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%'e study the growth of dendritic crystals from a supersaturated solution in a channel geometry.
This model provides a continuous interpolation between the Saffman-Taylor problem and the (two-

dimensional) free-space dendrite. %e derive an integral equation for the shape of steady-state prop-
agating fingers, which we treat by discretizing the curve and solving the resulting set of nonlinear

algebraic equations by Newton's method. For general Peclet numbers, in the absence of anisotropy
the finger widths are always greater than half the channel width, but with anisotropy all widths are
obtained. The numerical results are in rough agreement with an approximate %KB treatment for
small anisotropy and zero Peclet number. Finally, we speculate on the emergence of sidebranches in
this system.

I. INTRODUCTION

The past few years have seen considerable progress
made in our understanding of interfacial pattern forma-
tion. ' The paradigm of microscopic solvability has been
successfully applied to local models, z 3 two-dimensional
flow in a Hele-Shaw cell ' (the Saffman-Taylor finger),
dendritic growth from a pure supercooled melt, and
directional solidification. s This method relies on the ex-
istence of a solvability condition whenever one attempts to
find steady-state solutions of the evolution equations in
the presence of finite surface tension. This condition
chooses the allowed shape and growth rate and also has
important implications for the subsequent stabihty
analysis.

The purpose of this paper is to discuss a slightly dif-
ferent pattern forming system. We imagine a supersa-
turated solution placed in the narrow gap between two
parallel plates, with impermeable top and sidewall boun-
daries. This device is just the classic Hele-Shaw cell used
for multiphase flow, but we now consider nucleating a
crystal and letting it grow down the channel. The crystal
will then form a growing finger, possibly a dendritic pat-
tern with sidebranches starting some distance away from
the tip. It is this pattern that we wish to understand. Ex-
periments on this type of system have been performed by
Honjo, Ohta, and Sawada, who however only studied the
limiting case of nearly free dendrites.

The importance of this system is that, as we will show,
its dynamics of this system can be used to interpolate be-
tween the Saffman-Taylor problem and the two-
dimensional free dendrite. We define a dimensionless
Peclet number p as the ratio of channel width to diffusion
length; this parameter controls the importance of the fi-
nite time scale for solute diffusion. At low p (narrow
channels), we will find that relaxation occurs sufficiently
quickly that one may replace the diffusion Green's func-
tion by that for Laplace's equation. The interfacial evolu-
tion equations are then exactly those which apply to mul-

tiphase flow in Hele-Shaw cells, albeit with additional an-
isotropy arising from the crystal structure. The idea of
anisotropy in the Saffman-Taylor problem has also arisen
independently from experiments in Hele-Shaw cells with
grooved plates. 'o

As the channel widens, the tip is less severly affected by
the boundary conditions on the side walls. In the limit of
high p (large width), the pattern is described by the free
dendrite equations with corrections that only become im-
portant far from the tip. The known results for two-
dimensional free dendritic growth should then be
recovered smoothly at large p.

This type of interpolation is useful in attempting to
understand some of the remaining mysteries of interfacial
patterns. For example, it is by now well established that
the two-dimensional Saffman-Taylor" equation predicts
an asymptotic width of —,

' as we approach zero surface
tension. ' ' It is important to understand how this limit
arises, and how it changes upon the addition of complicat-
ing terms in the evolution equation arising either from an-
isotropy or finite diffusion constant. The importance of
the latter is emphasized by experimental results's'6 clear-
ly indicating widths below —,'. We will argue and then
demonstrate numerically that, in the isotropic case, there
is a lower bound on k which is a function of p. We expect
that A, increases from —,

' to 1 as p goes from zero to infini-

ty. We will also show that the presence of even infini-
tesimal anisotropy completely alters this picture. Instead,
the presence of finite anisotropy allows us to construct
steady-state solutions at all A, and p, provided we choose
the surface tension to satisfy the solvability condition.

Perhaps an even more important puzzle is the nature of
sidebranching. In the Saffman-Taylor problem, there ap-
pears to be a nonlinear instability which gives rise to ei-
ther "thumbing" (antisymmetric mode) or "tip-splitting"
(symmetric mode) at small enough surface tension. '

Experimentally, adding anisotropy converts these modes
into repeated sidebranching. This suggests that side-
branching in free dendritic growth may also arise as a
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noise-induced finite amplitude effect around a linearly
stable needle crystal. Our model can be used to investi-

gate this possibility by varying the channel size. %e will
present a simple picture of this finite amplitude instability
which supports the above picture, but a final resolution
awaits additional study.

The outline of this paper is as follows. In Sec. II, we
define our model and derive an integral equation govern-
ing the pattern evolution. In Sec. III, we derive the
asymptotic shape required of steady-state solutions and
then describe our numerical approach to find the selected
steady-state shape. In Sec. IV (and in the Appendix}, we
focus on the results for a zero Peclet number, in particu-
lar, the effects of anisotropy in determining the pattern
and its growth rate. We analytically derive the scaling of
A, versus y at fixed e and qualitatively verify the result nu-
merically. Results at finite p will be presented and dis-
cussed in Sec. V. Finally, in Sec. VI, we discuss our sim-
plified explanation of the nonlinear instability found orig-
inally in the pure Saffman-Taylor problem and speculate
on how this idea can be used to understand sidebranching.

II. GROVfTH IN A CHANNEL

This paper is concerned with growth processes taking
place in a particular confined geometry —a narrow gap,
finite-width channel between two inert plates. We consid-
er a supersaturated solution in the channel with growth
nucleated at one end. We assume that the growth is two
dimensional and diffusion limited, with the rate con-
trolled by the arrival of solute at the growing crystal. The
solute concentration satisfies the diffusion equation

with the boundary condition c (x, y ~ oo ) =c„,where c„
is greater than c,q, the solute concentration in liquid in
equilibrium with pure crystal. Because the side walls are
impermeable, we have Bc/Bx

~
„+,——0. The geometry of

the channel is depicted in Fig. 1. We can define a dimen-
sionless supersaturation by 5=(c„—c~ )/b, co, where
hco ——1 —c~ is the miscibility gap.

In addition, we have two boundary conditions at the
moving interface. First, conservation of matter requires
that

U„hc =D C

liquid

where U„ is the normal velocity and he is the actual
difference between solute concentration and crystal con-
centration (c =1 for pure crystal) at the interface. As is
well known, this gap is corrected from the planar inter-
face result by surface tension: '

b, c =bco[1—do(8)a],

where do is the chemical capillary length. Often we will
take do(8) to be anisotropic, with angular dependence
do(1 —ecos8), where tan8=By/Bx. Finally, the assump-
tion of local equihbrium ensures that the solute concentra-
tion at the interface satisfies

cl;q ~(x(s))=1 bc . —

FIG. 1. Geometry of finger growth in a channel.

Equations (1)—(4} constitute the equations of motion for
the interface.

We now specialize to the case of steady-state motion at
velocity v=v9. If we introduce p =ua/2D and measure
lengths in units of a, then u—:(c„—c)/hco satisfies

V 6+2p = —5(x —x')5(y —y'),

BG/Bx ~, +1——0, and G~O for y~+ oo. This formula
defines a charge layer $1 and a double layer pz. To find
these functions, we use the fact that the integral represen-
tation imphes that the discontinuities across the interface
are

alld

[&(»y}11'q d- lid 41

[n V+ (x~y}]liquid-solid 0'2 2PnylI 1 ~

which can easily be verified by using the above defini-
tions. Comparing this to Eq. (5), we derive $1———doll
and P2 ———2pBx/Bs. Finally, if we evaluate the integrals
for u slightly inside the crystal, we find the steady-state
equation

V u+2p =0,
By

u(x(s) )=4—do(8)a,

—n Vu =2pn„[1—do(8)a],

with dll ——do/a, and the field is evaluated on the liquid
side of the interface. The above evolution equation can be
put in the form of an integral equation for the interface.
Let us define a continuation of the u field into the solid
which we arbitrarily take to equal b, . Then, we can write
down the most general solution of the diffusion equation
as

u (x,y) = J n'. V'G(x,y;x (s'),y(s'))$1(s')ds'

—f G(x,y;x(s'), y(s'))$2(s')ds',

where the diffusive Green's function G (x;x') obeys
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2k= — s' I- 0 a+2@ 6 x'.
We now need an explicit expression for the Green's func-
tion. The free-space version is

~ ~

~

ik x ik„y

(2ir) k +k„Zpi—k»

By the method of images, the Green's function which sat-

isfies the side-wall condition for symmetric fingers is
therefore

ik„(x+2s) ik y

(2n ) „„k,+ky —2ipky

For small Peclet numbers, it is convenient to do the sum
over n first and then perform the integrals over k» and
k, . We find

6(x,y;x',y')= (e y'" "' y~ » ~)+ —,
' g exp7

—u 0 —~') —[(n~)'+u']'"
I X —X'

I

[(nay)~+pz]' yzcos[nir(x —x')]

As @~0, this Green's function approaches the result for
Laplace's oluation in the same geometry. In Sec. 111, we
will describe our method of numerically evaluating this
function.

For large p, it is preferable to sum over yi after per-
forming the k integrals. This yields

6 (x,y;x',y')

=—e'" "'g&pb [(x —«'+2~)'+0 —Z')']'"l .
7r

N

(8)

As p goes to infinity, we redefine lengths by « =«/p,
y =y/p, and using the decay of ECp at large arguments, re-
cover the free-space Green's function (the n =0 term)
with lengths measured in units of 2D/u.

Finally, we need to consider the boundary conditions on
the interface. Note that 6 approaches a constant for
(y —y')~ —ce. Imagine evaluating Eq. (6) for a point far
down the interface. The constant in 6 must be chosen so
that

i=2p J dx' Bm G(xyx', y')- —,
' J dx'.

p'~ oo

If the interface runs from x = —A, to x =+A,, we there-
fore derive EL=A,. This can also be seen to be an immedi-
ate consequence of solute conservation in steady-state
motion. For convenience, we can shift the Green's func-
tion by exactly (4p} ' to cancel 6 on the left-hand side of
the integral equation. With this convention, the Green s
function falls to zero exponentially as y'~ —ao.

III. ASYMPTOTIC BEHAVIOR
AND NUMERICAL METHOD

The steady-state shape we wish to solve for can be
described by a symmetric function y (x}which approaches
negative infinity as x~+1,. %'e now derive the asymp-
totic behavior of this solution; this asymptotic behavior is
crucial in implementing a numerical algorithm for deter-
mining the shape and selected velocity.

Consider solving for the field ii in the gap between the
interface and the channel side wall. Since we expect ex-
ponential convergence of x to A, as y ~—oo, we assume

u —4-cos[a(1 —x)]e ", (9a)

where the cosine ensures Bii /Bx ~, i ——0 and the differen-
tial equation requires a' +2pa'=a . Now asymptotically
we expect x(y)=A, —aie», and therefore a=aia' e ".
The interfacial conditions to this order then require

cos[a(1—A, )]= —a' d p(1 —e)a i,
asin[a(1 —A, )]= —2a'pa i .

Dividing, we find the rate of approach via the equation

cot[a(1 A, )]=a—a'd p(1 —e)/2p . (9b)

Note that (9a) and (9b) fix a and a'. We now carry the
above computation to one higher order. We write

x (y) =A, aie'»—aze~—»,

ii —E=cos[a(1—x)]e "+b cos[2a(1 —x)]e~» .

Keeping all terms of the form e~", leads to the equations

b cos[2a(1 —A, )]—a i sin[a(1 —A, )]= —4a2a'idp(1 —e),
2ab sin[2a(1 —A, )]+2ai(a +a' )cos[iz(1 —A, )]

4a za'p+ 2d p—(1—e)pa'3a i,
which can be solved to yield

z 2ap+dp(1 —e)a'3cot[2a(1 —A, )]

2p cot[2a(1 —A, )]—4dp(1 —e)aa'
(9c)

Again motivated by the Saffman-Taylor limit, we
parametrize the interface as

=1 KX
y (x)=yp(x)+z(x), yp(«) =, ln cos

ix 2A,
(10)

and discretize the interval 0&x &A, into %+1 points.
Furthermore, the curve is assumed symmetric around
x =0. The boundary conditions derived above fix
z(N)=0 and Bz/Bx(N)= —azi(aia'). The remaining
X—1 variables are determined by solving N —1 nonlinear
equations obtained by evaluating the integrals at the ob-
servation points x&, i =1, . . . ,X—1. All integrals are
done to 0(1/N ) and the resulting shape converges qua-
dratically to the true shape. The actual solution of the
equations is done by Newton's method using the IMSI.
(Ref. 22) solver zseow, starting from an initial guess
zg ——O.
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In order to perform the above computation, we require
computable expressions for the Green's function. At high
Peclet number, a truncation of the series in Eq. (8) is suf-
ficient. This is because convergence is uniform in x —x'

in this limit. For p small, however, arbitrarily high values
in n contribute for x -x' and a simple truncation is not
valid. Instead, we add and subtract the sum in (7)
evaluated at p =0 to write

cos[n ir(x —x ' }]exI I
—p(y —y') —[(n~)'+p']'"

I y —y'
I I

[(n~)2+p2]i/2

—s [y —y']
ln[l+e "'i' ~ ~ —2e ~i' i' 'cos(n lx —x'I )]4n.

+ ~ + exp( —[(n~)'+p']'"
I y —y'

I ]

[(n )2+p2]i/2
8

—nm ~y —y'
~

e I'~ ~'cos[nir(x —x')] .

The remaining summation now converges sufficiently rap-
idly to ensure that we can truncate the series to obtain a
good approximation to G. When we take derivatives of
G, we pick up additional problems with series conver-
gence; again, these can be handled by further subtractions.

The program can be tested by a variety of means. First,
the high and low Peclet versions of the Green's functions
must match for intermediate values. Also, at small p, this
problem goes over to the Saffman-Taylor problem (see the
next section). This leads to constraints such as

G(p =0)=0, for z(x)=0,

inasmuch as yo is the exact solution of the zero surface
tension Saffman-Taylor problem. One can explicitly veri-

fy the fact that the discrete approximation to the integral
converges as 1/N2; any mistake in the discretization, such
as incorrect handling of the singularity at x-x', or in-

correct treatment of the 5-function singularity in curva-
ture arising from the cusp at the tip, is immediately
detectable.

The output of this program for fixed p, A„and do is a
curve which in general has a discontinuity in its first
derivative at the tip. This defines a mismatch function

az —z2+4zi —»of (A,,p, do) —= (x =0)=
Bx 2dx

where dx =1/N is the spacing of the interpolation points
in x. The allowed physical solutions have zero mismatch.
Therefore, we can use f=0 to solve parametrically for p
as a function of A, and do. Since the length scale a is ex-
plicitly known, this immediately determines the selected
velocity.

IV. THE SAFFMAN- TAYLOR LIMIT

As we have already mentioned, as the diffusion length
becomes small compared to the channel width, the prob-
lem of dendritic growth becomes similar to the fluid
mechanical problem studied by Saffman and Taylor. In
crystals, the surface tens1on 1s 1n general anlsotropic, 1n
contrast to the purely isotropic equations valid in the flow
case. The purpose of this section is to compute the effect
that anisotropy has on the pattern selection.

Formally, we obtain the p =0 limit by the rescaling

—5+Q =2p A Q, d 0 =2p A,Q .

If we let p-+0, the equations for the rescaled variables be-
come

V u=O,

u;„,= —yir[1 —ecos(m8)],
—n Vu I;„,=n~/A, ,

with the boundary condition u ——y as y~ao. This is
just an anisotropic version of the Saffman-Taylor problem
with y the usual inverse capillary number. Similarly, one
can explicitly take the limit in (9a) of the rate of approach
to x =+A, and find that a'=a satisfies

cota(1 —A, )=A,ya (1—e) .

Aside from the anisotropy, this equation is the result de-
rived previously by McLean and Saffman.

It is by now well established for Hele-Shaw flow that
the selected values of A, , A,;(y},approach —,

'
from above as

y goes to zero. The only stable solution is the narrowest
member of this set, which we will denote A, . In crystal
growth, the supersaturation A, is the experimental control
parameter and y, which contains the velocity, is the quan-
tity we would like to predict. If the anisotropy were zero,
no A, & —,

'
would permit steady-state motion. We can refer

to the range 0&A, (—,
' as the forbidden region.

We would now like to investigate the effect of finite an-

isotropy. We have computed the selected shape as a func-
tion of A, and y by solving the limiting form of (6) and re-
quiring zero mismatch. En Fig. 2, we have plotted the
outcome of a typical set of calculations, for e=0.10 and
fourfold asymmetry. As y~O, A,

' does not asymptote to
—,
'

but instead continues well past this line. Our data sug-

gest, in fact, that the forbidden region has completely
disappearedI That is, at any finite anisotropy, all values
of A, are accessible as we vary y. Or, stated more con-
veniently for experimental test, steady-state motion is pos-
sible for all A, , with the selected value y'(e) having the
power-law behavior y' —e . %e have verif1ed this picture
for several values of e and determined that o is approxi-
mately 1.5+0.4.

Recently, a WKB approach to the Saffman-Taylor
problem' '" has succeeded in deriving the scaling
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0.5

0.4

TABLE I. Selected values of y at various e and A, for p =0.1

and 0.5. An asterisk means no solution was found.

e=O. 1

0.3

0.2
i

FIG. 2. Dependence of selected y on channel width in the
Saffman-Taylor limit, at a=0. 1.

0.4
0.5
0.55

0.6

0.8

0.9

5.94x 10-'
5.13x 10-'
3.59x 10-'

1.70x 10-'
8.98X10-'
2.52X10 2

1.32 x 10-'
6.81x 10
1.13x 10-'

p =0.1

1.32x 10-4

6.85 x 10-'
4.44X 10-'
1.57 X 10-'
5.16X 10
4.01x10-'

9.19x 10-'
2.76 X 10

1.11x10-'
8.16x 10
1.36x 10-'
6.07x 10-'

7.84 X 10-'
1.26 X 10

8.23 X 10-'
3.45 x 10-'
1.06 X 10
5.42x 10-'
4.45 x 10-'
1.05 x 10-'
9.22X10 '
3.05 x 10-'
1.09x10-'
7.06X 10-'
1.25 x 10-'

behavior (A, ——,
' )-y ~ . In the Appendix, we generalize

this treatment to the case of finite anisotropy. We find
that for all c ~ 0 and for all values of the symmetry index
m, steady-state solutions exist at arbitrary width. The
scaling laws derived for m =4, that A, -y'~ at fixed c, or
y-c at fixed A,, agree qualitatively with the numerical
data presented here.

We would now like to connect this behavior to the
known results for free dendritic growth. In that case
there is convincing numerical evidence that, in the absence
of anisotropy, steady-state solutions do not exist for any
value of undercooling b, . In the language used here, the
forbidden region is 0& b, & 1. Adding finite c allows solu-
tions at all 5, with a power-law scaling of the same form
as that described above. Now, free dendritic growth is
just the p~ao limit of capillary tube growth where 6
maps directly onto A, . Therefore, the obvious conjecture is
that as p is decreased the forbidden region shrinks to
A. ~ —,', and that the role of anisotropy remains similar at
a11 p.

V. SOLUTIONS AT NONZERO
PECLET NUMBER

%e have carried out the same velocity selection calcula-
tions at finite Peclet number, with the results shown in
Table I. The parameter values used were p =0.1 and 0.5
and c=0,0.05 and O. l. The solution method is to fix p, 1,,
and e and then vary y until no cusp is present at the tip.
In effect, this fixes the capillary length d0, although one
may turn the results around to obtain a prediction for the
dendrite velocity as a function of the system parameters.

The principal qualitative result is that dendrite widths
below —, are never found in the absence of anisotropy, and
in fact the smallest widths observed at @=0are always a
finite amount above 0.5. Furtherinore, as p increases, the
minimum A, for which solutions are found also increases.
The numerical method has convergence problems due to
lloisc wllcll p becomes too small (slgnlfilcalltly below
10 ), essentially for the same reasons as in the Saffman-
Taylor problem. As a result, me have not been able to

0.2
0.4
0.5

0.6
0.8

0.9

1.29 X 10

8.31x10-'
1.74x 10-'
1.32x 10
6.60x 10-'
1.44x 10

p =0.5

1.03 x 10

3.757x 10-'
5.28 X 10-'
8.40x 10-'
1.81x10 '
1.21 X 10-'
6.72x10-'
1.20X10-'

6.68 x 10-'
2.21x 10-'
6.90X 10-'
1.08 x 10

8.54x 10-'
1.91x10 2

1.44X10 '
1.28 x10-'
1.20X 'jo

VI. DISCUSSION

In the Hele-Shaw system, as y is lowered the finger un-

dergoes a transition to a more complicated pattern. The
first mode to be excited is an antisymmetric one; eventual-

ly a symmetric, tip-splitting mode is also observed. It is
fairly well established theoretically that (at least for capil-
lary numbers that are not too large) these modes are
linearly stable and are excited only vvhen noise has exceed-
ed a finite threshold. Experimental results on flow in

quantitatively pin down the minimum finger width and
the p dependence of the forbidden region. An alternate
approach suggested by &anden-Broeck24 for Taylor bub-
bles, which involves looking for bifurcation points at zero
surface tension, might be useful for approaching this
question.

With anisotropy, finger widths both below and above —,
'

are found. Again for small y there are convergence diffi-
culties. As A, increases, multiple solutions appear, and as
in the Saffman-Taylor case we expect that at best one
solution will be stable, leading to a unique finger shape.
When A, approaches 1, our numerical method again has
difficulties, but now due to inadequate resolution in the
tail region. In fact, at A, = 1, one must take account of the
cusp at y~ —00, and a recent study by Karma 5 has
treated a variant of this case successfully.
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Hele-Shaw cells are consistent with this picture.
There is a simple argument that leads one to expect that

any system with 5, solvability mechanism relying on ex-
ponentially small nonperturbative contributions might
have finite noise instabilities. The key is that the differ-
ence between the allowed solutionsgd nearby disallowed
solutions is proportional to e '~ ". Therefore, if the
selected y' turret out to be small, the solvability "signal'*
is also small. If the noise is larger than this signal, we
might expect a more complicated time development of the
interface. The most immediate consequence of this
reasoning is that the noise threshold should obey the law

with the same constant c which appeaiw in the solvability
mechanism. Just this dependence has been found by Ben-
simon, '9 with approximately the same factor as that given
in the solvability study of Ref. 26.

In the Hele-Shaw fiuid flow system, y is chosen at the
experimenter's discretion and A, is measured. In channel
growth, on the other hand, A, is fixed by the supersatura-
tion boundary condition and y is measured. In most crys-
tals used for dendritic growth studies (e.g., succinonitrile)
the anisotropy is fairly small, e & 10'. This guarantees
that whenever the supersaturation A, is picked in what
would be the forbidden range at e=O, y' will in fact be
small. Hence, we might expect that as A, decreases at
fixed anisotropy (or as the channel width is increased at
fixed A,), we will eventually leave the regime of a pure
steady-state pattern.

Once we no longer have a needle crystal, what are the
other possibilities? The experiments of Ref. 9 suggest that
for some range of A, and e we would find sidebranching,
perhaps induced by noise. That is, we expect that the
character of the mode which is excited by the noise might
change as we vary the system parameters. The Saffman-
Taylor instability is controlled by tip-splitting modes
which asymptotically decay exponentially to the original
finger. A sidebranching system is dominated instead by
modes which are peaked away from the tip, and therefore
in a channel geometry obey the asymptotic dispersion law
for a zero velocity planar interface. The latter statement
implies that any such a mode will automatically have
r0- —ik, which implies stationarity in the laboratory
frame of reference.

We do not as yet understand when the above scenario
should occur. For example, are there ever real side-
branches at p =0 as a function of e'? We do feel that this
geometry is particularly convenient for trying to address
this issue. Since the interface eventually approaches a
plane, all eigenvectors of possible interest must approach
plane waves; this is not true of the free dendrite prob1em
which has power-law behavior asymptoticaBy. %e hope
to report soon on the results of a stability calculation of
the steady-state solutions discussed here.

APPENDIX

In this appendix we apply the %KB method introduced
originally by Langer (and subsequently extended by

Shraiman, ' Hong and I.anger, ' and Combescot et al. '"}
to study the dependence of A, on y at finite anisotropy in
the Saffman-Taylor limit p~O. These authors have
shown that in the absence of anisotropy (A.——,

' )~y ~ as

y —+0. We have argued above that at finite e, there exist
propagating steady-state fingers for all widths 0&A, &1,
and we now show how this behavior comes about within
the WKB approximation. In the course of our calcula-
tions, we indicate which features of the y =0 solutions are
necessary to obtain the asymptotic scaling of the finger
width, an important consideration if this methodology is
to be extended to systems such as channel growth with

p&0, directional solidification, and Taylor bubbles, where
the continuum solutions with y=O cannot be found
analytically.

Following Shraiman, ' consider the steady-state equa-
tion in the schematic form

F[y (x),a]=0, (Al)

where a is an abbreviation for the parameters entering
into the equation and boundary conditions (in the present
case e, y, and A,}. Since the problem is translation invari-
ant, if y(x) is a solution so is y(x)+yo for any constant
yo. If we then expand F[y(x)+yo, a) for infinitesimal

yo, we find Lyc ——0, where the operator L =—5F/5y. Now
consider varying the parameters a infinitesimally along
some trajectory; we expect a translation-invariant finger
solution will continue to exist, which requires the per-
turbed operator L+5L to continue to have a constant
zero mode. In lowest-order perturbation theory this re-
quires

y05Ly0=0

f ds'(n VGy)d(8)a= —f dx'6,

where d(8)=1 —ecosm8 and we have shifted 6 as dis-
cussed at the end of Sec. II, and rescaled as indicated in
(12). To obtain the adjoint equation, we suppose y(x) is
the solution of (A3) and obtain the linearized equation by
substituting y(x)+5(x) and expanding to first order in 5:

where the adjoint mode p o obeys L y0=0.
Note that the condition (A2} for the existence of finger

solutions is similar but not identical to those stated previ-

ously. For example, Shraiman' requires the matrix ele-

ment of L between the adjoint mode and BF/Ba to van-

ish, while Hong and I.anger' require that the cusp mag-
nitude in a certain %KB approximate solution vanish. As
we shall see, the matrix element (A2) in the small-y limit
takes the form of a WKB solution for yo times a slowly

varying and nonvanishing quantity, and the integrability
condition is effectively the same in all approaches The.
specific form of the slowly varying part is different, how-

ever, but this merely refiects the fact that we should make
a systematic asymptotic expansion and match to a non-

linear "inner" problem. This point has already been dis-

cussed for local models and for the Saffman-Taylor
problem, ' and will not be addressed further here.

Consider the steady-state equation in the form
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Jl ds'(n VG)d(8)
[1 +y &(x)2]3/z

=—Jdx', [5(x')—5(x)] .1,6
y

, [5(x')+5(x)], (A4)

where P denotes a principal part integral. In analogy with
the behavior of previously studied models, we look for
rapidly oscillating solutions of the adjoint equation of the

We have dropped terms involving fewer derivatives of 5,
as these will be irrelevant in the small-y limit. The ad-
joint equation is, to the siune level of approximation,

I ds'(n VG)d(8)
[1 +y &(x)2]3/2

=—P x'1,BG

I:J—dx f(x)e'@ '

where f(x) is a slowly varying function and

(1+iz)' '(1—iz)' '
P(x)= i —dz

0 g (z)

(A6)

(A7)

where g(y')=y"&d(8) and 8(z) =tan 'z.
The scaling behavior of the solution follows from the

singularities in the last expression for P. Note the saddle
point in (A7) at y'(x) =i; if g (z) has no singularities in the
way, the integration contour can be simply deformed to
pass through this saddle point, leading to an asymptotic
estimate for I of the form

where the normalization has been chosen so that 5(0)=1.
Finally, we change variables to y', and our final result for
the solvability condition takes the form

5(x)-exp P(x) (A5)
—a —8/~y

in the limit y~O. Substituting this ansatz into (A4), we
evaluate the resulting integrals by residues. The leading
contribution on the left-hand side comes from the singu-
larity in G at x =x', and we assume (subject to later veri-
fication} that the integration contour can be closed in the
lower half plane. The contribution of other singularities
in the complex plane is suppressed by the rapid oscilla-
tions produced by 5. The left-hand side is then

—,
'

yd (8)5"(x)

[1+y'(x)'l'"
(Note that the collapse to this form indicates that there is
no structural difference between the one-sided model con-
sidered here and the symmetric model. } The term on the
right-hand side proportional to 5(x') can be evaluated
similarly to give

,'iy'(x)5(x)—

1+y'(x)
The final term is more complicated because 5 comes out-
side the integral and we must also include the contribu-
tions of singularities at points x ', where
y(x') y(x)=+—i(x —x'). Assuming there is just one
such point in each half plane, the last term in (A4) is

,' iy'(x)—
5(x) .

1+y (x) 1+iy'(x '
)

In our subsequent arguments, we shall be concerned with
x near x ', in which case we obtain the WKB equation

yd(8)5"(x) [1+iy'(x)]5(x)
[1+y'(x) ]'/ 1+y'(x)2

Substituting (A5) and keeping the leading term as y~O,
we obtain

f(x)= i f dx'(—1+iy') (1 iy')'/ [d—(8)]

for some constants A, a, and 8, and I never vanishes. On
the other hand, if g has a zero on the line 0 &z & i, the de-
formed contour will pass around this singularity and I
will oscillate. Supposing the zero occurs at z =i(1—cr),
with 0&+«1 and that the behavior of g in the neighbor-
hood of z =i is g ~X(1 +iz)~, then the contribution of the
extra contour is

Let us first verify this result for pure dendritic growth.
We take y = —x /2 and m =4, so that y" is constant and

g ~ &1—ecos48(z). Using cos48=1 —Sz /(1+z ), we
see that cr-v e, p= —1, and X-v E, so bijou-e /'. The
solvability condition that I vanish requires
dLQ/~y=0(1), and this requires y-e / . For the isotio-
pic Saffman-Taylor problem, y(x)=2(l —1)/m lnmx/2A, ,
from which we obtain

(1—A, )
1

. Az

1 —A,

For A, & —,
' there is a zero of g (z) at z =i (1—A, }/A, so that

erg-A—,' and $, —=0, and hence y-(A, ——,')~/. Both of
these special cases have been derived previously. '

For the finite anisotropy Saffman-Taylor problem, we
use the same initial shape as above. For fixed A, & —,

' the
important singularity is that due to the e-dependent term,
we again find y-e / . If instead we fix e and consider A,

small, we have g (z}-A, and the solvability condition re-

quires A, -y'/ . These are the results quoted in the text.
It is remarkable that the only input to these scaling

laws is the function g(z), which depends on the analytic
properties of y", i.e., the initial shape extended to the
complex plane. %Rile this methodology is applicable to
any of the fingered pattern problems of interest, we have
been unable to devise a simple technique for the analytic
continuation when the y=O problem is not analytically
solvable.
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