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%e analyze in detail an algorithm for computing Liapunov exponents from an experimental time
series. As an application, a hydrodynamic experiment is investigated.

I. INTRODUCTION

In Ref. 1 two of us proposed a method to compute
Liapunov exponents from an experimental time series.
Here we report on a detailed analysis of this algorithm for
numerical and laboratory experiments. Note that a very
similar proposal has been made independently by Sano
and Sawada. ~ In the course of the discussion, we shall
also point out some divergences between Refs. 1 and 2.

Before discussing our algorithm, we briefly state what
we are trying to do. A time evolution is realized, in Na-
ture, in the laboratory, or on the computer, and it is as-
sumed that this time evolution can be described by a dif-
ferentiable dynamical system in a phase space of possibly
infinite dimensions. We want to obtain Liapunov ex-
ponents corresponding to the large-time behavior of the
system. On a more mathematical level, the large-time
behavior defines an ergodic measure in phase space for the
time evolution, and we are interest& in the corresponding
Liapunov exponents. For a discussion of these concepts
and precise definitions see, for instance, Ref. l. What we
know is a tline series (xt )i gt g~ obtaliled by momtoring a
scalar signal for a finite time T and with finite precision.
Clearly, thus, there are limitations on how much we can
say about the characteristic exponents —it is the aim of
this paper to discuss some of these limitations. Certainly,
we have to assume that the recording time T is long, that
the noise leve1 is low, and that the measurements are made
with good precision (viz. , 10 or 10 if we want to
determine one or two positive characteristic exponents).
From a sufficiently good time series, one can in principle
obtain all non-negative characteristic exponents, and it
may or may not be possible to obtain also some negative
ones (cf. Ref. 1).

A complete list of other methods for computing
Liapunov exponents is given in Ref. 1. To our knowledge,
the proposals in Refs. 1 and 2 are the only ones which al-
low a systematic computation of several Liapunov ex-
ponents.

II. THE ALGORITHM

It is convenient to present the measured time series in
the form of a sequence of integers xi,x2, . . . ,x~, with

0&xt &10000. (The choice of integer values speeds up
the computation without sacrificing experimental pre-
cision. ) The upper bound 10000 is in accordance with a
precision of 10 " and can easily be modified, if required.
We assume that the time interval ~ between measurements
is fixed, so that x;=x(ir) Not.e that the recording time
is T =Nr. The present paper deals specifically with the
case of a scalar signal, but the method can easily be ex-
tended to multidimensional signals.

Conceptually, the algorithm (a copy of the computer
program implementing this algorithm can be obtained
from the authors) to be discussed involves the following
steps: (a) reconstructing the dynamics in a finite dimen-
sional space, (b) obtaining the tangent maps to this recon-
structed dynamics by a least-squares fit, (c) deducing the
Liapunov exponents from the tangent maps. We now
consider these different steps in detail.

(a) We choose an embedding dimension dE and con-
struct a dx-dimensional orbit representing the time evolu-
tion of the system by the time-delay method. This means
that we define

xt =(xtyxt+]j. . . yxf+4 i)

for i =1,2, . . . ,N —dE+1. In view of step (b), we have
to determine the neighbors of x;, i.e., the points xl of
the orbit which are contained in a ball of suitable radius r
centered at x;,

Ilxl —x II &r

Ilx; —x II= max I Ix,
0 pa &dE —1

The use of (3) rather than the Euchdean norm allows a-
fast search for the xl which satisfy (2). We first sort the
xt (using "Quicksort, "see, e.g., Knuth ) so that

&n(&) &&o(z) & ' ' &&rr(x)

and store the permutation H and its inverse H '. Then,
to find the neighbors of x; in dimension 1, we look at
k =11 '(i) and scan the xn~, ~

for s =k+1,k+2, . . . un-
til xn~, ~

—x;~r, and similarly for s =k —l, k —2, . . . .
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For an embedding dimension dE &1, we first select the
values of s for which

~
xii(, )

—x;
~

& r, as above, and then
impose the further conditions

~k+ i &q+k~ —&I+k~
jQg ( ) k=0 . 2

I
x II(s)+a xi+a I

& " ~

for a=1,2, . . . , dE —1.
(b) Having embedded our dynamical system in dE di-

mensions (it would be more correct to say that we have
cfE

projected our dynamical system to R ), we want to
determine the dE XdE matrix Ti which describes how the
time evolution sends small vectors around x; to small
vectors around x;+,. The matrix T, is obtained by look-

ing for neighbors xl of x; and imposing

T;( Xl —X I ) ~ Xjgi —X;+1 . (4)

The vectors xl —x; may not span R (think, for in-
stance, of an embedding of the three-dimensional Lorentz
system in four dimensions). Therefore, the matrix Ti may
only be partially determined. This indeterminancy does
not spoil the calculation of the positive Liapunov ex-
ponents, but is nevertheless a nuisance because it intro-
duces parasitic exponents which confuse the analysis, in
particular with respect to zero or negative exponents
which otherwise might be recoverable from the data. The
way out of this difficulty is to allow Ti to be a d))r Xdsi
matrix with a matrix dimension dl &dE, corresponding
to the time evolution from x; to x;+

Specifically, we assume that there is an integer m & 1

such that

dE ——(d))r —1)m + 1,
and associate with x; a der-dimensional vector

Ti(Xj Xi) Xj+m Xi+m (7)

Taking m & 1 does not mean that we delete points from
the data file, i.e., all points are acceptable as xl, and the
distance measurements are still based on dE, not on d~.
Note that, in view of (6) and (7), the matrix T; has the

Xi (Xi~Xi+m~ ~ ~Xi+(d —1)m }
M

= (xi »i +m ~

in which some of the intermediate components of (1) have
been dropped. When m & 1 we replace (4) by the condi-
tion

—(xl +d —x;+d } =nunimum .

The least-squares fit is the most time-consuming part of
our algorithm when S; (r) is large. We limit ourselves
therefore typically to the first 30—45 neighbors of the a
point. %e use the least-squares algorithm by Household-
er. This algorithm may fail for several reasons, the most
prominent being that card S; (r) &d))r. We therefore
choose r sufficiently large so that S; (r) contains at least

d~ elements.
In fact, we make a new choice of r=r; for every i

This choice is a compromise between two conflicting re-
quirements: take r sufficiently small so that the eff(x:t of
nonlinearities can be neglected, take r sufficiently large so
that there are at least d~ neighbors of x;, and in fact
somewhat more than der to improve statistical accuracy.

For the specific examples discussed in Sec. IV we have
selected r as follows. Count the number of neighbors of
x; corresponding to increasing values of r from a
preselected sequence of possible values, and stop when the
number of neighbors exceeds for the first time
min(2d))r, d~ + 4). If with this choice the matrix Ti is
singular, or, more generally, does not have a previously
fixed minimal rank, we again increase r;. It should be
noted that this last criterion only seems to come into
operation for time series obtained for low-dimensional
computer experiments (such as maps of the interval). We
stress that the singularity of T; in itself is not catastroph-
ic for the algorithm and the first j2 positive Liapunov ex-
ponents are not affected provided the rank of the T, is at
least j2 (which may be a lot less than d))i }. One should
thus not stop the calculation, as suggested in Ref. 2 when
the map is singular, since information about the expand-
ing direction(s) will be lost.

(c) Step (b) gives a sequence of matrices
T;,T;+,T;+2, . . . . One determines successively
orthogonal matrices Q(l) and upper triangular matrices

R(l) with positive diagonal elements such that Q(o) is the
unit matrix and

TiQ(0) =Q(i)R(i)

Tl+mQ(1) —Q(2)R(2) ~

0 I 0
0 0 ] e a ~

0 0 0 o ~ ~

Q) Q2 03 '
Qd

If we define by S; (r) the set of indices j of neighbors xl
of x; within distance r, as determined by (2), then we ob-
tain the ak by a least-squares fit

TI+jmQ(j) Q(j+1)R(j+1) ~

This decomposition is unique except in the case of zero
diagonal elements. Then the Liapunov exponents kk are
given by

1 E —1

j(k tFl = g 1ilR (I)kk,
J=0

where E ((N —djrm —1)/m is the available number of
matrices, and r is sampling time step. Obviously, fewer
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matrices can be taken to shorten the computing time.
[See Ref. 1 for a justification of the algorithm of Eq. (8).]

III. REMARKS ON THE ALGORITHM

(a) Let us comment again on the usefulness of taking
the matrix dimension d~ different from the embedding
dimension dz. As we have said, if der is not sufficiently
low, there is some numerical indeterminacy in the coeffi-
cients on the T~ which, combined with noise, produces
undesirable parasitic Liapunov exponents (examples of
this phenomenon will be shown in Sec. IV). It is thus
natural to take d~ relatively low (a little bigger than the
expected number of positive Liapunov exponents). But if
one takes dE too small, the embedding (or rather projec-
tion) of the dynamics in R would not be well defined;
orbits with different directions might go through the same
point. The cure is to take dz ~der. This is, admittedly, a
nonrigorous prescription, and leaves some "intuitive" free-
dom. We try to overcome this by examining the result for
several d~ and dx. Note that for disentangling the
dynamics, the important thing is the embedding time dzr
rather than dz', this is a first indication that it is not wise
to take ~ very small.

(b) As already discussed, the choice of the radius r at
x; is a compromise between limitations due to nonlineari-

ties and limitations due to noise. In fact, we have chosen
the smallest ball around x; which contains enough neigh-
bors for an unambiguous determination of T~ (note that
the algorithm becomes impractically slow when there are
more than about 45 neighbors). In principle, i.e., with
very good experimental data one can do a little better.

FIG. 1. Neighbors are picked up mostly on the orbit itself.

Since the effect of errors is the worst for the short vectors
x J

—x; one could replace the ball

by a shell

I x, : r;„&/fx, —x;f[&rJ .

(c}To obtain good statistics it is, of course, desirable to
have a time series with a large number N of measure-
ments. However, the really important thing is the total
recording time T =Nr, and increasing N at fixed T by
making r very small would be useless. Actually, the ex-
perimental studies of Sec. IV show that for large embed-
ding dimension dE (hence large r), and small v; many of
the neighbors of x; are in factor of the form

x;+i, x;+2, . . . (see Fig. 1). Attempts at numerical pro-
jection onto the supplement of this line have given bad re-
sults.

I
l
I

I
I

I
I

I

I

l
I

FIG. 2. The Liapunov exponents for the case d~ ——dE, connected in a "natal" way.
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4.0

0

FIG. 3. Typical behavior when too few neighbors are chosen: card SE,(r) & d~.

(d) Summary of advice.
(l) Use long recording time T', but not very small time

step ~.
(2) Use large embedding dimension dz.

(3) Use a matrix dimension d~ somewhat larger than
the expected number of positive Liapunov exponents.

(4) Choose r such that the number of neighbors is
greater than min(2dsr, der + 4).
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FIG. 4. A noise level of 0.4% has been added.
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FIG. 5. The effect of the noise can be eliminated by increasing m ( m =5 for the figure).

(5) Otherwise keep r as small as possible.
(6) Do Ilo't step the calculaflo11 lf a slllgular nlatrlx

8X1SCS.

(7) Take a product of as many matrioes as possible to
determine the Liapunov exponents.

In particular this procedure eliminates the difficulties
encountered by Vastano and Kostelich.

IV. EXAMPLES

We begin with the Lorentz equations
r

X —4TX +CTP—y = —xs+rx —ydt
z xy bz—

1.0
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FIG. 6. Aaalysis of the map x~1—2x 2 with a resolution of 10 4.
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FIG. 7. Analysis of the map x ~1—2m ~ with a resolution of 2 ".A spurious positive Liapunov exponent appears at =2 ln2.

which we study for the parameter values cr=16, b =4,
and r =45.92. (These parameter values give the usual
picture. ) We take v =0.03 and 64000 data points. In Fig.
2, we take m =1, i.e., der dE and ——we require card
SE(r) & 2d~. In this case the agreeinent with the numeri-
cally known non-negative Liapunov exponents (&ashed
lines) is very good for dE &5. Note that there is a large
deviation at dE ——2. This serves as an indication that the
system lives in a space with more than two dimensions.
Also, as observed in Sec. IH, dE ——3 is not a sufficiently

FIG. 8. An experimental orbit. Horizontal axis is x~, vertical
ax1s xg —xg

large embedding dimension for precise values of the
Liapunov exponents. Finally, it should be noted that in-
creasing the minimal number of neighbors does not
change the above observations. In Fig. 3 we illustrate the
effect of taking too few neighbors. With the same param-
eters as in Fig. 2, we have required only card SE(r) & d~.
The increase of the curves is a typical signature of a lack
of sufficiently many neighbors. In Fig. 4 we analyze the
influence of (artificially added) noise. We have added
0.4% noise (in terms of the total data latitude) and we ob-
serve that the prediction of the Liapunov exponent is
wiped out. A typical signature of noise is the decrease of
the Liapunov exponent with d~. Note also that the effect
of the noise can be essentially eliminated if we increase m,
that is by increasing dE while keeping d~ fixed. This is
shown in Fig. 5, where we have chosen m =5 and card
SE(r) &d~ + 4. The results are usually good for the posi-
tive Liapunov exponents, but the zero exponent tends to
increase with der. The collection of Figs. 2—5 is a clear
illustration of the summary of advice of Sec. III.

We next illustrate in more detail the effect of having
too few data points. For this we shall deal with the very
simple system defined by the map x~1—2x of the in-
terval ( —1,1). It has a Liapunov exponent ln2. Figure 6
shows the results analogous to Fig. 2, with a resolution of
the data of 10 (obtained by multiplying each x by 5000
and truncating). To make the statistical errors smaller,
we have insisted on a minimum of 20 neighbors per point.
In Fig. 7 we have applied the same algorithm, but with a
precision of 2 '=0.5)&10 . While this situation is un-

likely to occur in laboratory experiments, it is typical for
the appearance of spurious Liapunov exponents which are
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FIG. 9. Largest three Liapunov exponents as a function of d~ for the signal of Fig. 8, for different values of d~.

about twice (in principle even thrice} the real ones. This
phenomenon is generated by the finiteness of the data set.
This means that we cannot achieve the limit r~O to
determine the matrices T&. Therefore one expects the
nonline~aities to be important. A simple calculation
shows that if one carries along second-order effects in the

equations leading to the T„for the map x~ 1 —2x in di-
mension d~ ——2, one obtains two Liapunov exponents, one
at ln2 and one at 21n2. In the absence of noise, the non-
linear terms desingularize the equations for the T& when

d~ is larger than the true dimension of the system, and
they tend to generate multiples of the "true" Liapunov ex-
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FIG. 10. Liapunov exponents as a function of d~ at fixed dE ——22.
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FIG. 11. Three largest I.iapunov exponents as a function of Rayleigh number, for different d~ and dE. From theoretical argu-
ments we know thai one I.iapunov exponent is equal to zero.

ponents. Having gone to very high precision in the calcu-
lations leading to Fig. 7, we have produced explicitly the
generation of a "double" Liapunov exponent. (We suspect
that Table I in Ref. 5 has the saine origin. ) In third-order
terms are above the numerical imprecision one will in
principle see a "triple" Liapunov exponent, and so on.
For data coming from laboratory experiments, the equa-
tions for the T; are in general rather desingularized by the
noise of the data. In that case a model calculation can be
done, based on some independence assumptions of the
noise (which may not be justified in general). For the map
x~ 1 —2x and d~ ——2, this calculation predicts that the
two Liapunov exponents will be ln2 and = —1.2.

Let us summarize All of th. e above effects only con-
cern the spurious I.iapunov exponents, because they are
caused by the desingularization of the equations for the
T, . If the noise is not too small relative to the precision
and the density of the data, one will see the true Liapunov
exponents and the spurious ones will all be negative. This
seems to be the usual situation in laboratory experiments.

We now discuss the more difficult problem of analyz-
ing an experimental time series. In particular, we have
made measurements corning very close to the required
desiderata of Sec. III. In this section we only analyze one
of these runs, from the same point of view as the numeri-
cal experiments. In the Appendix, the experiments and

the complete results are described, as function of a vary-
ing parameter. To give a certain feeling of what is in-

volved, we draw a piece of the experimental orbit (Fig. 8).
In Fig. 9 we summarize the results of varying the lags

m and matrix dimension der in such a way that ds varies
between 9 and 26. We limit der between 2 and 9. One ob-
serves a relatively fiat section in the region above da ——20
for der & 3. This limit is more visible in Fig. 10, where we

plot, by interpolation, a section of Fig. 8 at dE ——22. In
view of the prec4xling discussions, we conclude that there
are two positive Liapunov exponents. In the Appendix,
we show the complete results for a series of experiments
with varying parameters. (The main body of this paper
was done by the first three authors, and the experiment, as
well as the Appendix, have been provided by the fourth
author. Our collaboration has made an optimization of
the experiment and the analysis possible. )

¹tedadded in proof. An interesting recent paper by
A. M. Fraser and H. L. Swinney [Phys. Rev. A 33, 1134
(1986)j indicates how to choose time delays optimally in
the reconstruction of dynamics from a time series. For
other general literature see Ref. 1, which contains in par-
ticular a reference to a paper by Wolf ei al. We remain
Qnconv1nced that tlM method described 1Q that paper 8L1-

lows the systematic computation of several Liapunov ex-
ponents from noisy experimental data.
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The transition from a regular to a chaotic behavior has
been widely studied both theoretically and experimentally
in many physical, chemical, and other natural phenome-
na. In fiuid mechanics one of the most used systems to
investigate the onset of turbulence is thermal convection
in a horizontal fluid layer heated from below, that is,
Rayleigh-Benard convection (RB). When the fluid is
confined in a cell whose horizontal dimensions are of the
same order of the fluid height (small aspect ratio cells), it
has been found that the transition to the chaotic behavior
can be explained in terms of the nonlinear interaction of a
small number of degrees of freedom. This has been veri-
fied either by checking if the observed route to chaos was
equal to one of the standard routes to chaos for low-
dimensional systems or more quantitatively with the
measurement of the fractal dimension of the attractor. '

In a RB experiment the determination of the positive
Liapunov exponents, that are indeed an important sign of
the existence of a strange attractors, has been done only in
Ref. 2 with a method similar to that outlined in the previ-
ous pages. Nevertheless, as pointed out in this text, there
are some differences between the two methods and so we
have applied the algorithm here proposed to evaluate the
Liapunov exponents from a series of data recorded in the
chaotic regime of a RB cell.

The fiuid layer has horizontal sizes l„=4 cm, l„=1

cm, and height d =1 cm (aspect ratios I „=4,Ir =1).
The fluid is silicon oil with Prandtl number 30. The bot-
tom and top plates of the cell are made of copper and the
temperature stability is about 1 mK. The lateral walls are
made of glass to allow optical inspection. The detection
system allows a semilocal measurement to be made. In
fact, it consists of a laser beam, with a diameter of 1 mm,
that crosses the fluid layer parallel to the rolls axis and is
deflected by the thermal gradients inside the fiuid. By
measuring the deflection of the laser bein outside the cell
we can measure the thermal gradient averaged along the
optical path. We record the horizontal component of the

gradient because it usually has the largest time-dependent
amplitude.

In order to have a signal-to-noise ratio within the re-
quirements specified in this paper, particular attention has
been paid to reduce the environmental noise produced, for
example, by the air convection along the optical path of
the laser beam, by the vibrations of the mirrors, and of the
laser cavity. Furthermore, to eliminate high-frequency
noise, the signal has also been filtered at a suitable cutoff
frequency to avoid that the rising time of the filter in-
fluencing the evaluation of the Liapunov exponents. This
way a signal-to-noise ratio of about 10 has been
achieved.

Analyzing the fluid behavior as a function of R/R,
(R, is the critical value of the Rayleigh number}, we find,
except for a small region at 81&R/R, ~90 where the
convective motion is time dependent, a stable four-rolls
structure for R/R, ~ 141. Above this threshold a period-
ic oscillation at a frequency of 75 mHz is observed. In-
creasing R, the fiuid crosses many different periodic and
biperiodic states and it goes into the chaotic region via in-
termittency at R/R, &170. We have characterized this
chaotic behavior by measuring the Liapunov exponents as
a function of the Rayleigh number.

To satisfy all other requirements of the algorithm,
40000 points, with a satnpling frequency of 5 Hz, have
been recorded for each measurement. This way, the time
evolution of the system is followed for about 600 periods
of the main oscillation. Many tests have been done to ver-
ify how the Liapunov exponents depend on dE and dse.
It has been found that the value of A, is sufficiently stable
in the interval 20~d@ ~25 and 5~dM ~8. The results
are reported in Fig. 11, where the values of the positive
Liapunov exponents are shown as a function of R for dif-
ferent dE and dst. We see that the qualitative behavior of
the curves is similar and the difference between them is
about 10%%uo. The measurements were done for
R /R, = 171.41, 174.08, 176.75, 182.10, 183.44, and
184.79. Figures 8—10 show details for R /R, =182.10.

By moving the detection point inside the cell by about 1

cm and keeping R at the last value shown in Fig. 11 we
find that the Liapunov exponents change by less than 5%%uo.

As a conclusion, the positive Liapunov exponents in the
chaotic regime of a RB convection experiment have been
determined using the method proposed in (Ref. 1). Even
though the error of the measurement is not small (about
10%%uo} it is still possible to follow how the number of the
Liapunov exponents and their values change as a function
either of the control parameter R or of the position
where the measurement has been taken inside the fluid.
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