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The stress-relaxation function o(t) in a stabilized glass is described by a potential-barrier model
which is based on separating geometric packing considerations from thermal excitations in the
dynamical evolution of a many-body system. The analysis proceeds in stages: (1) The configuration
space is uniquely divided into cells, each associated with a minimum on the potential energy P
hypersurface. (2} "Crystal-free" particle packings are isolated. (3) Since the P hypersurface in the
amorphous manifold is topographically rough over a wide range of length scales, a coarse graining is
carried out to suppress small-scale roughness. (4) Stress relaxation is connected with transition be-

tween cells which involve localized particle motions. A master equation describes the time-

dependent residence probabilities in the cells. The basic physical assumption is that the slowest

structural rearrangernents in a dense, highly viscous supercooled fluid occur on a molecular length

scale via self-diffusion. We find that cr(t) =Poexp[ —(tie) ]; for t «r, a= —,'; for t v, -a= —,'; for

t &&v„a= 1. The temperature dependence of w is governed by the self-diffusion of the viscous fluid.

I. INTRODUCTION

A glass is defined as an amorphous solid which is
formed by continuous solidification of a liquid. By con-
tinuous sohdification one means a homogeneous process
in which viscosity increases continuously with increased
pressure or lowering of temperature T, from fluid to solid
values. In contrast, crystallization results in a discontinu-
ous increase in viscosity. A glass bears some resemblance
to liquids and some to crystalline solids. While spatial
isotropy makes glasses similar to liquids, the relaxation
time of a local shear is so long that glasses behave
mechanically as solids.

The recognition' of two time scales is essential to the
understanding of the process and competition between
crystalhzation and vitrification. The first time scale
~;„(T) is the time scale for relaxation within the super-
cooled liquid. The second time is the time needed for a
chosen volume fraction of the sample to become crystal-
line. We will call this the escape time w,„,(T). Vitrifica-
tion would thus be impossible if the escape time curve
were to meet the internal relaxation time curve. In fact,
r;,(T) increases continuously as the temperature is
lowered. In contrast, s,(T} does not decrease continu-
ously with temperature but enters a regime where its value
is governed by the siime process which also determines the
behavior of ~;„i.e., the self-diffusion of the liquid.

A vast amount of experimental data "' shows that
there is a wide class of properties whose spectnim of re-
laxation times becomes broad near the glass transition.
The Kohlrausch-Williams-Watts (KWW) correlation
function has provided an accurate and convenient way to
express this broad response. The correlation function has
the stretched exponential form ' '

f(t) =goexp[ —(r/v)~] .

The exponent P lies in the range 0.3 &P& 1.0 but may

vary with substance, temperature, and pressure. The tem-
perature dependence of the most probable relaxation time
r is a strong function of T and is often represented by the
Vogel- Tamman-Fulcher (VTF) law "

a=A exp[ —8/(T —To)], A,S,To ~0 .

The theoretical origins of this nonexponential relaxa-
tion of mechanical and dielectric disturbances in highly
viscous supercooled liquids is a challenging problem —a
problem which has recently received renewed interest. It
is the purpose of this paper to understand why this hap-
pens. To put the problem into perspective, the following
comments are in order. First, the precise mechanism by
which a system's response results in a KWW form de-

pends on the property (e.g., stress versus dielectric relaxa-
tion) whose relaxation is being studied. Second, there are
several reasons for being cautious about assigning a deep
significance to the KWW distribution. (a) Since the data
is usually analyzed on a log-log scale, there is a compres-
sion of data. This means that there is not much structure
to the long-time relaxation curves. Many three-parameter
fits would thus equally well correlate with the data. (b}
There are materials in which stretched exponential is not
a good fit. For example, in a composite material, the total
response is a sum of responses P;. Thus if P; is of the
KWW form, P is not unless each P; had the same
response. As a second example, photon correlation spec-
troscopy of the amorphous polymer [poly(di(n-
butyl)itaconate}] shows that the observed correlation
function cannot be fitted to a single KWW function. An
accurate description is obtained by fits which are sums of
two such functions. As a final example, note that the re-
lationship between complex modulus 6 and complex
viscosity g, G=icog, clearly shows that if 6 is of the
KWW form, then g is not of the stretched exponential
form and vice versa. (c) There are several cases in litera-
ture6 of single-relaxation-time kinetics being observed
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for relaxation processes occurring in solutions near Ts.
Electrical relaxation studies of charge migration in a di-

lute solution of NaC1 in glycerol and dipole reorientation
of a high moment-of-inertia dipolar species in dilute solu-
tion in o-terphenyl are just examples of the point.

The above arguments were intended to demonstrate the
point that although nonexponential long-time relaxation is
obserued in a variety of properties near Tz, the KWW is
nor universally valid. Since there are known cases where
the KWW form works well, we should inquire into the
basis for its functional form.

Extensive set of data compiled by Douglas et al. and
more recently by Angell and co-workers show that stress
relaxation in a stabilized glass can be described by a
KWW form. In particular one finds that for t -~, a ——,',
and for t ~&v, a has the value of 1. There is also some
evidence of a high-frequency peak not accounted for if
a= —,'. An analysis of the data shows that for t &&r, a
has a value of about —,'. This paper is devoted to an
understanding of stress relaxation in low-temperature
amorphous materials.

Stillinger and Weber' (SW}have recclitly proposed that
a fruitful way to consider the many-body dynamics of a
liquid is to separate the stable-packing configurations
from the vibrational motions about these molecular pack-
ings which correspond to the local minima in the
potential-energy hypersurface of the system. The so-
called steepest-descent quench is used to map arbitrary
configuration of particles onto appropriate members of
the collection of potential-energy minima. The essential
results obtained by Stillinger and co-workers are reviewed
in See. II. Section III presents a potential-barrier model
of glassy systems. Since our goal is to explain the stress-
relaxation function in the glassy state, i.e., within a re-
stricted part of the configuration space, the amorphous
packings are isolated out of the full packings by a suitable
projection. This is briefly described in Sec. IV. A spatial
coarse graining is introduced in Sec. V which smooths out
the roughness in the potential-energy hypersurface. The
relevant slowly relaxing degrees of freedom are essentially
unchanged by the coarse graining and they can be
described by a master equation. Thus, the stress relaxa-
tion in glass is connected with probability flow in configu-
ration space between distinct coarse grained packing of
cells. In Sec. VI, the stress-relaxation function is analyzed
in various regions of time scales. Concluding remarks are
made in Sec. VII.

II. MAPPING ONTO POTENTIAL MINIMA

A fruitful way to consider the many-body dynamics of
a liquid is to separate' the stable packing configurations,
which correspond to the local minima in the potential-
energy hypersurface of the system, from the anharmonic
vibrations about these stable molecular packings. Recent-
ly, S% have implemented this idea by carrying out a so-
called steepest-descent quench. One starts from any ini-
tial configuration and follows the path of steepest descent
on the 4 hypersurface until a minimum is encountered.
The mapping of arbitrary initial configurations to their
respective minima is unique and exhaustive. The set of all

configurations that quench into the same minimum a of
4 defines a cell C(u) around that minimum. In this way
the configuration space is divided into distinct regions
C(a}. Note that for each 4 minimum, there are N!
equivalent minima which differ only by exchange. If the
number of distinguishable minima occurring between P
(where /=4/N) and P+ dP is G(P), the partition func-
tion can be expressed as a simple quadrature over the po-
tential energy:

Z, =X '"f d-&G(p)exp[ PNp —BÃf(—AP)] (1)

Here A, is the mean thermal de Broglie wavelength,
Nf(P, P) is the mean vibrational free-energy motion in
those cells whose minima lie at P, and P=(ka T)

We now summarize the results of Stillinger and Weber.
(a} For temperatures around the melting temperature

'r, transitions between distinct "inherent structures" or
packings occur frequently with returns to a previously
visited value. As the temperature increases (T-3T ), the
rate of structural transitions also increases dramatically.
This means that the configurations of the system are able
to probe diverse regions of the configuration space which
contain many basins of diverse slope, curvature, aperture,
and depth.

(b) If the fiuid is moderately supercooled, the transition
kinetics exhibits a pattern of intermittency, i.e., the state
of the system gets "stuck" in the same cell for long
stretches of time; exit from the cell is followed by chaotic
bursts of changing quench P-values. In other words, the
system evolves through regions of the 4 hypersurface
which contain intertwined "drainage ditches" that des-
cend towards many different potential minima.

(c) The transition rate between different cells declines
rapidly with temperature. If the system is supercooled
into an amorphous state, then one observes transitions be-
tween localized two-levels. The bistable degrees of free-
dom are cooperative and have wide variations in barrier
heights, the number of atoms involved, and the extent of
curvature of the reaction pathway.

(d) Transition kinetics between cells involves localized
particle motions with an essentially rigid host matrix; the
corresponding change in 4 is of 0(1). Thus a small
number of atoms out of the entire system participates as
the system moves from, say, state A to state 8. The loiter
the temperature, the more localized the particle rearrange-
ments are between successively visited inherent structures.
By contrast, the entire span of depths of minima is of or-
der N.

(e) The radial distribution function of the quenched
configuration appears to be independent of temperature at
constant density, provided the initial state corresponds to
a fluid state.

(f}The majority of the relative potential minima contri-
buting to the quenched amorphous states are highly defec-
tive face-centered cubic crystalline configurations. This is
true only if the substance's stable crystal form is itself
face-centered cubic.

Cotterill and Madsen" have also analyzed the topology
of the constant-potential-energy hypersurfaces of
Lennard- Jones matter. These authors have obtained sec-
tions of the configuration space by probing all of the
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normal-mode energy profiles. For the crystal, these
normal-mode profiles were single welled. In the non-
crystalhne states, some of the sections displayed double-
well behavior; these double wells occur more frequently as
the glass is warmed towards the fluid state. The oc-
currence of double wells in the monitored sections indi-
cates the existence of labyrinthine and multiply connected
constant-potential-energy hypersurfaces. The study re-
veals the probability that there are curved valleys which
circumvent the barriers.

III. POTENTIAL-BARRIER MODEL

The stress-relaxation function will be studied via a
potential-barrier model for glassy systems. Although the
details of the model are arguable, they are, nevertheless,
plausible, and are in fact supported by the findings of SW
in their detailed computer simulation studies of structural
transitions in liquids. The assumptions' of the model are
as follows.

(a) A reaiple of glass at low temperatures is in a state
which is either at or near a minimum on the potential-
energy hypersurface. It is near a minimum in the sense
that a sudden cooling will drop the glass into a minimum
with relatively small change of most of the coordinates.
In fact, the approximate equality" between the entropies
of the glass and crystal suggests that for both these states
the state point is confined to a local potential-energy val-
ley in configuration space.

(b) The region of the potential-energy surface that
represents the glassy state has a large number of minima
of varying depths. This is consistent with a variety of ex-
perimental results which show that a sample of glass has
flnite entropy and that its state depends" on the rate at
which the liquid has been cooled below its freezing point.

(c) At low temperatures the "inherent" structures make
transition from one cell to another cell by passage across
some saddle point on the C) surface. These transitions in-
volve localized particle motions. It is precisely these
molecular rearrangements that provide a mechanism for
the viscous flow and, hence, the attainment of thermo-
dynamic equilibrium. Note that at low temperatures,
even though the state point is confined to a local valley, it
may go to an adjacent valley by traversing a relatively low
energy barrier. This idea'~ underlies the explanation of
the specific heat of glass at low temperatures.

(d) In the temperature range where thermal energies of
the system become comparable to height of the potential
bamers, the potential-barrier picture ceases to be applic-
able.

The assumption that flow involves motion in a local-
ized re 'on is inherent in the models of Adams and
Gibbs, ' "and Turnbull and Cohen. '5' ' More recently,
the computer simulation results of Helfand and Weber'6
show that molecular re@rangements of even larger poly-
mers are thought to occur by the accumulation of rear-
rangements of segments of only 5—10 bond lengths.

IV. COARSE GRAINING OF POTENTIAL MINIMA
IN THE AMORPHOUS MANIFOLDS

A stable liquid above the melting temperature contains
a distribution of crystallites. These crystallites serve as

nuclei for freezing of the hquid. A system in the super-
cooled regime remains in that part of the configuration
space which is spaimed by crystal-free particle packings.
Our goal is to explain properties of the stress-relaxation
function within this restricted configuration space. Thus,
the amorphous packings are isolated, by a suitable projec-
tion, out of the full packings.

Let the amorphous manifold be characterized by cr &(P),
the packing distribution by potential energy, and a mean
vibrational free energy Nf, (P,P). By assumption of the
potential-barrier model, the C) hyper surface in the
amorphous-packing part of the configuration space is to-
pographically rough over a wide range of length scales.

Following Stillinger, '7 a coarse graining is carried out
that suppresses small-scale roughness, while preserving
the large-scale features via the following steps. First, the
potential energy is separated into a repulsive part and a
remainder

r'H r, r', =1,
(»)-' f «J' «'

~
r-'[, 'a(r, ',1)=1'.

As 1 increases, the coarse-grained potential 1( becomes
smoother since many of the minima in 4 are eliminated.
Thus, the number of minima of P(l) in the amorphous re-
gion of configuration space decreases with increasing 1 as

Q(1)—Qzexp[8(l)N] . (5)

Q~ is the number of equivalent minimum for each P(l)
minimum and 8(1) decreases monotonically with l.

Configuration mapping to minima on the coarse-
grained potential g will lead to cells C~(1) which cover
the full configuration space exhaustively and without
overlap. Clearly, the number of cells decreases as 1 in-
creases.

V. DYNAMICS OF TRANSITION BETWEEN CELLS

Stress relaxation in glass is connected with probability
flow in configuration space between distinct coarse-
grained packings of cells. Denote the cells in the amor-
phous part of the configuration space by

1 if I isincella,
0 otherwise .

I denotes the position of the system in configuration
space. The cells do not overlap and span the configuration
space,

where 4, represents long-range interactions. Second, 4,
is coarse grained over a region R:

P(rl) f, d=r'H(r, r', l)r)r, (r') .

R is the set of configurations without overlap. It, is the
physically accessible region of configuration space. The
non-negative kernel satisfies

lim H (r, r', 1)=5(r—r'),
1 0
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C (I )Cp(I )=5 pC (I ),
QC.(1)=1 for all I .

C (t)= —g f, dt'K, „(t')C„(t t')+F—+(t) . (9)

The "random force" and the transition memory kernel
are, respectively,

(t) =exp[t(1 —P)1 ](1—P)LC (I'),

K(gr(t)=(exp[t(1 —P)J ]LC,L,C )y(C (I )}
(10)

L is the Liouville operator, the inner product (A,B}being
defined as equilibrium averages of (,AB), and the projec-
tion operator P projects onto the subspace of linear com-
binations of the C,(I'). The systematic frequency term in
Eq. (10) vanishes since C depends on coordinates only,
and I.C is linear in momentum.

f(X,0)=f,q„,i(X)T(C),

where T(C) is any function of the C's, the average of the
random forces vanishes identically and the master equa-
tion for the time-dependent residence probabilities in the
cell a is

The probability that the amorphous state of the system
lies in the cell a, at time t, is the average of the cell
characteristic function C (I ),

P.(t) = &C.(I.);t)
=—f dXC (X)f(X,t).

Here the state of the system, i.e., a point in phase space is
denoted by X and any time-dependent averages are taken
with the phase-space distribution function f(X,t).

By the use of Mori algorithm, one readily finds the
Langevin equation' of motion for the set of observables
IC~(I ) I

P (t)= g [K,P, (t) K—„P (t)].
y (~a)

The general solution of the master equation can be ex-
pressed as

g A„X'"'exp( —A,„t) . (16)

X~ ~ and A are the orthonormal eigenvectors and e
values of the transition operator K

KX'"'=a„X'"' . (17}

The conservation Eq. (13) implies that the transition ker-
nel must satisfy

QK„.=0.
y

(18)

This means that there is at least one zero eigenvalue of K,
namely A,

&
——0. A sufficient condition for existence of a

stationary state P~ is

M

g KNrPr —0 .
y=1

(19)

Equations (18) and (19) lead to the condition of detailed
balance

0 0Eayr'y —Eyer'a (20)

Note that detailed balance condition imposes not only a
sufficient restriction for the existence of a stationary solu-
tion, but it guarantees that all eigenvalues are real and
non™negative.

The time scale for relaxation to equilibrium (P ) de-
pends on the smallest remaining eigenvalues A,2 of K tt.
A.z determines whether equihbrium can be reached within
the time scale of physical relevance.

If all states are connected by a chain of nonvanishing
elements of K, then there is only one A, =0; the stationary
solution P is unique and reached in a finite time if n is
finite.

P' (i) —g f, d.i X=„(r—~'u''„(.~') .
r

(12) VI. STRESS RELAXATION

Sy conservation

M

g P (t)=1. (13)

Here M is the number of distinct particle packings in the
coarse-grained amorphous region of the configuration
space

M(l) =exp[NO(l)] . (14)

I.et us assume that the cells constructed by the
steepest-descent method and after coarse graining are such
that the dynamical behavior is "complex" in the sense
that once the system has entered a cell, the memory" of
the initial cell has been erased. Under these cir-
cumstances, the irreversible behavior is governed by the
master equation

Let us choose a molecular configuration which is at a
potential-energy minimum as the reference state and de-
fine it to be strain free Molecu. lar rearrangement takes
the state of the system to a nearby miniinum. By assump-
tion of the potential-barrier model, changes arising from
this rearrangement are localized. The displacement vector
of the strain field produced by the rearrangement will give
rise to deformation of the surface.

A surface force can be applied that can produce the
simple macroscopic deformation. The external stress can
either bias or unbias some potential-energy minima rela-
tive to others. To describe the dissipation of stored poten-
tial energy via molecular rearrangements, suppose that the
stress can be assigned mean values cr appropriate for the
interior of each of the cell equivalent classes. Then the
time dependence of regression of an initial fluctuation in
cr(t} ls
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cr(t)= go P (t)

= g A„g„exp( —A,„&), (21)

where P„ is given by

y ~(n)

Since we have imposed detailed balance on the transition
probabilities K p, o (i) decays to zero at t~ 00.

In deriving (21} we have made no assumption that
stress relaxation in a glass occurs by parallel process, an
assumption which necessarily means that disjoint regions
of the configuration space relax independently. Rather,
the expression for stress relaxation explicitly shows that it
involves coupling of all degrees of freedom.

Small A,„describes slow processes over large-scale topo-
graphical features and, hence, are nor affected by the
coarse-graining operation which smooths out small scale
features. As 1 increases, M(l) decreases and the few
remaining effective modes of relaxation are slow. These
slow modes are associated with localized repackings of
particles near the test particle. In the glassy state, stress is
relaxed by movement of a small subset of the system's
particle positions, the motions of which are weakly cou-
pled to the motions (the so-called a relaxation) which
were frozen out at the glass transition. The basic physical
assumption is that the slowest structural rearrangements
in a dense, highly viscous supercooled fluid occur on
molecular length scales via self-diffusion, i.e.,

rg
' ——Dki, (23)

where D is the self-diffusion coefficient and the index k
labels the wave vector determined by boundary conditions.
Sine the sum over n in Eq. (21) can be viewed as sum over
the "modes" that characterize the system, we have rela-
belled the summation index by the wave vector k.

There are both experimental and theoretical reasons for
this assumption.

(1}In a stabilized glass, which is what we are consider-
ing, one observes experimentally' ' that the same activa-
tion energy is obtained for various relaxation processes in
the transformation range. This means that each r„must
vary with temperature in precisely the same way.

(2) The Boltzmann superposition principle is valid for
stabilized glass. Thus, the shear viscosity computed from
the stress-relaxation function is proportional to r

(3) The decay of density fluctuations in a dense fluid
which occurs on a inolecular scale length becomes very
slow and occurs via self-diffusion; this scale length is
given by 2m lqo, where qo is the first peak in the structure
factor.

In fact, measurements of the temperature dependence
of the half width of the dynamical structure factor
$(q,m) of the supercooled liquid at q=qo show that the
data correlate ' well with the slowing down of the dif-
fusion process through which nonpropagaring density
fluctuations at any q & qo must decay.

(4) The detailed ion dynamics simulation for Si02, by
Angell and co-workers, 2 over a wide range of T and den-

sity show that the particle motions by which the system
explores its configuration space and finds its equilibrium
state are essentially diffusive in nature.

(5) In a detailed series of experiments, Angell and co-
workers have used time-dependent spectroscopy of
local-structure-sensitive optical probes for the purpose of
studying relaxation processes in viscous liquids in the
glass transformation range. They have found that both
the average relaxation time and the form of the
relaxation-time spectrum may be very different for the lo-
cal structure than for the total structure as probed by nor-
mal thermal or mechanical methods. In other words,
these experiments support the idea that the spectrum of
relaxation times which is observed for a given relaxation
process depends on the volume of the system subspace
which must be explored to relax most of the imposed
stress.

(6) Density fluctuations that are frozen in the cooling
glass result in internal compression and shear strains.
These strains are partially relieved by an annealing pro-
cess. The large value of the Landau-Placzek ratio which
is due to decreasing Brillouin intensity (and not to an in-
crease in Rayleigh scattering) has been qualitatively attri-
buted 4 to a nonpropagating strain-relaxing mechanism.

(7} The theoretical validity of the Stokes-Einstein (SE)
relation in a model of cold dense liquids based on the
Stillinger-Weber construction, has recently been
analyzed in detail by Zwanzig and Mohanty. These au-
thors show how the SE relation can be derived by a direct
evaluation of shear viscosity and self-diffusion from the
Green-Kubo formula.

(8) Experimentally there is as yet no conclusive evi-
dence that the SE relation is valid in the undercooled
liquid in the transformation regime. But the relation be-
tween the self-diffusion coefficient and the friction coeffi-
cient is a direct consequence of linear response theo-ry and
is correct independent of any mechanism for the friction.

By analyzing experimental data on a variety of liquids,
Zwanzig and Harrison have made the suggestion that if
deviations from the SE relationship are observed, and if
there are no other nonviscous mechanisms, then one
should look for something unusual about the interaction
of the moving molecule and its environment. In this case,
they suggest that the SE relation is valid in terms of an ef-
fective hydrodynamic radius (EHR), the EHR being a
measure of the strength of this interaction.

(9) Computer simulation results of dense classical
liquids have shown that the stress-tensor autocorrelation
function decays as t ~ for long times, where t is the
time, but with an amplitude that is 500 times larger than
predicted by conventional mode-coupling theory. This
has recently been explained by the use of generalized hy-
drodynamics which includes effects that occur on a
molecular length scale where structural relaxation is im-
portant. The heat mode softens at liquid densities and ap-
proaches the self-diffusion mode at q =qo which corre-
sponds to the first peak in the structure factor. At these
wave numbers, there is a very slow structural relaxation
due to self-diffusion. The recent molecular theories of
liquid-solid transition by Ramakrishnan and Yussouff,
and Jones and Mohanty emphasizes and makes use of this
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(2Dr) k Dr1/3
' 2 '1/3

(kjk') k' 4

'p(k/k'), (2&)

where k' =(2DtX} '~'. The major contribution to stress
comes when I is a maximum, i.e., at k =k'. Using the
facts that

point.
Let us first analyze the short tim-e behavior of the

stress-relaxation function. By short time we mean that
the time scale of interest is much less than r, -X. /D =rs-,
where X is roughly given by the short-range order in a
glass. Let us consider a relaxation mode whose wave-

length is A, . If the wavelength of the mode is much larger
than A, , then the mode would involve regions of the glass
which are incoherently linked. The mode would then be
suppressed Hence, the probability of exciting a mode
whose wavelength is A, is proportional to exp( —A, /X). On
introducing a continuum approximation we get

k
cr(()=A ' I exp( ) /) Dk—2()pqd—k . (24)

kmin

The shortest wavelength A, ;„ is of the order of a few
angstroms and the longest wavelength A, ,„is governed by
the size of the sample. The wave vectors k and k;„
are, respectively, given by 2m/A, ;„and 2m/A, ~, and the
normalization factor 3 is bounded by k /H.

The exponent in the integrand is written as

Define k'=(Dtk&T/mo )
' . Then the exponent in the

integrand can be written as

T '2
k (Dr)'"

kg T k' (k /k*)
(30)

o(t)= $»e
2n(k')2 m.

4Dt

r 1/2

exp[ (t j—~»)'~ ] (32)

with r& ——k&T/4m o D. If stress relaxation occurs by
volume relaxation, one finds instead that P=0.6 in the
time scale rI„—ur„wh—ere a is a constant larger than 1.

As taboo, the system approaches equilibrium, i.e.,
molecular rearrangements in the glass tend to effectively
relax the stress. In this case, only the longest mode contri-
butes to cr(t),

o'( t) =~ f» exp( —Dk't)())»5(k —k,„)dlr,
min

Major contribution to stress comes when I is a maximum,
i.e., at k =k'. Using the facts

p(1)=2(Dt}'i

p "(I)=g(Dr) '",
we get

p"(I)=(54)' (Dt)'
(26)

4n

AA, ~2 ()(» exp( t jr„),— (33)

2n(k') m

A 4» 3Dt
exp[ (t/r, )'~'] —(27)

with

rg ———,7A, /D .4

Note that Eq. (27) for the stress-relaxation function is
valid for r much less than ~0. However, if t is too small,
then the description of stress relaxation via the master
equation ceases to be applicable.

For times larger than r„molecular relaxation of the
various packings have occurred. Majumdar has suggest-
ed a possible mechanism for stress relaxation when t-~0
In this assumption, stress is effectively relaxed when
mismatches between the small localized regions readjust
by slipping motion along surfaces of these regions.

Let o be the activation energy per unit area for slipping
motion. Since glass is isotropic, we can assume a relaxing
region of radius A, /2. The probability of exciting this
mode is exp( ~o A, /k&T). The—time dependence of re-
gression of o(t} is then given by

(29)
max k 0' '7T

o(t)=A ' f dk (I}»exp Dkt-
l5ijl AT

where r„=+ /4rr D. Thus for any subspace character-
ized by A. &&X a single relaxation time should result.

For a macroscopic system, a single exponential decay is
largely irrelevant since it is not observable. The longest
relaxation time diverges as system size increases. The
only interesting behavior is that which remains finite in
the infinite-system limit. There still remains the possibili-

ty that the limiting stress-relaxation function at large time
may well not be a simple exponential.

Note that since AT-eral, , the observed relaxation
~ates r„~a, ~„can all be expressed in terms of so=%2/D,
Hence, this model exhibits a "feedback" mechanism be-

tween the viscous liquid characteristics of nonexponential
relaxation and non-Arrhenius temperature dependence of
the average relaxation time.

VII. CONCI. UDINO REMARKS

Stress relaxation in a stabilized glass has been described

by a potential-barfIer model which is based on separating
geometric packing considerations from thermal excita-
tions in the dynamic evolution of a many-body system.
The basic physical assumption is that the slowest structur-
al rearrangements in a dense, highly viscous supercooled
fluid occur on moline:ular length scales via self-diffusion.
Distinct mechanisms are identified which drive the
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stress-relaxation function to acquire the KWW forms in a
"short" time and in the "intermediate" time hmit.

One also finds in agreement with Ngai's theory that the
observed relaxation rates, i.e., r„~a, or ~„,are all related
to the direct relaxation rate vo. The temperature depen-
dence of ro is governed by the self-diffusion of the viscous
fiuid.
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