

D —a —o —82 ———Rpa w2 —R2a wp
2 2 — 2 2

t

gapa zR—e(fw i
e'"')

—R&a Re(fwpe'"'),

(2 ga) and

2~8 cosh(a /2)
(6+a2)2(a +sinha)

(2.14)

(2.8b)
(2.15)

Inserting Eqs. (2.12) and (2.11}jn Eq (2.6b) with (~/~&)
( } term absent, integrating from z = ——,

' to —,
' after mul-

tiplying by cos(nz) yields

(g+a2)3 16/acosh (a/2)
a z (n +a z)z(a +sinha)

where

N =No+6N1+6 N2+ ' ' '2

e=ep+~e, +~'8,+ "
R =Ro+eR]+e R2+

(2.9a)

(2.9b)

(2.9c)

9O
——0, atz= ——,

' and + —, (2.10a)

In the zeroth order the solution to Eqs. (2.6a) and (2.6b)
have to be obtained under the realistic boundary condi-
tions

Mjnjmjzjng gp(a) with respect to a yields ap ——3.12 and
Rp-1712 within 1% of the exact numerical solution.

The perturbative corrections Rj, R2, etc. which are
compatible with the Ro may be obtained by requiring that
Eqs. (2.7a) and (2.7b) and Eqs. (2.8a) and (2.8b) must have
solutions compatible with the solution of Eqs. (2.6a) and
(2.6b), obtained above. The solvabihty criterion leads to
R& ——0. To obtain the form of w& and 8& within the one-
Fourier-mode approximation described above, we note
that the time dependence of w& and 8& are of the form
e'"' and that the spatial dependence can be obtained by
first Fourier expanding fwp and retaining the cos(n.z)
term. %'ith this in mind, we write

dwp 1

No ——0=, at z= ——, and + —, .
z

fwp~ cos(rrz},
(2.10b)

where

(2.16}

1/2
E=2 Nocos 7Tz z

A 2e Bad
h

ad
(++a 2)z ~+(tzd )2 sjnh(ad) 2

cosh[ —,
' (a —ad )] cosh[ —,

' (a +ad))
(a ad) +rr (a +ad—) +n

Cad ad
sjnh(ad) 2

sinh[(a —ad)/2] sinh[(a+ad)/2]+
(a —ad) +H (a +ad)2+m2

4(a —ad) a —ad)
2 cosh

[(a —ad) —m ]z 2
4(a +ad ) a +ad

cosh
[(a+ad) +sr ]

(2.17)
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We proceed, as for the zeroth-order solution, by making the ansatz

Hi ——eicos(mz) .

The solution for w i is obtained from Eq. (2.7a) with the boundary conditions w i
——dwi /dz =0 at z = ——,

'
and —,

' as

A, cos(mz)
w i 8——i cosh(az) +Ci cosh(bz) + z

( +az)( +b')
with

8 i cosh(a /2) = —C i cosh(b/2),

ircosh(a /2 ) I 1

b sinh(b/2)cosh(a /2) —a sinh(a /2)cosh(b/2) m2+a m +b
and

(2.18)

(2.19)

(2.20)

(2.21)

b =Q +EN.

From Eq. (2.7b} we now obtain the amplitude A i as

(2.22)

Roa
1

4 (a b) cosh—(a/2) cosh(b/2)
(n +a )(n +b ) (ran+a )(ir +b )fbsinh(b/2)cosh(a/2) —asinh(a/2)cosh(b/2)]

(2.23)

We turn now to the 0(s }equations. For Eqs. (2.8a} and (2.8b) to be solvable under the condition that Eqs. (2.6a) and
(2.6b) admit the solutions described above, we take the time average and require that the left vectors of Eq. (2.6a) be
orthogonal to the right-hand side (rhs) of Eq. (2.8b). This leads to

R= —RRe
2&Ho ( wo)

&(n +a }Ho
~
fwi )= —AgRe--

2&(m +a )Ho
i wo)

&(D'—a'}Ho Ifwi &= —AgRe
2&(D —a }Ho~ wp)

&wo Ifwi & &wi Ifwo&= —AgRe = —AgRe
2&wp

~
wp& 2&wp

~
wo&

Straightforward algebra leads to

Roaz/E J

z
G(oi)

A2 —— Re
4& wo I wo & (m +a')—(++a'+i oi)(ii +a''+toro) ~Roa'G(pi)

where

(2.24)

(2.25}

4n (a —b )cosh(a/2)cosh(b/2)
(m +a }(n +b )[b sinh(b/2)cosh(a/2) —a sinh(a/2)cosh(b/2)]

It is useful to look at the asymptotic behaviors of Rz/Ro, the fractional correction for co~0 and co~ ap. In the zero-
frequency limit, we expand G(co) in powers of iso and find Rpa2G'(co) ~~(m +a2)2(a+1) [Roa G'(co)=0.2]. The
second derivative contributes even less. The zero-frequency limit turns out to be

R2(co=0)

Rp 2 (a+1}2
For very high frequency, G(co)—+ I,

~

E
~

-oi, and thus

Az 1

(2.27)

(2.28)

The correction is positive definite and monotonic. With the idealized boundary conditions this dependence turns out to
bc N
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III. TAYLOR-COUETTE FLO%

(3.1a)

We work in the approximation that the separation d between the cylinders is much less than their radii (r, and rz).
We will restrict ourselves to the linearized equations and use the notation of Chandrasekhar' and Hall. " In the small-

gap approximation, there is only one variable, z =(r r&—)/d, which ranges from 0 to 1. Using a dimensionless time vari-
able, the hydrodynamic equations for the modulated fiow can be written, exactly as in Hall, "as

r

8 z 8 8 z sinh[ad(1 —z)]—Q —— —Q u = 1 —z+eRc
Bz 8& 9z sinh(ad)

a' a—a ——U= Ta —u 1+eRe . cosh[ad(1 —z)]e'"cd iui
Bz sinh(ad)

(3.1b)

where R =(r, +rz)/2.
The difference from the hydrodynamic equations for

the modulated convection problem lies in the extra terms
on the rhs of Eq. (3.1a) as compared to the rhs of Eq.
(2.4a). While the modulation affects the second equation
above in the convection problem, here, the effect shows up
in both equations and that causes a qualitative difference
in the final result.

We proceed perturbatively, as in Sec. II by employing
the modulation amplitude e as the small parameter. In-
troducing the expansions

u =up+eui+e uz+ ' ' '

U=UQ+evi+e Uz+ '

T= To+ST)+6 T2+ ' ' '

(3.3a)

(3.31)

(3.3c}

where u and U are the dimensionless radial and vertical
components of the velocity field, az=icU/v, a is the di-
mensionless wave number of the roll, ai is the modulation
frequency of the rotation rate Q of the inner cylinder
(while the outer cylinder is at rest}, and T is the dimen-
sionless Taylor number

2Qzd%
(3.2)

D —a ——(D —a )uz ——(1 z)uz+—Reg(z)U&e' ',

(3.6a)

D —Q — U2= —Toa u2 —T2Q ~o —TiQ2 2 2 2 2

dt

—Tpa zu, Ref (z)e'"', (3.6b)

where

g(z) = sinho;d(1 —z)
sinha

and

(3.7a)

f(z)= . cosh[ad(l —z)] .
sinh a (3.71)

We begin with the 0(l) equations [Eqs. (3 4a) and (3 41)],
which correspond to the unmodulated system. The boun-
dary conditions require that U be zero at the
boundaries z =0 and 1, and u =0=du /dz at z =0 and 1.
At this order, Up ——0=up ——dup/dz at z =0 and 1. As be-
fore, we proceed by making the ansatz

Up=sin(nz) . (3.&)

D —a ——(D —a )up ——(1—z)UQ,z z ~ z z (3.4a)

and inserting in Eq. (3.1a) and (3.1b) and equating identi-
cal powers of e, we get up to 0 (e )

This is the first term of a Fourier expansion for Up and
the approximation consists of truncating the expansion at
this order. Using Eq. (3.41), we now solve for up(z} to ob-
tain

D —Q — Uo =—ToQ Qo,2 2 — = 2 (3.41)

uQ(z) = Apsinh(az) +Spcosh(az) +Cpzsinh(az)

+Dpzcosh(az) + (1—z)sin(n. z)

( +a')'
Dz az —(Dz —a —)u

&
———(1—z)Ui +Reg(z)upe'"',

0 5a) where

4m
cos(mz),(&+a')' (3.9)

D —Q ——g) = —ToQ Q )
—T]Q Qo

2

Bt

—Tpa upRef (z)e'"', (3.51)

—4m(1 +cosha)
Ao ——

(sinha —a)(H+a )

KQ

(n +a ) (sinh a —az)

4m

(n+a )

(3.10a)

(3.101)
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m sinha cosha —a
C0 ——

(rr2+a ) sinh a —a

4+a sinha

(n +a ) (sinha —a)
(3.10c)

u
&
——P cosh{az)+Q sinh{az)+R sinh(bz)

A, (1—z}sin(nz)+Scosh(bz)+
z 2

( +a )( +b')
2A, (2n +a +b )cos(mz}

(++a 2)2( ~2+ b 2)2
4rra(1 +cosha)

0
(sinha —a)(m +a )

msinh a
(n +a ) (sinhza —a )

{3.10d)
where

6 sin(nz)

(m +a )(ir +bi) (3.19)

g (z) uo =6 sin(mz) (3.12)

f(z}uu =Fsin(mz),

where

(3.13)

Inserting this solution in Eq. (3.4b), multiplying by sinnz,
and integrating from 0 to 1, we obtain

2(m +a )
To

a2I 1 —16a+cosh2(a/2)[(n +a2) (a +sinha)]

(3.11)

Minimizing Tu with respect to a, we find the critical Tay-
lor number for the onset of instability. The result, as stat-
ed in the Introduction, is within 1%%A of the exact numeri-
cal answer. The one-mode truncation is thus found to be
a very good approximation and can be used effectively for
studying the modulated system.

To proceed with the O(e) equations as shown in Eqs.
(3.5a) and (3.5b), we first introduce the Fourier expansion
of the functions g(z)uu and f(z)uu as

=a +leo ~

&&= X[b sinha sinhb+ab(coshb +1)(1 cosha))

+ &(a cosha sinhb bsin—ha coshb)

+z(a sinhb bsin—ha ),
Qh= X[ab sinha (1+coshb) —b sinhb(1+cosha))

+ I'(b cosha coshb —a sinha sinhb b)—

+Z(b cosha bc—oshb},

R b, = X(ab sinhb +ab sinhb cosha

—a2sinha coshb —a sinha)

+ I'(a cosha coshb bsinha si—nhb —a)

+Z(a coshb —a cosha),

Sh= X[azsinha sinhb ab(1—+cosha)(coshb —1}]

+ F(b sinha coshb —a cosha sinhb}

+Z(b sinha —a sinhb ),

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

16=2 g (z)uusin(mz)dz
0

4m cosh(ad )—1

4ir +(ad)2 ad sinh(ad)

F=2 f f(z)uusin(mz)dz .

For au~0,

(3.14)

(3.15)

2rrA((2rr +a +b }X=
(n +a ) (n +b )

ir(A i+6)
(vr +a }{rr+b )

(3.25)

Z=
(2+a )(H+b )

b =(a +b )sinha sinhb+2ab 2ab cosha cosh—b (3.26)

+aF(ru=0) =-
T0a

while for co~ &n,

F(co)— 15
(ad)'

(3.16)

(3.17)

1+—WF
T0a

2(H+b')

(3.27)

The solution of Eqs. (3.5a) and (3.5b) procexh by making
the ansatz

ui(z) =A ~sin(~z), (3.18)

obtaining u& from Eq. (3.5a) by using the proper bound-
ary conditions, and finally determining A& from Eq.
(3.5b). The time dependence has the form e'"'. Straight-
forw3rd, but tedious, algebra leads to

(n +a )(rr +b )

2rl (b a)—
[b,(sr+a ) (vr +b ) ]

X [a sinhb (1+cosha) —bsinha(1+coshb)] .

(3.28)
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(D —a ) uo= —Toa Uo ~

2 22'= 2t

(D' —a')v, =(1—z)u,2
(3.30)

with the boundary conditions that vo ——0 at z =0 and 1

and up and dup/dz =0 at z =0 and l. Equation (3.29)
yields

T2a (Up, up) = —
2 (up, g(z)Ui(z))2

We now turn to the O(e ) system shown in Eqs. (3.6a)
and (3.6b). The solvability condition yields

(

g(z)vie'"'
(uo Uo) 2 T 2 .t =0 (329)

T2Q Qo+ ToQ Q1 z e

where the large angle brackets denote averaging with

respect to time and u p and vp are the left vectors satisfy-

ing [wit (a/at)( )=0]

(u p,g (z)v i(z) )
lim

a (vp, up)

1

zQ0 1 —zv1z= lim
0 a zvozupz

0

f (D —a )vpvi(z)dz= lim
N~o a VozuOZ Z

0

(vp,f(z)u i(z) ) (up, g (z)v i(z))
T2 ———Re—To + t 22 (Up, uo) (vp, up)a

(3.32)

Explicit expressions can be written down for the integrals
on the right-hand side of Eq. (3.32}. However it is more
worthwhile to examine the expression in the two limits of
low and high frequencies.

In the low-frequency regime f(z)~1 and g(z) —+1—z.
We now make use of Eqs. (3A), (3.5), and (3.30) to arrive
at

Tp

2
a (vp, f(z)ui(z)), (3.31}

A1= —lim To
07~0 2

(3.33)

where the factor —,
' comes from the time averaging. Thus, and

(Up,f(z)ui(z))
lim To

(vo uo)

Uozu1z Z
10

a)~O 0 UOZ up Z Z

1

U1 z Uo z z+ TpQ Uo z Qp z z
= —lim 1

yp~o a vp(z)up(z)dz

(vr +b )—= llm —To+ 2 AiTp .
) —+0 +a

(3.34)

Inserting in Eq. (3.32)

To i
T2(co=0) = lim 1—

t0-+0 2 +a 2
(3.35)

and G(z) is smaller than F(z) by a factor co'~2. Thus the
threshold shifts in the Taylor-Couette and Rayleigh-
Benard problems have identical structures in the large fre-

quency limit. We find

Using Eq. (3.27) to arrive at the limits and a=3.12, we
find

1.2
5

(3.37}

T2(co =0) —0.10,
0

(3.36)

in good agreement with Hall's value" of —0.07.
For high-frequency modulation we observe that the

O(e) term in Eq. (3.1a) is smaller than the O(e) term in
Eq. (3.1b) by a factor of ad where ad~00 in the high-
frequency limit. Thus we expect that in the high-
frequency limit the modulation effect will be present in
the U equation alone and the structure would be the same
as the corresponding Rayleigh-Benard problem in Eqs.
(24a} and (2.4b). To see this, we note that as ot~oo,
G/F~const [Eqs. (3.14)—(3.17)], W-+0 [Eq. (3.28)], and
thus 3 i has the same form as the corresponding A, [Eq.
(2.23)] for the Rayleigh-Benard problem. Finally we note
that the first term in Eq. (3.32) dominates in the limit
ot~ 0o because the wave functions vp and u i of the first
term and up and Ui of the second have similar structures

in disagreement with Hall s calculation (T2/Tp- ro ), —
both in the sign and in the asymptotic power law. This is
our main new result.

IV. COCCI.USION AND COMPARISON
WITH PREVIOUS WORK

We have developed a systematic perturbation theory for
treating the effect of modulation in presence of rigid
boundary conditions. Our results supplement those of
Venezian' for the ideal free-boundary conditions in the
ease of RB geometry. For the Taylor-Couette flow we

provide an alternate approach to that of Hall. " Numeri-
cal results for both Rayleigh-Benard and Taylor-Couette
geometry exist for the rigid boundary conditions and we
shall now compare our results with these, wherever appl-
icable. Truncated systems ' yield similar results.

For the RS problem the relevant numerical work is that
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of Rosenblat and Tanaka. " To compare we choose the
modulation amplitude a=0.4, the value at which Ahlers
et a/. ' have compared their results {using Lorenz-like
truncated equations) with Rosenblat and Tanaka. ' For
both o = 10 and 1, our results agree with that of Ref. 13
within 5%%uo for all frequencies. This clearly estabhshes the
soundness of our perturbative approach.

We now turn to the Taylor-Couette problem and set
@=0.5. For low frequencies (m (50 in units of v/d ), the
result shows a clear destabilization and the quantitative
agreement with Hall is excellent. At higher frequencies,
we find a stabilization. Hall" reports a destabilization in

this range. Riley and Laurence's' numerical procedure is
not sensitive enough to find the shift in T at such high
frequencies for low e. However, we note that for e& 1,
Riley and Laurence' do observe a stabilization at higher
frequencies in qualitative agreement with our work. The
sudden disappearance of this effect from their results as e
is lowered is most probably due to the diminishing size of
the effect and the consequent numerical difficulties. As
for the experimental situation, Donnelly' reports stabili-
zation at all frequencies. The later experiments of
Thompson'7 show a low-frequency destabilization but a
high-frequency stabilization.
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