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A fully quantum-mechanical theory of nondegenerate four-@rave mixing in a system of two-level

atoms is presented. The squeezing in the output field from an intracavity four-eave-mixing experi-
ment is calculated. The theory is compared arit the recent experimental results of Slusher,
Hollberg, Yurke, Mertz, and Valley and strategies to improve the squeezing are suggested.

E. Em'RODUCTEON

Squeezed states of light represent a research field in
quantum optics which is truly concerned with quantum
features of the electromagnetic field. Squeezed states
have fluctuations in one af the quadrature phases less
than that of a coherent state. ' They have potential ap-
plications in precision measurements and communication
systems. Far a review the reader is referred to Ref. 5.

Interest has accelerated recently due to the significant
experimental effort being made to generate squeezed states
of light ' and particularly with the recent experimental
observation' of light squeezed below the quantum (or
coherent-state) limit. Several experimental groups are at-
tempting to produce squeezed light and are using a variety
of systems. The first experimental interest was shown by
Shapiro et al. who used four-wave mixing in sodium to
try to squeeze the light field, and by Levenson and co-
workers ' who use four-wave mixing in an optical fiber.
Bath of these groups have succeeded in "squeezing" clas-
sical noise. ' Pour-wave mixing involves coupling of
two pump photons with two weak-field photons via a
nonlinear medium. The most successful experiment to
date has been that of Slusher et al. ,

" ' who have report-
ed what may be the first experimental observation of
squeezed»ght. They employ intracavity four-wave mix-
ing using a sodium atomic beam as the nonlinear medium.
More recently, Kimble et al. ' have been attempting to
generate squeezed hght using intracavity second-harmonic
generation.

A number of optical systems have been predicted
theoretically to produce squeezed states of light. These
range from parametric amplification, ' four-wave
mixing, ' dispersive optical bistability, ' two-photon
bistability, and second-harmonic generation.
Small amounts of squeezing are possible in resonance
fluorescence ' and absorptive bistability. ' ' There
has been much interest recently also in generation of
squeezed light in a Rydberg maser. In this paper we
shall develop the theory of four-wave mixing.

Four-wave mixing was first proposed by Yuen and
Shapiro ' as a means of generating squeezed light. They
originally considered the backward configuration where
the two weak-field waves (and the two pump waves) are
counterpropagating. This is the configuration used in

phase-conjugation experiments. More recently, Yurke
has suggested producing squeezed states using four-wave
mixing in a single-port optical cavity. The cavity configu-
ration has the advantage of increasing the interaction time
between the nonlinear medium and field. Yurke calculat-
ed the squeezing in the experimentally accessible field
external to the cavity. Both the models of Yurke and
Yuen and Shapiro assume a phenomenological nonlineari-
ty g for the medium and found excellent squeezing to be
attainable for sufficient nonlinearity so as to approach the
threshold for oscillations.

However, modeling the medium by a classical suscepti-
bility will not describe the quantum noise processes in-
herent in a real medium, such as the optical fiber in the
experiments of Levenson et al. s or the atomic medium in
the experiments of Bondurant et al. 6 and Slusher et al. 'i
A medium will absorb radiation and the effect of the ab-
sorption on the squo."zing were originally studied by Ku-
mar and Shapiro in a phenomenological manner. They
suggested use of forward four-wave mixing in which the
pump and weak fields are copropagating, as opposed to
the counterpropagating situation. The experiment of
Levenson, for example, is totally capropagating since the
pump and weak fields propagate down the fiber in the
same direction.

The models of Yuen and Shapiro, ' Kumar and
Shapiro, z and Yurke, are phenomenological and could
not describe correctly the effect of quantum fluctuations
from the medium. For example, in the experiment of
Slusher et al. the pump laser is closely tuned to the D2
resanance of sodium. Hence one may model the medium
in this situation as a two-level atom. The two-level atom-
ic medium provides the nonlinear four-wave mixing
which squeezes the light. However, in such a medium
there is additional phase-insensitive fluorescent radiation
present which tends to destroy the squeezing. Thus,
fluorescence or spontaneous emission will impose a funda-
mental limitation on the squeezing possible in an experi-
ment. A discussion of an experimental limit imposed by
spontaneous emission is given by Slusher et al. "

The first fully quantum-mechanical treatment includ-
ing the effect of spontaneous emission on squeezing for
two-level atoms in a cavity was given for two-photon ab-
sorptive bistability and a two-photon laser by Lugiato and
Strini and Reid and %alls, and for one-photon absorp-
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tive bistability by Lugiato and Strini. s The effect of
spontaneous emission in the lasing medium was to destroy
the squeezing. Only a very small squeezing was predicted
for the lower branch in one-photon absorptive bistability,
a greater amount of squeezing being possible in the two-
photon absorptive bistability. One may expect the effect
of spontaneous emission to be less significant in dispersive
bistability and four-wave mixing, systems which have also
becai better studied experimentally. We note also that the
calculations ' discussed above pertain to the squeezing
in the internal-cavity mode rather than the squeezing in
the output field which is experimentally accessible.

What may be the first calculation of the effect of quan-
tum noise from a two-level atomic medium in a four-
wave-mixing experiment was presented by Reid and
Walls ' for degenerate four-wave mixing. The term de
generate refers to both pump and weak fields at the same
frequency. The totally forward degenerate situation in a
ring cavity driven by an external last+ field corresponds to
the situation of dispersive optical bistability using two-
level atoms and was also studied by Reid and Walls.
The calculations of Reid and Walls were based on tech-
niques developed by Haken3' for laser theory and Drum-
mond and Walls39 to describe quantum fluctuations in op-
tical bistabllity.

The effect on the squeezing of fiuorescence radiated
from the two-level atoms for degenerate four-wave mixing
was shown by Reid and Walls to be significant. To
obtain good squeezing, the intensity of the output light
must be due primarily to the phase-sensitive four-wave-

mixing coupling term and not to phase-insensitive fluores-
cence. Thus one needs intensities sufficient to enhance
the nonlinearity (relative to both cavity loss and atomic
loss) and yet low enough that one is still in a regime of
very low atomic saturation. The latter is necessary to
avoid fiuorescence. The best squeezing is therefore
predicted for a window of pump intensities. The imphca-
tion is that high-atomic detuning and hence high intensi-
ties and cooperativity values are required for significant
squeezing. Also the squeezing is sensitive to changes in
parameters such as the cavity detuning (pump laser fre-
quency ).

Thus one concludes from the analysis of the degenerate
situation that the best strategy is to modify the experi-
ment so as to minimize effects of spontaneous emission.
Several suggestions have been made. A nonsaturating
medium such as modeled by an anharmonic oscillator
will not give rise to the problems of two-level atomic
fluorescence. The glass fiber used in Levenson's experi-
ment was thought to be good from this point of view, but
other noise sources have appeared. Another possibility is
to employ a different nonlinear mechanism such as is pos-
sible using two-photon transitions in three-level

3O, Q), $$

Another possibility and the one of interest to us here is
to use the one-photon, two-level atomic transition as dis-
cussed above, but employing a nondegenerate four-wave-
mixing scheme as opposed to a degenerate scheme. By
nondegenerate we mean each of the two weak-intensity
modes to be equally and oppositely detuned in frequency
«om the cen«ai pump mode. This is indeed the situation

in the experiments of Shapiro and Slusher. The question
of the effect of spontaneous emission in nondegenerate
four-wave mixing was first raised by Slusher er al." and
our work has been largely motivated by comments made
in that paper.

We indicate intuitively why the nondegenerate four-
wave-mixing scheme may help in reducing fluorescence
and produce better squeezing. Consider the fluorescence
spectrum of a two-level atom pumped by a detuned in-
tense laser field. The spectrum has an elastic peak at the
pump frequency and at low intensities two inelastic peaks
symmetrically displaced from the pump frequency by an
amount corresponding to the atomic detuning. At higher
intensities approaching saturation, the inelastic part of the
spectrum becomes three peaked: two sidepeaks at the gen-
eralized Rabi frequencies and a central inelastic peak at
the pump frequency. The center peak becomes propor-
tionately larger at increasing intensities. It scatters
phase-insensitive radiation back at the pump frequency
and is thus the reason for sensitivity to fluorescence in de-
generate four-wave mixing, where the squeezing is looked
for in weak fields at that same pump frequency. The
width of the fluorescent peak is of the order of the atomic
linewidth yi. Intuitively, one would expect to be able to
detune the weak fields from the central pump frequency
over several atomic linewidths to avoid this fluorescence,
and hence obtain better squeezing at higher pump intensi-
ties where fluorescence is a problem.

But in such nondegenerate four-wave mixing one is
considering a four-wave-mixing coupling between weak
fields detuned from the pump frequency, and thus from
the frequency of the two-level atomic polarization. Does
the coupling spectrum fade out also as one introduces a
weak field detuning from the pump'? The important cri-
terion is the level of fluorescence compared to the non-
linear coupling. Thus to investigate whether nondegen-
erate four-wave mixing is advantageous to squeezing, one
needs to compare both the fluorescence and the coupling
spectra.

Nondegenerate four-wave mixing in two-level atomic
media has been studied classically by Fu and Sargent
and Boyd et al.~ The semiclassical loss-gain and cou-
pling coefficient spectra have been derived. However, to
describe squeezing a quantum theory is required.

A quantum theory applicable to nondegenerate four-
wave mixing adapting the techniques of Scully and
Lamb 5 has been presented by Sargent er al. 6 4s Reid
and Walls ' have also developed a quantum theory of
nondegenerate four-wave mixing, adapting the techniques
of Haken s and Drummond and Walls. What may be
the first results predicting advantages in squeezed-state
generation via nondegenerate four-wave mixing have been
presented by Reid and %'alls, ' who considered nonde-
generate four-wave mixing in a high-Q optical cavity and
calculated the squeezing in the field external to the cavity.
They predicted significant advantages over the degenerate
case in terms of avoiding phase insensitive fluorescence.
Good squeezing was predicted possible for lower-atomic
detunings and lower C values than the degenerate case,
and for intensities saturating the atoms. There has been
recent work also by Holm and Sargent who extend the
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calculations of Sargent et al. ' to calculate the squeez-

ing in the internal cavity field. They also predict
enhancement of squeezing to be possible by detuning the
weak fields from the pump field.

In this paper we present in detail a quantum theory of
nondegenerate four-wave mixing, adapting the methods of
Haken and Drummond and Walls. %'e consider non-
degenerate mixing in an optical high-Q ring cavity con-
taining a nonlinear medium which may be modeled as S
two-level atoms. The cavity mode is pumped by an exter-
nal laser. Four-wave mixing occurs between the pumped
cavity mode and the two adjacent cavity modes. In a ring
cavity these modes are all forward propagating. We as-
sume a high-Q cavity such that the atomic variables may
be adiabatically eliminated. The squeezing in the
transmitted field external to the cavity and at the sideband
frequencies is calculated, using techniques developed by
Collett and Gardiner. ' ' ' It is the squeezing in the
field external to the cavity which is relevant experimental-

ly, and this important point was first made by Yurke. 's

We thus present in detail the derivation of equations
and solutions previously published by Reid and Walls
and answer many of the questions raised in this introduc-
tion. We provide greater physical insight into previous re-

sults, as well as present new features. Wherever possible,
we make comparisons with the semiclassical theory of Fu
and Sargent" and Boyd et al. , and the quantum theory
of Sargent et al. and Holm and Sargent. We present a
comparison of theoretical predictions with the experimen-
tal results of Slusher et al. '2

We note that a good fit to the present experimental re-

sults has been provided by IGauder et al. s who use the
degenerate theory of Reid and Walls and includes effects
such as phase jitter. Our results indicate that much better
squeezing should in principle be attainable from nonde-

generate four-wave mixing than has presently been ob-
served.

II. DERIVATION OF QUANTUM-MECHANICAL
EQUATIONS

We begin with a general description of nondegenerate
four-wave mixing (Fig. I) in an optical cavity. The medi-
um is modeled as N two™level atoms, and is interacting
with the radiation field at three frequencies. We write the
model Hami1tonian in the electric-dipole and rotating-
wave approximations as follows:

H= gH„,
p=o

3 N

Ho g——fico~a~ aj + g Acoocr„,

ik3r&a—; (a,e '+aze '+a, e )],

H2 ——i'(a |Ee a,E—'e ),

a 1 is the boson annihilation operator of the pump mode at
frequency col. a2 and a3 are annihilation operators
describing cavity modes at frequencies coi and coi, such
that 2co] —c02+c03 (and 2ki ——kz+k3 )~ We denote
@=co~—coq. 0;,0;,0 are spin operators describing the¹htwo-level atom with atomic resonance frequency c00.
The atomic reservoirs I and I z describe energy loss from
the atoms via spontaneous emission and phase damping or
collisional processes, respectively. The loss of energy of
the field cavity modes due to dissipation through the cavi-
ty mirrors is described by the field reservoir I, . For sim-
plicity we will assume the modes to be independently cou-
pled to the external environment (I, ) and take the cavity
decay rates to be equal to the same value, a. We have al-
lowed in our Hamiltonian for the situation where the
pump mode a~ is a resonant cavity mode driven by an
external coherent input field E of frequency coi In the.
case (Fig. 1) of a single cavity for both pump and side-
band modes, we have assumed that the cavity detuning
coi —coL is much smaller than the separation in frequency
a=co~ —m2 between adjacent cavity modes, so that only
mode a i is effectively pumped.

To study the Hamiltonian we adapt the treatment used
by Drummond and Wallsi9 to study the degenerate situa-
tion, where co~=coi and aj ——a. The technique was first
developed by Haken3' for laser theory and extended for a
qu mtum theory of optical bistability by Drummond and
Walls. To summarize, a master equation for the density
operator p is derived using standard techniques. A nor-
mally ordered characteristic function X is defined (for the
degenerate case)

g= TrOp (2)

ie~St '&~z ieS isa~ iPa0=e e e e e

S= g cr;e
' '"', S,= g cT

FIG. 1. Scheme for nondegenerate four-wave mixing in a
Ang cavltp.

A distribution function f is the Fourier transform of the
characteristic function
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f= JXe" e'~"e' e 'de' dd~ed e~d~qd~Pd~P~

and one thus establishes a correspondence between c num-

bers and operators as follows:

u~S, ut~
(4)

The standard representation as used in laser theory ' does
not in general provide a Fokker-Planck equation with a
positive definite diffusion matrix. Hence we use a gen-
eralized representationz9's of the type (3), where the re-

sulting Fokker-Planck equation has a positive semidefinite
diffusion matrix and one can apply Ito rules to write the
equivalent stochastic differential (I.angevin) equations.
The daggered notation (e.g., at} was introduced by Drum-
mond and Gardiner for use with the generalized P rep-
resentation in which pairs such as (a,a ) are not complex
conjugate but independent complex variables.

The equation of motion for f is derived and contains
infinite-order derivatives. With N (the total number of
atoms interacting with the cavity mode) large one can use
scaling arguments to ignore all but first- and second-order
derivatives, and to imply that the order of the quantum
noise terms (second-order derivatives) is small compared
to the semiclassical (first-order derivative) terms. One can
then transform the resulting Fokker-Planck equation into
a stochastic differential equation (Ito calculus).

These final equations are (in the Schrodinger model), as
derived by Drummond and Wallsz9

a =Ee ~ (a+i cv, )—a+.gu + I
v' = (y, +i—cvv)u +gaD + I „,
D =—y ~~(D +N}—2g (uta+ uat)+1 D,

and the corres~zondin~ "c.c." equation obtained by ex-
changing a~m, u==v, r„~l „i, I ~~l i, and complex

coefficients with their complex conjugates. The terms I
are Gaussian noise functions with zero mean, reflecting
the quantum noise present and arise from the second-
order derivatives or diffusion matrix of the Fokker-Planck
equation. With these quantum noise terms I' ignored, one
obtains the usual semiclassical equations of motion. The
nonzero correlations of the quantum noise terms are ob-
tained from the Fokker-Planck diffusion matrix and are

(1 „(t)I„(t')) =2gau5(t t'), —

(r &(t)r,(t )&= 2g' a'u( 5—t t ),

N —lk2 f.
U Z+ +SZ e CTI, V Z+.+SZ,

N —lk3P
V3~4'3 —— e 'o;, V 3~4'3,

N

Di~&.= g c7n

N
i(k& -k3)r;

Dz ~,z ger e ——', Dz~f, z .
i=1

This is achieved by the characteristic function X=TrpO
where

0 =Ops (10a)

as other modes of the radiation field (thus giving rise to

y~~ describing spontaneous emission) or other atoms
(modeling collisions y&). We have assumed the thermal
noise (detrimental to squeezing) from the field reservoir
I, to be zero, taking a low-temperature limit.

In the nondegenerate situation described by Hamiltoni-
an (1), the polarization u oscillates at an infinite number
of frequencies. The problem can be simplified somewhat
if we recognize interest in the gain of the weak-field
modes az and a& in the presence of the strong central
pump mode ai. We are thus interested in a limit where
the strong pump mode a i is treated correctly to all orders,
describing the saturation of the medium, while the expres-
sions for the weak fields az, a& are kept to first order only.
Then the polarization will oscillate at three dominant fre-
quencies coL, , coL, +e, and c0L, —e. Thus we expand the po-
larization and field into Fourier components and write

—f0' t —i(co& —g)t —i (co& +e)ta =ale +aZe +Q3e ()
-EmL t —I (coL —e)& —I (COL +E)f

V =Vie +Vze +U3e

Examination of the equation describing the inversion D
shows that D will oscillate at the frequencies 0, +e.
Hence we write

D =D1 +Dze '"+Dze'" .

Thus we establish the following correspondence between c
numbers and operators:

QJ~J lj QrJ~+QJ j

N —Ik 1
1'.

v, ~Si ——g e 'cr;, u i~4'&,

(r (t)1" (t') ) = [2y( (D +N)

&g (uta+uat)—]5(t t'}, —
(r„(t)r„g(t') ) =(D+N)y~5(t t'), —

yz and y~I are the transverse and longitudinal relaxation
rates of the two-level atom, respectively, while y~ is the
rate of collision-induced phase decay of the atoms
(yi ——y~+y~~/2). These decay rates arise from the in-
teraction [H& of Eq. (1)]of the atoms with reservoirs such

O~ ——exP i g ej SJ exP[i (il iS, +rizS, z+rtzS, z )]
j=l

3

Xexp i g ejSJ
j=l
I Iie; a; iq;cr ie;cr,.

N

8 8 8
i=I

OF=exp i g P,aj. exp i g P,aj.

(10b)
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—ik) Fi —ik&ri —ik 3I'i

ei ——e1e +e2e +e3e
ik p. t ik2yi y ik3r;

e" =e1e +e2e +e3e
i (kl —k3)r, g

—i (k I
—k3]fiI 3 i+~Pe I 3 i

The summations in j run over frequencies 1,2,3 while i
runs over the atoms.

The c-number Langevin equations for the variables (9)
are most easily derived by substituting (7) and (8) into the
equations (5) and matching terms of the same frequency,
retaining to first order only terms in Q2, Q3, u2, u3 D2,
etc.

Alternatively, one derives the equation of motion for
the new distribution function f, the Fourier transform of
the characteristic function (10), along the lines described
for the degenerate situation, making use of the latter form
(10b) and (10c) of the characteristic function. One then

neglects terms (not frequency matched) involving summa-
i h,kr;

tions of functions such as e ' (b,k&0} over all the
atoms. These terms are small compared to those phase-
(or frequency-) matched terms for which hk =0
=2ki —k2 —k3. Again only terms linear in the weak
fields are retained. We assume the weak fields Q2,Q3 have
no feedback effect on the strong pump mode Qi.

The final nondegenerate c-number equations in the
above approximations are [in the rotating frame defined

by (7)]

Q) CBVl'tg

, 5'IIS

I i I

I I

I

l

l I

Ging- E Mg+ 6
Q)1 PLINP &o atom

& I'„i(r)l'„l(t') & =
& l, t(i)l „t(t') &

=2gQiu i5(t t'),—

= [2y))(Di +N) —4g (u i Qi+ u i Qi )]5(t t')—

FK). 2. Diagrammatic sketch of the parameters used in this

paper

Qi ——E—K(1+i/)Qi+gu i,
Q2

———K(1+ip)Q2+gu2,

Q3 ———Ic( 1+if)Q3+gu3

U1 71U1 +g+ 1D1 +I 1

UZ =—72U2+g2D1+f1D2+ ~I)2 ~

u3 = —y3u3+gQ iD2+ gQ3D i +I 3

(1 la}

Di = —y))(Di+N) —2g(Qiu i +Qiu, )+I n»
D2 yD2 2g (Qlu 2 +Q2u 1 +Q iu3 +Q3u i }+I n2,

and c.c. equations. We define

f is the collisional parameter (f= 1 corresponds to no col-
lisions, f=0 is total collisional broadening). A diagram-
matic illustration of the definitions of the above parame-
ters is provided in Fig. 2. The nonzero noise correlations
are, taking dominant terrors in the pump only,

$=(cui col. )/K, yj. =—yi(1+l +J.), y=y))(1 —l5),
&i=(coo coL, )/yi—, b2 ——b, i+25f, h3 b, , 25f, —— —

(1 lb)
6 6/f [)

f =y))/2yi

III. FIELD EQUATIONS
IN THE HIGH- Q-CAVITY LIMIT

In the limit of a high-Q cavity such that K«yz, y)),
one is justified in adiabatically eliminating the atomic
variables. We set uj =Di D2 ——0 and so——lve for the atom-
ic variables in terms of the field variables. The final equa-
tions in this limit are

2CKO,'1
Qi ——E—(1K+i/)Qi . —+Fi(t), (13a)

(1+id,i)II(0)
2i80

Q2 Ky(5}Q2+KX(5—)Q3e +F
Q3 ——Ky( 5)Q3+ KX—( —5)Q2e '+ F~3 (t), ( 13c)

and the corresponding c.c. equations. We define
y(5)=1+lp+ya(5)+lyg(5), X(5)=Xa(5) +ill(5), and
11(0)=1+I/1+g. F~(t) are fiuctuating noises with

&F,(t)&=0 and the nonzero noise correlations for the
sidebands are

&F 2(t)F 3(t)&=KRe '5(t c'), R =RR+—iR, ,

& F t(t)F t(t ) & =KR 'e '5(l l'), —

&F 2(c)F,t(r')&=&F 3(c)F,i(r')&

=KA5(t l') . —
The coefficients ya, yr, X, R, and A are functions of the
foBowing major scaled parameters [refer to Eq. (1 lb) for
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definitions]: 5, the detuning of the sidemodes from the
central pump mode in units of y~~', hi, the detuning of the
central pump mode from the atomic resonance in units of
yi, C=g N/2yia, the cooperativity parameter of the
cavity; I =

~
a& ~zino the steady-state intracavity pump

intensity in units of no the resonant saturation intensity,

where no ——y((yi/4g, ai ——~ai'~ e ' is the steady-state
semiclassical solution of the equation (13a) for the cavity

pump mode, and f is the collisional parameter. The solu-

tions are

2CI 1+I[a —c +hz(d —b))+I [bd —ac+hz{ad +cb)])
(1+hz)II(0)

(
II(5)

~

2CI hz+I—[d b ——hz(a c)]+—I [ad +bc hz(—bd —ac)] I
yr(5) =

(1+h,')Il(0)
~
II(5) (2

2CI I e 5fq +I[—ae +bq +5f (be —aq)] I

Il(0)
~

Il(5)
~

(1+5 )(1+h,)(1+h )(1+h3)
2CII q+5fe+I [aq be+5f—(ae +bq)]I

Il(0)
~
II(5)

~
(1+5 )(1+hi)(1+hz)(1+hz)

2CI2[1+h3+f—fh ih3+5(hi +h3) +If/2]
II{0)

~
II(5)

~
(1+5 )(1+hi)(1+hz)(1+h3)

2CI [f(1+—5 )r +Id (r,s) +I fB(r,s) ]
II(0)

~

Il(5)
~

(1+5 )(1+hi)(1+hz)(1+h3)
2CI {—f(—1+5 )s+I [2 ( s,r)+&1]+I—'f [B(—s, r)+I'2] J

11(0)
~
Il(5)

~
(1+5 )(1+hi)(1+hz)(1+h3)

P 1
—hz+ h3 —hzh3+ 1, Pz ——( hi —1)/4

2+h,'+ h',—5h, (1+h32)+5h3(1+ h. ', )

2(1+5')(1+hz)(1+ hi)
—5(2+h3+ hz}—hz(1+ h3)+h3(1+ hz)b=

2(1+5 )(1+hz)(1+h3)
(h, —hi)(h3+hi —5+5h3hi)

2(1+5 )(1+h3)(1+h 1)

(h3 h, )[1—h3h +5(h3+hi)]
2(1~52)(1+h'3}(1+h, )

e =1+h3h 1 +hzh3 —hzh 1 +5{h3 —h 1
—h2 —h2h3h 1 )

h2h3hi 5{1+h3hl+hzh3 h2hl) ~

B(r,s) = —,'+ (1+52)(az+bz)r—

r =1—6253—AI62 —4)43,

11(5)=Ila+i Ilr, lla ——1+aI, III =bI,
3 (r,s)=f(1+5 )2ar f(rg +ms)/(1+ hz—)(1+h3) —1+hzh3,

frag+rbh +ams+bns r(1 —hzh3)/—4+s(hz+h3)I4]
(1+hz)(1+h3)

(15)

2g =(1+h', )(1—h25)+(1+h35)(1+hz},
2h = —(1+h3)(hz+5)+(1+hz}{h3—5»
2m =—(1+h3)(hz+5) —(1+hz)(h3 —5),
2n = —(1+h3)(1 —h25)+(1+ h', )(1+h35) .



QUANTUM THEORY OF NONDEGENERATE FOUR-WAVE MIXING

The steady-state cavity pump intensity I satisfies

2Chi
Ip ——I 1+

(I+6,))II(0) (1+6,i)II(0)

where I~ =4g [ E/~
~ /y~~yi is the scaled external driv-

ing field. The phase 80 of the steady-state cavity pump is
shifted from the phase of the external driving field E
(which we take real for convenience) by

b, i2C
tan80 ———

(1+a', )11(0)

One may expand to first order the pump field ai about a
stable steady-state value ai (ai ——ai +5a) and hence ex-
amine the statistics of the pump mode in the linear ap-
proximation used here. Indeed the squeezing in the field
at frequency coi external to the cavity has been calculated
by Reid and Walls, the equation for 5a being simply
that for a2 with 5=0. The results of the paper are thus
reproduced in this work by selecting 5=0.

Several comments relating to our basic equations (13}
are relevant. The F &(t) are quantum noise terms neces-
sary to preserve the commutation relation [a,at] =1 and
are not present in a semiclassical treatment. The equa-
tions for the classical field amplitudes are obtained by
taking the expectation values (aj ) in which case the noise
terms (I" J(t}) vanish. These classical equations describ-
ing nondegenerate four-wave mixing in a two-level atomic
medium have been derived previously by Fu and Sargent
and Boyd et al. To calculate quantum features of the
field, such as the squeezing, it is necessary to incorporate
the quantum noise terms F~J(t) and hence their correla-
tions 8 and A.

The physical interpretation of the expressions ya(5),
yi(5), X(5), R, and A will be discussed in some detail.
Firstly, yx(5) is the loss-gain coefficient of the mode ai,
while yz(5) is the dispersive response for mode ai. X(5) is
the semiclassical coupling coefficient, giving rise to the
generation of mode az in the presence of the pump mode
ai and weak field a3. The expressions for the semiclassi-
cal coefficients yii(5), yi(5}, and X(5) are identical to
those derived previously by Fu and Sargent and Boyd
et a/. To gain physical insight into the solutions, we re-
vise results discussed in particular by Boyd et al.

The behavior of a two-level atom with resonance fre-
quency coo when irradiated by a closely tuned laser at fre-
quency air has been well studied (Fig. 3). At low field in-
tensities, inelastic scattering of laser photons occurs at the
frequencies 2coL, —coo and coo (i.e., mL, +yibi). This is
brought about by the virtual process depicted in Fig. 3(a)
involving the absorption of two laser photons and emis-
sion of photons at frequencies coo and 2cuL, —coo. The pho-
tons at frequency coo undergo loss due to absorption while
the photons at frequency 2coL, —coo can show gain due to
the scattering process described. This feature shows clear-
ly in the plots of the absorption profile yii(5) (Fig. 4) to
be discussed below.

At higher intensities the atom saturates and Stark shift-

ing of the atomic energy levels occurs. In the dressed
atom each energy level splits into a pair separated in ener-

gy by the generalized Rabi frequency 0 [Fig. 3(b}]

0/y =(2I+& )' (17)

The inelastic scattering process now involves two laser
photons at frequency c0L and scattered photons at fre-
quencies r0L —0 and r0L, +0 as depicted in Fig. 3(b).

The inelastic scattering process and Stark shift are evi-
dent in Fig. 4, showing plots of the quantity ya(5) versus
the detuning 5 of the sideband from the pump, for various
pump intensities I and detunings b, i of the pump from
the atomic resonance. Figure 4(a) illustrates the loss-gain
profile on resonance (b, i

——0). As saturation occurs the in-
itial single peak splits into a three-peaked spectrum. The
frequencies of the three peaks correspond to those of reso-
nance fluorescence: a central inelastic peak at the pump
frequency, and two sidepeaks at the Rabi frequencies

~

5
~
=0/2yi. These frequencies represent the three ab-

sorption frequencies possible in the dressed atom [Fig.
3(b)]. Figures 4(b) and 4(c) are for a detuned atom
(&i =4, 100). Particularly as saturation occurs, the profile
shows peaks shifted from the pump frequency coL (corre-
sponding to 5=0) by the generalized Rabi frequency (17).
The wave at 5= —0/2yi (corresponding to frequency
cur. +0) is closest to the atomic resonance coo and shows
absorption. The mode at frequency coL —0 can show gain
due to the inelastic scattering process depicted in Fig. 3
and being farther away from the atomic resonance coo.
The gain at ~1 —0 is more significant as the pump inten-
sity I increases above the saturation level. At higher in-
tensities, regions of gain appear between the two peaks.
The graph at b i

——100 [Fig. 4(c)] contains sharper peaks
as the generahzed Rabi frequency (17) is increased. Sa-
turation for large detunings corresponds to I of the order
+2

Figure 5 shows the dispersive profile yI(5). Below sa-
turation, clear resonant behavior is seen at the frequency

n
1)

FIG. 3. Inelastic scattering of laser light of frequency ~L by
a two-level atom with resonance frequency coo.. (a) at low inten-
sities light is scattered at frequencies coL, and 2coL, —mo,

' (b) at
higher intensities saturating the atoms, light is scattered at the
frequencies ~L +Q.
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by a phenomenological Hamiltonian as follows:

H =hX(a i ) a2a3+hXa ia2a3,t 2

a i is the boson operator for the pump mode at frequency
cot, , and a2 and a3 are the sideband modes at frequencies
cur —e and mI +e, respectively. The Haaultonian is the
original prototype * predicted to give excellent squeezing
in a suitable combination of modes a2 and a3. This is
provided the pump a i is of sufficient intensity that it may
be treated classically and nondepleting, and also that the
nonlinear coupling X is sufficiently large. In this simple
model, the larger the coupling X the better the squeezing.
Now the Hamiltonian (18) symbolizes destruction of two
pump photons a& and creation of two sideband photons

a2 and a3. This is precisely the process depicted in Fig.
3. As discussed above, this inelastic multiphoton scatter-
ing process is responsible for sidepeaks at the generalized
Rabi frequency in the fluorescent spectrum. What we

would like to consider, in terms of the squeezing possible,
is the "coupling spectrum, " i.e., X(5). We will expect, in
view of Fig. 3, an enhancement of coupling (i.e., sidepeaks
in the coupling spectrum} at the generalized Rabi frequen-
cies. Thus when the frequency of the weak fields coin-
cides with that of the sidebands of the fluorescent intensi-

ty spectrum (e=Q), one may expect a resonant enhance-

ment of four-wave-mixing gain and also of squeezing pos-
sible. The inelastic scattering described above in qualita-
tive terms has been shown responsible for resonant
enhancement effects in four-wave mixing in a two-level-

atom medium by Boyd et al.
The coupling response

~
X(5}~, which may be thought

of as the spectrum for four-wave mixing between side-

bands, is plotted in Fig. 6. On resonance with the atoms

5,=0, maximum coupling occurs near 5=0 at lower in-

tensities. We point out that 5=0 corresponds to degen-
erate four-wave mixing. The spectrum splits into three
peaks as saturation occurs. With a detuned atom, belo~
saturation the maximum coupling

~
X(5)

~

is at the doub-
let coL, +Q (coo, 2coL, —too). At higher intensities a small
central peak appears, the frequencies of the coupling
peaks then correspond to those of the Stark triplet cot,
cot, +Q. Important to note is the small height of the cen-
tral peak compared to the sidepeaks and the relatively fiat
nonzero coupling spectrum

~

X(5)
~

over the range of fre-
quencies between the Rabi frequencies, i.e., for

~

5
~

&Q/2yi. This is particularly noticeable on the plot
for b i

——100, where the central peak is very small. This
fiat region at such high atomic detunings is essentially the
imaginary component Xt(5). Xii and Xt show comparable
peak heights only at the Rabi frequencies. The significant
enhancement of coupling X(5) at the Rabi frequencies is
due to the inelastic scattering effect discussed above and
illustrated in Fig. 3, and is a key effect discussed in this
paper.

Of particular interest to us in calculations of physical
importance are quantities such as the mean number of
photons in the cavity (a2a2) and (aia3). Particularly
relevant for squeezing calculations are fluctuations such
as (aja;) —(at )(aj) and (a2a3) —(a2)(a3). It is in
such calculations that the quantum terms A and R are
needed and their physical significance made clear. To
gain insight into the physical meaning of A and R and to
assist in making a direct comparison with the work of
Sargent et al. , ' we write the Fokker-Planck equa-
tion (for the generalized I' function) equivalent to the
Langevin equation (13):

BF
Bt

B
K[ —$(5)a2+X(5)n3] +c.c.+ K[ —y( —5)a3+X( 5)a2]+—cc.

BQ2 BQ3

B2 82 B2 B2
+ ~

vA+
&

vA scR +
& &

I(cR I' .
Ba2Ba2 Ba3Ba3 B~2B&3 Ba2BQ3

(19)

+KX'(5}(a2a3)+KA, (20a)

The equation of motion for

(a2a2) (+2 ~3 +2 t23 } 2~2~ +2tl +2~ +3~ +32 2 T 2 2

is derived from (19) by integration by parts and using
boundary conditions for the P function. The result is
written is written below and may be compared with simi-
lar equations derived by Sargent et al. :~ 4s

dt
—(a 2a2) = —2K[yet (5)+1](a 2a2 ) +KX(5)(a 2a 3 )

dt
(a2a3 )= —K[y(5)+y( —5)](a2a3 ) +KX(5)(a3a3 )

+KX( —5 ) (a 2a 2 ) +KR (20c)

As in the discussion in Ref. 46, imagine that one can
decouple the sideband interaction so that X(5)
=X( —5)=0 and the correlation (F 2(t)F 3(t')) is zero
(R =0), i.e., the amplitude a3 is zero in the equation for
a2 and vice versa. The equation for the cavity intensity at
the sideband 5 is then

dt
—(a 3a3 )= —2K[y„(—5}+1](a3a3 ) +KX( —5)(a2a 3 )

—(a 2a2 ) = —2K[ya(5)+1](a2a2 ) +KA
dt

(21)

+KX'( —5)(a2a3 )+KA, (20b)
and is thus due solely to fluorescence, detectable at 5,
from the pumped two-level atom. The steady-state solu-
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tion for the cavity intensity is then (a za2)
=A/2s'[1+y~(5)]. In the limit of a large cavity
linewidth, or small cooperativity C, such that ya(5) &&1,
the intensity due to this fluorescence is simply A/2a. A
itself may thus be thought of as the phase-insensitive
fluorescence spectrum from the pumped two-level atom.
We point out that as 5=0, the solution to Eq. (20a)
represents not the total intensity of the intracavity pump
mode, but the first-order contribution in a linearized
theory where the zeroth-order contribution is given by the
deterministic steady-state solution (16). This additional
zeroth-order coherent term at 5=0 contributes a 5-

function elastic part to the fluorescent intensity spectrum
discussed above. It does not contribute to the fluctuations
or squeezing of the field (since (a;aj )= (a; ) (a&) for a
coherent state).

Plots of the function A are shown in Fig. 7 for various
detunings 6) of the pump mode from the atom. Figure
7(a) is the absorptive case hi ——0. At low intensities below
saturation, the spectrum is single peaked. At very high
pump intensity I, we have the usual resonance fluores-
cence curve, the sidepeaks corresponding to the Rabi fre-
quencies ( 5

~
-0/2yi ——,' v 2I, and one third the hei—ght

of the central {inelastic) peak. Figures 7(b) and 7(c) show
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well known for fluorescence of a detuned two-level atom.
It is interesting to compare the fluorescence spectrum A

for 6,= 100 [Fig. 7(c}] with the coupling spectrum

I
X(5)

I
[Fig. 6(c)]. As the intensity increases towards the

saturation intensity (I =10 ) the spectrum A develops a
central peak, at 5=0. The spectrum A shows three sharp
peaks (width -yi) at 5=0 and 5=+0/2yj, with low
fluorescence between peaks. The spectrum for

I
X(5) I, on

the other hand, is essentially a doublet (peaks at
5=+0/2yi), the central peak at 5=0 being very small.
This is to be expected, bearing in mind that X(5) is the
coefficient for coupling between a number of photons, as

opposed to the fluorescence A which relates to emission of
single photons. One would expect the coupling X(5) to be
enhanced at the Rabi frequencies 5=+0/2yi corre-
sponding to resonance with the process depicted in Fig.
3(b). The fluorescence A is enhanced at the frequencies
5=0, +0/2yi corresponding to the transitions possible
between the two pairs of energy levels of the dressed atom
sketched in Fig. 3(b). We note also that the sidepeaks in
the coupling spectrum are much broader than those of the
fluorescence spectrum. The coupling spectrum for the re-
gion

I
5

I
& 0/2yi is essentially flat and significant

[X(5)-X(0)-2CI/bi] compared to the fluorescence A.
This is of course with the exception of the very central
5=0 region corresponding to the central fluorescent peak
which dominates over the coupling X(0}at higher intensi-
ties. The effect of the central peak of A has been shown
by Reid and Walls ' ' to detract from squeezing in de-
generate (5=0) four-wave mixing. Thus regimes showing
large four-wave-mixing coupling X(5) with minimal
fluorescence A are promising for production of squeezed
light.

The second phase-sensitive noise term R is responsible
for the squeezing effects we observe and is seen to be the
driving term for (tt2a3) in Eq. (20). For R =0, the
steady-state solution for the phase-sensitive term (aqa3)
is zero and hence there is no squeezing. In the dispersive
(large detuning b.i) regime, R is closely related to X(5),
the four-wave-mixing coupling coefficient. Consider the
following Hamiltonian, a perfect or "ideal squeezed state"
producer:

0 JL
-200

FIG. 7. Phase-insensitive Auorescence spectrum A: {a}
6)——0, {b)6)——4, {c)6)——100.

the behavior for a detuned atom (b, , =4, 100). Below sa-
turation, the spectrum is a doublet, with peaks at
I5I =T I ~i I Again, in the high-intensity regime we

have the usual fluorescence spectrum, showing three
peaks at 5=0 and

I
5

I =0/2y~= —,'(2I+i), i)'~ . The ef-
fect of the detuning b, , is to reduce the heights of the
three peaks, but to increase the relative height of the
»depeaks compared to the central peak. This effect is

H =fig(a2a3+a2a3) .

The final c-number Langevin equations derived from this
Hamiltonian are of the following form, in a generalized P
representation:

a2 — iXai+F~2(t—),
~ ~ai —— iXa2+F~3(t), —

where the nonzero noise correlations are
(F 2(t)F 3(t')) = iX5(t t'—). Thus a perfect sque—ezing
situation for four-wave mixing corresponds in Eqs. (13) to
A =0 and R =X(5)=X(—5) and no loss y. The "perfect"
c-number equations (23) are equivalent to the operator
equations

0 ~

Q2 = —E+Q3

Q3 = —l+Q p
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an (22). Ri and XI(5), like the dispersive response yi(5),
have no significant central peak. This is unlike the real

component Rx which remains similar to A (but with a
negative peak) at all detunings b, i. Although Ri resem-
bles XI(5) at higher detunings b, i, Rii is quite distinct
from Xa(5), which has no significant central peak at
higher b, i, and Rabi peaks of opposite sign (Figs. 6 and 8).
The behavior of the two-level atom precisely at the Rabi
frequencies where fluorescence and absorption become
resonant is not like that of the dispersive medium depicted
by Hamiltonian (22). The Rii term is also resonant at the
Rabi frequency and what squo:zing is possible precisely at
this frequency is to be studied in this paper.

A comparison can be made with the quantum nonde-
generate mixing theory of Sargent et al. s and Holm
and Sargent. This theory represents an alternative ap-
proach to describe quantum-me:hanically nondegenerate
four-wave mixing and careful comparison with their work
is thus very important. The above authors adapt the
Scully-Lamb theory~~ developed for laser theory. The fi-
nal master equation developed in their work is written

[Eq. (100) of Ref. 47] in our notation for the boson opera-
tors:

Bp

Bt
A—i(paia 2

—a2pa2) —(Bi+a)(a Za2p a—ipai )

+Di(p iu2 —u2p i)+Ci(u2~ip —uipui~)

+(Qi~g, Ai~Ai, . . . ,Di~Di)+ ad]oint, (25)

where the last term in parentheses is the same as the pre-

vious terms with the replacement of the appropriate vari-

able. To make a direct comparison with our work, in par-

ticular with Eq. (19),. a Fokker-Planck equation is

develop~ from (25) in the generdlz~ P distribution. M

The method involves use of standard operator rules to
convert operators into differential operators and use of
boundary conditions for the P function so that one may

integrate by parts. The method is standard and well ex-

plained in Refs. 55 and 56. The final Fokker-Planck
equation corresponding to the work of Sargent et al is.

BP 8
[(~1—+i —Ic)ai+(Ci D&)a&]+—c.c.+ [(Ai —8& —ir)a&+(C& —D, )ai]+c.c.

Bt Qa2 Bai

+ (~1+~1 )+ (~3+~3 )+ (Ci+Ci)+ t t (Ci +C3 ) P .lg 'Cl 8

ap ai ai a, ai BaiBa)
(26a)

This equation has the same form as the Fokker-Planck
equation (19) derived from our results, provided one
makes the following correspondence between our parame-
ters and those of Sargent et al. :

a[yii (5)+iyl(5)] = —& i+&i,
~[1'ii( »+&7'—I( »]= —~i+&i
aX(5)=Ci Di, irX( —5)—=Cg —Di,
xA=A, +A, =F3+~3,
xR =CI+C3 .

(26b)

The loss-gain y(5) ( —Hi+Bi) and coupling X(5)
( C, Di ) coefficients —are the correct semiclassical expres-
sions. An immediate comparison of A and A =A i+A &

terms is possible for 5i ——0 (where A i
——A i ) by compar-

ing Fig. 3 of the Sargent et al. paper with Fig. 7(a) of
this work. The curves are identical. A comparison of R
and C =C& +Ci is also possible for 5i ——0 (where
Cq ——Ci ) by comparing Fig. 4 of Sar ent er al. and also
figures plotted in Holm and Sargent with Fig. 8 of this
paper. Again, exact agrcxmaent is obtained. More recently
Holm and Sargent57 have shown analytical agreement be-
tween the two theories for the degenerate case 5=0 (for
all detunings 6i). Further comparisons of the A and R
noise spectra for nonzero atomic detunings indicate exact
agreement for all 5 between the two theories.

It is possible to solve for the time-dependent linear Eqs.

(19) or (20) and to thus solve for quantities such as the
number of photons in each cavity mode and the squeezing
in a combined cavity mode. The squeezing is easily deter-
~i~ed once one has solved (20) for the quantities (a ia2),
(+3u 3 ), and (alai ) . The "variance" in the quadra-
ture Xg=Q~e +g3e 8 js gjyen by 9

V(Xe)=1+(azai)+(a3ai)+e ' (azai)+e ' (aza3)

(27a)

(once we have noted that (az)=(ai)= =0) and
squeezing is obtained when V(Xe) &1. This calculation
of the internal cavity statistics is the procedure taken in
many earlier works'6' and by Holm and Sargent.

However, the internal cavity mode differs from the
field transmitted through the cavity port and external to
the cavity. Unlike the cavity field, the external field is
multimode, comprising of traveling waves of different fre-
quencies. Thus eve must consider an intensity and squeez-
ing spectrum for the external field. There is a direct pro-
portionality (determined by the cavity parameter a. ) be-
tween the internal cavity intensity (or squeezing) and the
total external intensity (or squeezing). However, the indi-
vidual frequency components of the external field show
different intensities and squeezing. It is the transmitted
field external to the cavity which is experimentally acces-
sible. These important points were first made by Yurke. '

He showed that the squeezing in the external field of a
single-port cavity and at the sideband frequency (coL, +e)
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could be perfect. This is in contrast to previous calcula-
tions' ' on the internal mode which predicted at best
50% squeezing. Yurkes treatment was a single-mode
analysis. Collett and Gardiner and co-workers' '

have subsequently developed a theory to calculate the
squeezing spectrum of the external field. We use their
theory to calculate the statistics of the transmitted field.

IV. SQUEEZING AND INTENSITY SPECTRA
OF THE TRANSMITTED PIEI D

Of particular relevance to us then is the statistics of the
field external to the cavity. Squeezing may be observed in
a homodyne detection scheme, ' ' ' where the output
sidebands aq,„„ai,„, at frequencies cot, +e beat with a lo-

cal oscillator si,o——I ",phase shifted eio with respect
to the external driving field at frequency cot, . The side-
bands and local oscillator beat on the surface of a photo-
detector forming a photocurrent i (e) A . spectrum
analyzer allows measurement of the fluctuations in
the current i (e) at e, the spectral fluctuations
(i (e) ) —(i (e) ) being proportional to the variance
V(Xs,5) in the quadrature phases defmed by

—iHLo g ieLQ

(27b)

Of interest to us then is the spectral fluctuations of the
output field.

The I.angevin equation (13) describing the cavity modes

a2 and as may be rewritten in the following matrix form:

—a = —A a+D '~'a(t),

where a =(a2,a2,as, ai), z(t) is a 5-correlated noise force,
A is the drift matrix derivable from Eq. (13), and D is the
diffusion matrix whose elements determine the noise
correlations (14) as (I;(t)I'J(t') ) =DJ5(t t'). —

The semiclassical steady-state solutions are the deter-
ministic solutions derived from the drift term A only, ig-
noring the diffusion D completely. The deterministic
steady-state solution I for the pump mode (5=0) is given

by the usual optical bistability curve given by Eq. (16).
The deterministic steady-state solution and criteria for bi-
stability have been well studied previously, for example, in
Refs. (61) and (62). The fluctuations to first order about
the steady-state solution I are given by the hnear equation
(28} with 5=0. The steady-state deterministic solution
for the sidebands (5&0) is

a2' ——(az) =a'i' ——(ap') =0 (29)

since we have assumed no direct pumping of these modes

by an external driving field. The stability of these
steady-state deterministic solutions is checked by calcula-
tion of the eigenvalues of the drift matrix A. A solution
is stable only if these eigenvalues have positive real parts
Alternatively one rn.ay use equivalent Hurwitz criteria to
derive the following stability conditions:

a~ ~0, h~ ——a&a2 —a3 &0,
h2 ——h~a3 —a ~a4 ~ 0, a4 ~02

where

~J(~*5)=J e '"'&a;{t)a,(0)&dt

=[(3+i~I) 'D(Ar i~I) i]-,, , — —
(31a)

where I is the identity matrix. In the high-Q cavity
(a ~&yi) considered here the 5-fixed spectrum [S(co,5) as
a function of co] generally has a I.orentzian profile and its
width is of order ~. In this work, we restrict attention to
the case co=0. The expression (31a) is valid provided the
deterministic steady-state solutions for the pump I and
the weak fields are stable, i.e., the criteria given by (29) are
satisfied.

The solutions for the elements of the spectrum matrix
are

a i ——2 Re[y(5) +y( —5)]=TrA,

a2 ——2 Re f [y'{5)y(—5)—X'(5)X( —5)+y(5)y( —5)) J

+ iy( —5)i + iy(5) i

a3 ——2 ReI [y(5)+y*(—5)][y'(5)y( —5)—X*(5)X(—5)]I,
a4 ——

~

y(5)y'( —5)—X(5)X*(—5)
~

'=d«&

Clearly, the last condition is always satisfied. Parameter
regimes where there is not stability of these steady-state
solutions are indicated in the figures as dashed lines. For
the degenerate situation 5=0, the stability criteria reduce
to

ya(0) &0

{31}

/
y(0) f & is(0) f

.

The first condition is always satisfied, the medium ab-
sorbing radiation at the pump frequency. We see, howev-
er, that as the degenerate coupling coefficient increases
sufficiently, unstable regions are possible.

The linear equation (28) with noise D included can be
solved using standard techniques, enabling calculations
of the correlations C,J

——(a;,aj ) = (a;aj ) —(a; ) (a~ )= (a;aj ). We note that since (az )= (at) = =0,
CJ ——(a;aj ). Although the steady-state deterministic
solution for the sidemodes is zero, the (azar') of these
modes is nonzero because of the presence of the noise D.
We thus get a buildup of photons in the side modes due to
spontaneous emission. This buildup is described to first
order by our linear equation (28) and its solution CJ. For
the case 5=0, the solution represents the first-order
correction to the deterministic or coherent solution I.
The solution CJ enables quantities such as the mean num-
ber of photons and the squeezing in the intracavity modes
to be determined.

As discussed above, of more relevance to us given usual
experimental situations is the transmitted field external to
the cavity and comprised of many frequencies. We con-
sider a fixed sideband frequency cot +e. The linearized
expression for the e-fixed spectrum centered at cot. +e
{i.e., a frequency co from coL +e) of the correlation matrix
C~J is ~ritten63
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I A[ i y( —5)
i
'+

i
X(5)

i
']+Ry'( —5)X'(5)+R 'y( —5)X(5) i

~
i
y(5)y'( —5)—X(5)X'( —5)

i

'
$34(0,5)=Sip(0, —5)=S$3(0,5)

Sts(0,5)=e Sis(0,5)=S3i(0,5),

Sts(0,5)= [ A[y" ( —5)X( 5)—+y'(5)X(5) ]+Ry'(5) y( 5)—+R 'X(5)X( —5) J

~
i
y(5)y "(—5)—X(5)X'( —5)

i

'

(31b)

The elements Si2(0,5) and S34(0,5) correspond to the in-

tensities at the sidebands, while Sis(0,5) is the phase-

sensitive dement responsible for squeezing.
The statistics of the output sideband modes can now be

deduced from the boundary conditions at the cavity mir-

rors. 's's We use the theory developed by Collett and
Gardiner's and Collett and Walls s to deduce the external

squeezing spectrum in the P representation. The squeez-

ing in the output sideband modes is then determined by
the spectral variance (8=8t,o—8o}

V(Xe,5)=2a[Si2(0,5)+S34(0,5)+e ' S)s(0,5)

+e ' S ts(0, 5)]+1, (32)

where we have taken the optimal situation of a single-port
cavity. Given the factor 2a for going outside the cavity,
this solution is analogous to (27a). Squeezing is obtained
where V(Xe,5) &1 and perfect squeezing corresponds to
V(Xe,5)=0.

The best squeezing is

V(Xe,5)=2x[Si2(0,5)+S34(0,5)—2
i Si3(0,5) i ]+1

it discussed the phase-sensitive spectral element Si3(0 5)
is zero. The variance V(Xe,5) is thus independent of
phase 8 and is given by V(Xe,5)=1+2A in this limit.

Figure 9 plots the scaled quantity n /S2, ( 5) /I for vari-
ous 6i, C, and cavity detunings P and assuming pure ra-
diative damping (f=1). Our theory assumes small fluc-
tuations relative to the pump intensity

i a& i, and thus
Fig. 9 demonstrates where our theory is likely to break
down. If one keeps no large and is not too close to the
turning points of the bistability equation (16), where fluc-
tuations are very large, our theory will hold better.

The absorptive case hi ——0 is plotted in Fig. 9(a) for
C =20, sufficient cooperativity to induce bistability of the
pump mode I. Below threshold (I &1.05) the spectrum
is single peaked, the fluctuations increasing as threshold is

0.1

I =120

120

Re[St3(0,5)]
cos(28) =

i Si3(0,5)
i

Im[Si3(0,5)]
sin(28) =

i
S„(0,5)

i

We abbreviate S2i(0,5} to Sii(5) and refer to it as the
incoherent intensity spectrum henceforth. We do not in-

clude the coherent 5-function contributions in the plots
and discussions of the intensity spectrum, for the sake of
convenience.

To investigate the physical meaning of the quantity A,
we consider decoupling the sidebands, so that
X(5)=R =0. In this hmit, the transmitted intensity

S2i (5}becomes

)(10 ~ ~ r
1

~

S))(S)/I

Qg -4
I: =0.05
g=a

(b)

2aSzi (5)= 2A

If we have sufficiently low-cavity cooperativity C (large
cavity damping a.} then 2aS2&(5)~2A. Thus A may be
thought of as the transmitted fiuorescent spectrum for the
two-level atoms in the absence of coupling between side-
bands. It is phase insensitive, in the sense that in this lim-

FIG. 9. Plots of the normahzed steady-state sideband intensi-

ty spectrum Sql{5)/I transmitted through the cavity. (a) h~ ——0,
C =20, /=0: for steady intracavity pump intensities I corre-
sponding to the upper and lower branch of the bistability curve
for I. (b} 5,=4, C =0.05, /=0: for high and low pump inten-

sities I.
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A. Revision of degenerate 5=0 results

The key question is what orders of magnitude are re-

quired for experimental parameters (hi, 5, 2C, f, and I)
to obtain the best possible squeezing. The recent studies

by Reid and Walls of degenerate four-wave mixing and

optical bistability in a two-level medium pointed to at
least three important physical effects which may limit the
squeezing possible: the degree of collisional dephasing f,
the absorption ya(5), and phase-insensitive fluorescence
A. We take the value f=1, no collisions, in this work.
The general principle is then to enhance the nonlinear
phase-sensitive process X(5) and R over the dephasing ab-

sorption ya(5) and fluorescence A terms. This is done,
for example, mathematically in the idealized Hamiltonian
(22) and consequent equations, for which A =ya (5)
=Ra ——Xa(5)=0 and Rl ——Xq(5). This idealized Hamil-
tonian for the degenerate 5=0 situation in a ring cavity
corresponds to that of idealized dispersive optical bistabil-

ity:

H =fuuia iai+fiX(a i ) a i+i A(aiEe aiE'e —)
t 2 2 ~ t iLt + IcoLt

+air, +a ir, . (34)

This system was studied by Collett and Walls and
shown to give perfect squeezing (in a linear theory of fluc-
tuations as described above} as one approached the turn-
ing points of the dispersive optical bistability curve.
Squeezing via dispersive optical bistability in a high-Q
cavity in a two-level atomic medium, thus incorporating
effects of absorption and spontaneous emission not in-
cluded in (34), was studied by Reid and Walls. The ef-
fect of absorption was shown to be significant at low in-
tensities (I &b, i) and high-Cvalues (2C&hi). The effect
of desqueezing fluorescence A was important at higher in-
tensities I as one began to saturate the atom (I-hi).
Thus one required sufficient intensity I to attain signifl-
cant nonlinearity [X(0)-2CI/5, ] so that the turning
points of the bistability equations are approached and to
overcome the effects of absorption ya. Yet the intensity I

approached. Way above threshold (I &225), the atoms
saturate and the curve becomes that of the usual three-
peaked resonance fluorescence spectrum. As threshold is
approached from above (I~ 1 ), the sidepeaks move in to-
wards the central peak and their relative height compared
to the central peak increases. Such cooperative effects due
to the cavity (C,P) have been observed previously in cal-
culations of the transmitted spectrum S2i (co,0) of the cen-
tral cavity mode from a low-Q cavity (yi »a).

For b, i ——4, the plot for low (2C=1) cooperativity
shows features of usual fluorescence at low intensities, i.e.,
a doublet is present at the frequencies cia, +Q. As one in-

creases the cooperativity C, the doublet along the lower
branch disappears. Regardless of C, the usual three-
peaked spectrum, with Rabi sidepeaks at 0, appears far
enough above threshold. Nearer threshold, the sidepeaks
move into towards the central peak, with a change in rela-
tive peak heights. Similar features are exhibited at higher
detunings hi ——100.

V. DISCUSSION OF SQUEEZING SPECTRA

must be significantly less than the saturation intensity
I, -b, i, so that A «

~
X(0)

~

. (In fact, one needs I' &&b, i

to ensure this. ) These effects are seen by examining the
plots of quantities ya(5), X(5), and A at 5=0.

Thus for the degenerate situation 5=0 excellent squeez-
ing is obtainable only for a restricted range of parameters
and is thus not experimentally advantageous. One needs
high atomic detunings 5&~10 and thus high C values
(2C&hi) and intensities (I &b, i) to attain sufficient
X(0). The squeezing is also sensitive to changes from the
optimal values of C and I. Importantly, sensitivity of
squeezing to P is noted. The cavity detuning P changes
the shape of the bistability curve. The optimal P for
squeezing in the degenerate situation corresponded to the
transition to bistable behavior where one has a point of in-
flexion in the bistabihty curve. Considering the situation
hip&0, this value is P-2C/b, i (in the high 6i and C
limit). This corresponds to the pump resonant with the
linear dressed cavity, for which the cavity resonance is
shifted due to the refractive index term yl(0) of the
atoms. Decreasing P, one attains clear bistable behavior,
but the turning points of the bistable curve are at higher
intensity values I. In the degenerate situation the higher
intracavity pump intensity I induces fluorescence A and
squeezing is diminished in the normal bistable situation.

B. Advantages of nondegenerate operation

An insight into the particular difficulties of the degen-
erate situation is gained by considering the fluorescence
spectrum A. As discussed above, the fiuorescence A is
phase insensitive and destroys squeezing. The degenerate
situation corresponds to the center 5=0 of the spectrum,
displayed in Fig. 7. At low intensities I far below satura-
tion the spectrum for a detuned atom is a doublet at the
Rabi frequencies. The fluorescence A at the center is
negligible. As one increases the intensity I towards
saturation, however, the center 5=0 resonance fluores-
cence peak becomes significant. An examination of the
plot of A (Fig. 7) for higher I shows the fluorescence to be
most significant at the center peak, and hence the above-
mentioned difficulties of degenerate four-wave mixing.
The central fluorescence peak has a finite width of order
yi. Thus if one increases the sideband detuning e to or-
ders greater than yi, we may expect the nondegenerate sit-
uation to be less sensitive to the desqueezing effects of
fluorescence (spontaneous emission). However, what is
relevant in determining the detrimental effect to squeezing
of spontaneous emission is the relatiue size of the fluores-
cence A to the four-wave-mixing coupling

~
X(5)

~
(or R)

which is responsible for the squeezing.
Thus it becomes instructive to compare the coupling

X(5) (Fig. 6) with the fluorescent spectrum A (Fig. 7).
This is done for the high-detuning bi ——100 case. As
described above, at high intensities the fluorescence A be-
comes a three-peaked spectrum resembling that of usual
fluorescence. The peaks are at the Rabi frequencies and
the central pump (5=0}frequency, with width —y~. The
coupling spectrum (X(5) ( [or ( R(5) ( ] shows strong
enhancement at the Rabi frequencies, due to the scattering
process depicted in Fig. 3. One sees in the coupling spec-
trum (as compared to the fiuoreseence A spectrum) a still
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quite strong enhancement coupling for frequencies be-

tween the Rabi peaks. Also, the width of the side peaks in
the coupling spectrum is much greater than the width of
the peaks in the fluorescence spectrum. Also, because
X(5) represents a couphng between four photons, there is
not a significant central peak (5=0) as in the fluorescence
A spectrum which relates to emission of single photons.
The coupling spectrum is essentially flat and significant
[X(5)-X(0)-2CI/bi in this region provided hi ~~1] for
regions between the Rabi peaks. Thus one enhances the
four-wave-mixing coupling relative to the desqueezing
fluorescence by increasing the sideband detuning e over
orders of yi so that the fluorescence falls off appreciably
from its central fluorescent peak value.

Thus one may expect to totally saturate the atoms and
yet avoid the desqueezing effects associated with spon-
taneous emission by increasing 5 appropriately. The
consequence of this is that good squeezing becomes possi-
ble at much lower detunings hi, lower cooperativity C
values, and for a wider range of parameters 5, C, I, and P
than is possible in the degenerate situation.

The statistics of the transmitted field is a function not
only of the weak field detuning 5 and pump intensity I [as
described by A, X(5) etc.], but also of the cavity parame-
ters C, the cavity cooperativity, and P the cavity detuning.
Collective effects due to the cavity, for example, are ap-
parent in the intensity spectra illustrated in Fig. 9. To
study the effect of C and P on the squeezing possible, we
consider three different situations corresponding to dif-
ferent choices of ((} as a function of intensity I: (i} no
imaginary components to y(5); (ii) P= —yl(0), the exter-
nal driving field kept approximately resonant with the
dressed cavity; (iii) /=const, the external driving field has
a constant frequency. This is the usual situation of opti-
cal bistability experiments. We discuss these cases
separately.

(i) Perfect phase matching: No imaginary component to
y(5). The simplest situation to consider analytically is
where one has no imaginary component to y(5) and
y( —5). The term yr(5) contributes to the refractive in-
dex for the field at frequency 5, i.e., gives a change in re-
fractive index due to the two-level atomic medium. It is
nonlinear in the pump intensity, including the effect of sa-
turation of the medium. Because of the asymmetry of the
dispersion term yl(5} [i.e., yl(5)~yl( —5)] plotted in Fig.
5, the situation (i) discussed cannot be achieved in the col-
linear cavity configurations depicted in Pigs. 1 and 15.
Such perfect phase matching may be possible however if
one introduces slightly different directions for the ~ vec-
tors of the three fields.

Such considerations are usually more relevant where
one has the three waves propagating through the medium,
with no cavity. This would pertain to experiments of
the type being performed by Bondurant er al. However,
me restrict our attention in this paper to cavity rather
than propagating modes. Thus this situation (i) is not the
most relevant experimentally, and we consider it only be-
cause of its analytical simplicity.

The main considerations in obtaining gmxi squeezing,
for this situation (i), is to obtain sufficient nonlinearity so
that the threshold (instability} is approached while still

avoiding the dephasing effects of absorption ya(5) and
fluorescence A. With the imaginary components of y(5}
zero, the criteria at 5=0 for threshold homes

~
X(0)

~

= I+ya(0). One has stability where
iX(0)

i & I+ya(0).
Figure 10(a) plots the spectrum for squeezing V(Xe,5)

for b, i 100—,—C =250, and for various intensities. This
value for C is low in the sense that to approach the
threshold ~X(0)

~

—1, one needs high pump intensities
I-3000, approaching the saturation intensity I-10 .
Also, the atomic absorption near 5=0[ya(0)
-2C/g-0. 05] is insignificant compared to the cavity
loss. The reader is reminded of the Figs. 4, 6, and 7 illus-
trating the absorption ya(5), coupling X(5), and fluores-
cence A spectra. For intensities of the order I=3000, the
fluorescence at 5=0 is significant and no squeezing is ob-
tained. Upon increasing 5~30, the fluorescence tails off
but the coupling and absorption are flat:
~X(5)

~
-2CI/bf, ya(5)-2C/bi. With both the absorp-

tion and fluorescence being insignificant and the coupling
significant, good squeezing is attained. As one ap-
proaches the Rabi frequency 5~50, however, the squeez-
ing is destroyed. A comparison of Figs. 4, 6, and 7 reveal
that the coupling sidepeak is broader than the absorption
and fluorescence sidepeaks. Thus as 5 & 40, the coupling
increases and a broad region of instability is reached.
Well above the Rabi frequency, the nonlinearity X(5) de-

V(x, )

C =250
(e)

1.0

V(x,) .

t =1100,
(b)

1.0-

3000 3 =3000

FIG. 10. Plots of the squeezing spectrum V(Xg, 5} of the
transmitted field for various pump intensities I: Ignoring the
imaginary component of y(5), i.e., ignoring dispersion: hi ——100.
Dashed curves correspond to unstable solutions. (a} C=250:
The Rabi frequency for I =3000 is 5=63, and for I =5 & 10 is
5=165. (b} C=1100.
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creases and another stable region is obtained. Good
squeezing is obtainable initially but decreases as 5 in-
creases and the nonlinearity falls away. At higher intensi-
ties I, the Rabi frequency increases. The squeezing spec-
trum however shows similar behavior.

The second plot Fig. 10(b) shows the squeezing spec-
trum for a higher C value, C=1100. In this case, the
nonlinearity is significant for lower intensities, I-300.
Here a central 5=0 fluorescence peak is nonexistent, and
the squeezing at 5=0 is linuted only by the absorption
(2C/h, i -0.22). A reasonable amount of squeezing is ob-
tainable at 5=0, for I =300. Since the central fiuores-
cence is not present to destroy squeezing at 5-0, there is
no significant improvement in the squeezing upon increas-
ing the detuning 5. In fact, as 5 approaches the Rabi fre-
quency, the absorption yii increases significantly relative
to X, and destroys the squeezing. The effect of the ab-
sorption peak is particularly pronounced at lower intensi-
ties (see Fig. 4). Stability is maintained since

1+ya (5) &
~
X(5)

~
. As 5 is increased beyond the absorp-

tion Rabi sidepeaks, squeezing improves for a small re-
gime of 5. However, the nonlinearity then tails off, and
squeezing disappears. At higher intensities, the coupling
at 5=0 increases (see Fig. 6) and the solutions are unsta-
ble. Stable solutiohs are possible, at higher intensities,
only by increasing 5 sufficiently to reduce the nonhnear
coupling.

The results discussed above have been presented previ-
ously by Reid and Walls. 49

(ii) P= —yi(0). The second situation we consider is
where the external pump frequency coL is adjusted at vari-
ous intensities so that it is kept approximately resonant
with the nonlinear dressed pump cavity. yi(0) relates to
the change in refractive index term due to the two-level
atomic medium for the pump frequency 5=0. This
would seem to be the most straightforward way of max-
imizing the response of the internal cavity field to the
external driving field.

The squeezing spectrum V(Xs,5) is plotted in Fig. 11.
We see that for 5 much less than the Rabi frequency, the
spectrum yi(5) shown in Fig. 5(c) is relatively fiat. Thus
for this regime of small 5 up to the Rabi frequency, the
imaginary component of y(5) in Eq. (13) is essentially
zero (that is, the pump is close to resonance with the
dressed cavity) and the squeezing is similar to that dis-
cussed above in (i). For example, we see for the case
C =250, I =3000 [Fig. 11(a)] significant improvement in
squeezing by increasing 5 from 5=0 to 5=30 and thus
avoiding the central fiuorescence A peak. As one ap-
proaches the Rabi frequency 5~ ,' (2I+b, t)'~, how—ever,

the term yl(5) differs significantly from yl(0). There are
thus important changes [compared to (i)] in behavior in
the regime of 5 near the Rabi frequency.

At low intensities (I ~ b, i) the absorption becomes large
in the vicinity of the Rabi frequency and the squeezing is
reduced [ V(X&,b, )~l] upon approaching the Rabi fre-
quency [as in (i)]. However, comparison of Figs. 11 and
10 reveal that the variance V is not so great when the
dispersion is included, tending toward the coherent value
obtained with no medium. Also, the region of instability
about the Rabi frequency has narrowed. At higher 5, the
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V(x&)„~o s=a

C

c=250

'0
1

3x104

C =1100
(dI

p

&J

100

00

FIG. 11. Transmitted squeezing V(Xq, 5) vyhere the cavity
detuning P is such that approximate resonance is maintained at
all intensities between the external pump and the nonlinear cavi-

ty, P= —yl(0). Dashed curves are unstable regions h~ ——100.
Plots of V(X~,5) versus 5 for various I: (a) C =250: The Rabi
frequency for I=3000 is 5=63 and for I=5&10 is 5=165.
(b) C=1100. Plots of V(Xg, 8) versus I for various 5: (c)
C=250, (d) C =1100.
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various 5). It is apparent from these plots that nondegen-
erate four-wave mixing is particularly advantageous for
the low-C situation [C =250, Fig. 11(c)]where significant
improvement in squeezing is possible at lower intensities I
(and thus for lower 5 values, (5~ &

~

b, i ~

/2). This is
compared to the result for higher C values [C =1100,
Fig. 11(d)] where nondegenerate four-wave mixing is ad-
vantageous only at very high intensities, well above the sa-
turation intensity (and thus for high-5 values). This point
has been made in Ref. 49.

(iii) P constant T.he alternative situation we consider is
where the driving field is kept at a constant frequency,
i.e., the cavity detuning P is fixed at a constant. We study
two possibilities: firstly where P-2C/b, i and secondly

P =0. The situation of fixed P corresponds to that of usu-
al optical bistability (Fig. 1).

P-2C/hi. Here we are selecting the external driving
field to be approximately in resonance with the linear or
low intensity dressed pump cavity. The term yI(0} is of
the order 2C/b, i for low intensities I well below the
saturation intensity. Thus the squeezing spectrum for
P-2C/b, i at low intensities I [Fig. 12(a)] coincides with
that of (ii) P= —yi(0) (Fig. 11). The best squeezing
occurs near 5=0 and is diminished approaching and
beyond the Rabi frequencies.

At higher intensities approaching and exceeding the
saturation intensity [Fi~. 12(c)], there is a distinction be-
tween yI(0) and 2C/b, i and thus a considerable detuning
between dressed cavity and pump. The spectrum is no
longer that of P= —yI(0). At 5=0 the squeezing spec-
trum reflects the central fluorescence peak. Upon increas-
ing 5 beyond this peak, however, the squeezing does not
improve as readily as in the example (ii) where
P= —yi(0) and where the driving field is resonant with
the dressed cavity. The detuning between driving field
and cavity reduces the squeezing possible. Upon ap-
proaching the Rabi sidepeak of the coupling spectrum
X(5), the squeezing improves more significantly.

Regimes of instability appear at or beyond the Rabi fre-
quency. As 5 increases beyond the coupling sidepeak, the
squeezing drops sharply. Thus we have narrow squeezing
peaks centered at the Rabi frequency. The best squeezing
obtainable at these higher intensities is less than that pos-
sible in the case (ii) discussed above where the driving
field is resonant with the pump cavity.

Figure 12(d) plots the squeezing as a function of inten-
sity I for C =1100. For 5=0 there is an intermediate re-
gime of I for which instability appears. In fact, this situ-
ation shows optical bistability of the intracavity intensity
I with the external driving field intensity. The lower
stable intensity regime of I corresponds to the lower
branch of the optical bistability curve and the higher
stable I values to the upper branch. As discussed previ-
ously in Sec. VA, P-2C/b, i represents the transition to
bistable behavior for the pump mode. As P decreases, bi-
stability is more pronounced but one requires higher in-
tensities I to reach the unstable regime. Figure 12(d) il-
lustrates that the squeezing at higher 5 corresponds to the
upper branch of the bistability curve.

Figures 12(a), 12(b}, and 12(c) illustrate not only the
squeezing spectrum but also the intensity spectrum

variance remains close to the coherent limit

[ V(Xs,5)~1],the nonlinearity reducing.
At higher intensities I (at least of the order of the

saturation intensity I =hi) there is the possibility of good
squeezing for large stable regions of 5 near the Rabi fre-
quency 5= —,

' (2I +b, i)'~ . The orders of magnitude of the
absorption (or gain) y»(5) and dispersion yI(5) terms
drop off more quickly with increasing intensity than the
coupling ~X(5) ~. The presence of the yI(5) results in
much smaller {sometimes nonexistent) regions of instabili-
ty about the Rabi frequency, compared to case (i) in the
preceding. Figure 11 illustrates this feature of good
squeezing possible at very high intensities well above
saturation and for sufficient detuning 5. One can also ob-
tain in principle good squeezing for the situation of very
high-C values (C =8000} provided the intensity I (and
thus 5) is increased sufficiently. The higher intensities are
necessary to reduce (through saturation) the absorption
y»(5) sufficientl~. Squeezing is not significant in these
high-C (2C &b, i) examples for low intensities below
saturation levels (I & g) because of the then dominance
of atomic absorption y»(5) -2C/b, i. Since high-I values
are involved to get the good squeezing, however, it would
appear more practical to employ lower C values. This is
provided sufficient nonlinear coupling X(5) can be ob-
tained before the onset of saturation.

For the high intensity examples, it is possible to get
good squeezing precisely at the Rabi frequency (provided
the solution is stable}. B is thus interesting to compare
the various terms y»(5}, yI(5), X(5},R, and A in this re-
gion where there is good squeezing. As one approaches
the Rabi frequency, one fmds the medium is acting as the
ideal four-wave mixer described by Hamiltonians (34) and
(22}, i.e., the nonlinear coupling X(5) and R are significant
[compared to the cavity loss —~X(5)

~

—1)] and almost
pure imaginary, while the absorption and fluorescence
terms are relatively small. This is possible because of the
broader widths of the coupling sidepeaks as compared to
the fluorescent sidepeaks A, X», and R». Precisely at the
Rabi frequencies, however, the terms A, R», y», yI, and
X» are the same order of magnitude as RI,XI The.
behavior of the two-level atom at the Rabi frequency is no
longer that of the dispersive ideal four-wave mixer [Ham-
iltonian (22}]. Yet excellent squeezing is predicted possi-
ble at the Rabi frequencies for a two-level atom for atoms
well saturated. This is an interesting example of phase-
sensitive fluorescence. We conclude that the atomic
fluorescence transmitted through the cavity at high inten-
sities is phase insensitive (destroys squeezing) at the center
peak but phase sensitive at the side peaks. This is not
surprising in physical terms in view of the strong
enhancement of coupling possible between sidemodes de-
tuned from the pump by the Rabi frequency [Fig. 3{b)].
There is resonance with the energy levels of the dressed
atom and the process is thus different from the dispersive
processes [for example, Hamiltonians (22} and (34}] nor-
mally considered for squeezing. The real components X»,
R», and y» becoming significant and playing an impor-
tant role in the squeezing.

Figures 11(c} and 11(d} illustrate the squeezing spec-
trum V(Xe,5) versus the intracavity pump intensity I (for



34

Ia) (b)

52& intensity

200
0-
-200 200

Lp~r 'branrh
Y(Xe) pump unstable

1.0

(d)
&Upper brunt:h Y(x,)

\

I
I

I
II

00 -200

I

I

(

(

I S2)

Intensity

(

I

I

I

(

I

) $p)
l
I

FIG. 12. The transmitted squeezing V(Xa, 5) for fixed cavity detuning P chosen so that the external pump is near resonance with
the cavity at low intensities I insufficient to saturate the atoms. b

&

——100, C =1100,P =19. The transmitted squeezing V(Xa, 5) and
intensity Sq~(5)/I spectra: (a) I=100: low intensity corresponding to the lower branch of the bistability curve for the pump mode.
{b) I =3000: moderate intensity corresponding to the upper branch of the bistability curve, but near to the region of instability. (c}
I =5 X 10: high intensity corresponding to upper branch of the bistability curve for the pump, and atoms well saturated. (d) Squeez-
ing V(Xa,5) versus the intracavity pump intensity in units of the saturation intensity I,= 6& ——10'. / =18.

S(z(5), for various intensities. The plot for high intensity
I=5 X 10 corresponds to well above the region of bista-
bility, on the upper branch. We see that the intensity
spectrum for the saturated atoms is three peaked similar
to that of usual resonance fluorescence: a center peak and
two Rabi sidepeaks at the Rabi frequencies. Comparison
with the squeezing spectrum show it too is three peaked:
the center peak destroys the squeezing and the Rabi
sidepeaks are squeezed peaks. The squeezing is destroyed
at the center peak due to the dephasing central resonance
fluorescenc peak and is enhanced at the sidepeaks due to
the enhancement of four-wave-mixing coupling. At such
high intensities, the atoms are vrell saturated and do not
exhibit collective effects possible at lower intensities. We
point out also that the intensity spectra calculated here are
similar to transmitted spectra calculated from a single-
mode low-g (yj ~~a) cavity.

The intensity is reduced in Fig. 12(b) to I =3000, corre-
sponding to the upper branch but closer to the region of
instability. The intensity sidepeaks now move in closer to
the center peak. These peaks coincide to the peaks (or
dips) in the squeezing spectrum. This shifting of the

sidepeaks has been observed in the low-Q cavity intensity
and is, along with other features such as linewidth nar-
rowing near the instable region, a cooperative effect possi-
ble where one has many atoms.

In Fig. 12(a) we reduce the intensity further, to a point
on the lower branch. The intensity spectrum becomes a
doublet. The intensity and squeezing spectrum now have
no center peak, the central fluorescence A peak vanishes
at low intensities. Hence a&hen looking at the squeezing
spectrum for low I, we see no significant reduction in
squeezing for 5=0. The nondegenerate and degenerate re-
sults are thus much the same in this low intensity regime.
At such low intensities the nonlinearity ~X(5)

~
of the

cavity is reduced [ ~X(5)
~

&1) and the squeezing is also
reduced.

We notice that the widths of the squeezing and intensi-
ty peaks for this case of P-2C/b, i are relatively narrow
compared to spectral shape possible for P =—yl(0) and is
determined essentially by the width of the coupling Rabi
sidepeak (Fig. 6). Also, the best squeezing is obtained for
this case of P-2C/5i at low intensities less than the
saturation intensity (I & hi). This is not surprising given



M TH++R~ GF NONDEGPNPRA fF FQUR-WAVE MIXING

that the choice of P brings the driving field closer to the
resonance with the linear pump cavity and is out of re.u-
nance at higher intensities saturating the atoms.

&2C/b, t, $~0. It is possible to broaden the width
of the s ueezing peaks and obtain better squeezing ato t e squeez
higher intensities I & ht by decreasing ~&.

'
pe

2
~&. The dis rsive

term yl (5) decreases for such high intensities and thus by
decreasing p wc rlnbring the driving field closer to resonance
with the nonlinear dressed high intensity cavity.

These effects are shown in Figs. 13. The squeezing is
as expected reduced for lower intensities below the satura-
tion intensity ~ ~, uI 6 but improved for higher intensities
I ~ b). As $~0 [Fig. 13(b)], the intensity at which best

and the squeezing obtainable, increases.squcczlng occurs~ an
Since the intensities are wc11 above saturation .eve s, e

(5) becomes neg»gible apart
resonances at the Rabi frequencies. Good squeezing is

'bl h because the absorption term (Fig. 4) is more
Fi . 6).sensitive to saturation than the coupling term ( ig.

The squeezing spectrum for /=0 [Fig. 13(b}] or the
high intensities is thus similar to that obtained at high in-

f (()= —yl(0} [Fig. 11(b)]. We see [as was the
case in P = —i(0)] in Fig. 13(b) for (()=0 that very good
squeezing is possible at high intensities saturating the
atoms for stable regimes near the Rabi frequency. Also
plotted in Fig. 13(b} is the intensity spectrum showing
again a cth t the squeezing peaks coincide with the intensity
S1 CP S. g
'd eak Fi ure 13(c) plots the squeezing spectrum or
I =5)&10" and for various P at the lower C value
We see how the width of the squeezing peak has
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broadened on decreasing P, due to the greater range 5 for
which the driving field is approximately resonant with the
dressed cavity.

Comparison of Figs. 13(b) and 13(c}illustrate that one
can increase the cooperativity or C value (and hence the
linear atomic absorption at 5=0}and still obtain excellent
squeezing. However greater intensities (well above satura-
tion) are needed in order to reduce the absorption ya(5)
sufficiently. The excellent squeezing becomes possible for
P-0 (to bring the cavity into resonance) and in the re-
gime of 5 around the Rabi frequency 5- —,'(2I+hi)'~ .
For example, with C =8000 and P-2C/hi ——150, only a
small amount of squeezing is possible [Fig. 13(e)]. Yet ex-
cellent squeezing is possible for C=8000, /=0 and
I= 10 [Fig. 13(f)]. It is pointed out and is apparent from
Fig. 13(d) that the excellent squeezing does occur for an
optimal range of intensity I. Increasing I beyond this
range will result in further saturation of the nonlinear
coupling term g(5) until it becomes small compared to
the linearity of the cavity [i.e., ( X(5) ) && 1].

Another implication of nondegenerate four-wave mix-
ing is that one can attain good squeezing at much lower
atomic detunings 6i and hence much lower C and I
values. The squeezing spectrum is plotted in Fig. 14 for
an atomic detuning hi ——4. The first plot 14(a} is for suf-
ficient cooperativity C =20 that the pump mode is clearly
bistable. The intensity I=10 corresponds to the lower
branch and I=500 to the upper branch. The intensity
spectra are also plotted, showing transition from a single
broiider peak at the low intensity to the three-peaked trip-

S~ intensity

let at the higher intensity. For the higher intensity where
atoms are well saturated, significant squeezing is obtain-
able at the sidepeaks, even for this low value of atomic de-
tuning. We note significant increase in noise (well above
the coherent level) corresponding to the central fiuores-
cence peak.

The second plot 14(b) is for a much lower C value
(C=5}, not quite sufficient to enable bistability of the
pump. We see still significant squeezing obtainable at the
Rabi sidepeaks for well-saturated atoms. This is analo-
gous to the situation C =250 in the case 6& ——100 dis-
cussed in the pro:eding. Lowering the cooperativity value
C much further, however, significantly reduces the non-
linearity, and hence the squeezing obtainable before the
onset of saturation.

VI. COMPARISON OF EXPERIMENTAL
OBSERUATIONS OF SQUEEZING WITH THEORY

The recent work of Slusher et al. ' has reported the ex-
perimental observation of squeezed light. In this section
we make a comparison of the experiment with the theory
presented in this paper, making clear approximations cal-
culated.

The experiment (Fig. 15) utilizes a nondegenerate four-
wave-mixing scheme with an atomic beam of sodium as
the nonlinear mixing medium. A laser field at frequency
r0L is injected into a pump cavity of resonance frequency
roi and forms an intracavity pump mode. The pump laser
is tuned near the sodium Di resonance coo. Shifted at a
small angle to the pump cavity is a second single-port
squeezing cavity with two sideband cavity modes separat-
ed in frequency from the pump cavity mode co& by +hco.
Mixing of the pump and the sideband modes occurs via
the nonlinear medium and squeezing is observed in the
output of the squeezing cavity near the sideband frequen-
cies col. +Leo.

A useful model for the sodium is a two-level atom with
resonance frequency coo. A quantum-mechanical theory
of the two-level atomic medium which calculates the
squeezing in the output cavity field, for nondegenerate
four-wave mixing, is presented above. The calculations
apply to a high-Q ring cavity. The approximation is
made that one can neglect spatial fiuctuations and this is
assumed valid for highly refiecting cavity mirrors. A

V(x, )

4)o

FIG. 14. Good squeezing is possible for low atomic detun-
ings: h~ ——4, &=0. (a) C =20, (b) C=5.

FIG. 15. Diagram of nondegenerate four-wave mixing in a
standing-wave cavity.
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modification of the results above for the ring cavity is
made to better describe the standing-wave cavity mode of
the Slusher et al. experiment. We take the simplest mode
function [uJ(r)=V'2/V sin(kj r); j=1,2, 3, and where V
is the cavity volume] and calculate averages over the
standing-@rave phase.

For example, the equation (13a) for the pump
standing-crave cavity mode is rewritten

2lciCiai u i(r)
ai ——E —xi(1+i/i)ai d r

1+id) v II(0)

~E —«i(1+if) )ai

(F,(t)F,(t') }=«Re '5(t —t'),
(F (t)F (t'))=~A 5(t t—') (m =1,2),

A = f iu (r)i Adr,
R = f i u2(r)us(r)iR d r .

The quantities ya(5), . . . , A, R have the same functional
form as yti(5), . . . , A, R defined in Eqs. (15) but with

a)~aiu)(r), i.e., I~I(1+cos8). With the assumption
that k2-ks-ki, these integrals may be simplified to the
orm

where

~ 1+cos8
(1+ihi)no . II(0)

I iui(r) iII(0)=1+ 2 ~1+ i (1+cos8),
1+hi 1+6 i

a2 ———«[I+iP+ytt (5}+iyt(5)]+aX(5)a3+F2(t),

a3 tt[1+t0+}R( »+—&7't( »]-
+itX( —5)a,+F,(t),

where, for example,

(38)

and the correlations of the noise terms F(t) are given by
Eq. (14}with 5=0 but replacing

1A-+ —f (1+cos8)A d8,

R ~— 1+cos8 8 8,

R and A have the functional forms of R and A of (15}but
replacing I with I(1+cos8). We now need to distinguish
between the pump and sideband cavities and hence the no-
tation «i and Ci gE/yea——i to describe the pump cavity
relaxation rate and cooperativity parameter, respectively.
The integral may be evaluated for the deterministic part
of the equation to give a standing-wave deterministic
equation

ai E «,(1+i4——, )a,—
2CIK~A~

I (1—ib, i) 1 —1

m'

yti(5}=—f (1+cos8)yt((5)d8,

and similarly for y;(5},. . . . Although an analytical ex-
pression for these averages is possible, it was found more
convenient to evaluate the integrals numerically.

A comparison of standing-wave versus ring cavity re-
sults for squeezing is illustrated in Fig. 16. Essentially,
the nonlinearity increases more significantly at lower in-
tensities for a standing-wave cavity, and, hence the better
squeezing at lower intensities. We notice from the degen-
erate 5=0 situation that the desqueezing effect of fluores-
cence as one increases the pump intensity is more signifi-
cant in the standing-wave cavity. This is exemplified in
conditions derived by Reid and Walls to avoid s ontane-
ous emission in the degenerate situation: 10I /b « 1 for
the standing-wave cavity2 as compared to I /b, ) «1 for
a ring cavity.

The theory has assumed a high-Q cavity in a stricter
sense than that needed to neglect spatial fluctuations. The

(36)

The noise term averages for 5=0 have been presented by
Reid and %alls. ~

Similarly equations for the sideband modes may be
rvritten

V(x,)«

ai —(«1 i+/)a&-—

+«ai f i
ui(r)

i [ytt(5)+iyt(5)]d r

+«e 'as f u 3 (r)u2 (r)X(5)d r +F2(t),

as ———«(1+i/)a3

+«s f„ I »(r)
I
'[T'~( 5)+tT't( »ld—'r—

+«e
'

a2 f u3 (r)ui (r)X( 5)d r +Fs(t) .—

The nonzero noise correlations are written [compare Eq.
(14)]

FKJ. 16. Squeezing V(Xg, 5} comparison for a ring cavity
(R) and a standing-wave cavity (SS'): hl ———300, C=750.
5=40 is believed to correspond to the experiment (Ref. 12). Re-
gion marked by arrows corresponds to I/I, =0.02, where

I,=g is the saturation intensity. We have sele:ted (() =—yl(5)
so that approximate resonance is obtained between the external
laser and the nonlinear pump cavity.
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atomic variables have been adiabatically eliminated under
the high-Q cavity assumption «« yi. Figure 17 plots the
best squeezing possible, for the optimal phase quadrature
8„ in the output field at the sidebands for a perfectly
high-Q cavity. The spectrum of squeezing about the side-
band frequency in such a high-Q cavity (««yi) is essen-
tially a negative I.orentzian (width «) and the best squeez-
ing is usually obtained at the center (sideband} frequency.
We stress that this may not be the case in the experiment
where «-yi and the high-Q cavity (adiabatic ehmination
of atomic variables) assumption does not hold. The best
squeezing in this case «-yi for the resonant mode 5=0
is not necessarily at the center frequency. s' An analysis
of the spectrum of squeezing at the sideband frequencies
without making the adiabatic elimination assumption is
thus required and is presently in progress.

However, the results presented in Fig. 17 for the output
sideband frequency from a high-Q cavity can still give us
an insight into the spontaneous emission limits to squeez-
ing for the experiment. This is particularly in view of the
fact that recent work ' on comparison of high- Q and
low-Q cavities reveal results for the squeezing at the
center of the spectrum (i.e., precisely at the frequency
c0L, +e) to be insensitive to the adiabatic ehmination ap-
proximation.

The plot Fig. 17 is the squeezing versus the intracavity
pump intensity (in units of the saturation intensity
I, -bi), for the following values currently believed to
correspond to the Slusher experiment: 6 i

———300,
C =750, 5=40. The several values of cavity detuning P
[(ii) and (iii}] discussed in the preceding Sec. V are plott&.
The curve / =pe ———yt(5) is for the pump laser readjust-
ed in frequency at each intensity so that it is approximate-
ly resonant with the dressed pump cavity at all intensities
It thus accounts for the nonlinear refractive index term
yt(5). This is believed to best correspond to the experi-
ment. Being on resonance with the cavity, this value of
cavity detuning allows good squeezing at the lowest possi-
ble intensity I, and good squeezing is maintained at
higher intensities. Also plotted is the squeezing curve for
a fixed cavity detuning P-2C/hi, corresponding to ad-
justment of the pump frequency to take into account the

S=O, (1= iI&

0.5

0—
0

1 /ls
FIG. 17. Squeezing V(Xq, 5) for parameters h, I

———300,
C=750. 5=40 is believed to correspond to the experiment
(Ref. 12). Versus intensity I in units of the saturation intensity
I,=b i ——9X 104. Various values of P are selected.

A = —}'1(~).

linear refractive index 2C/6i of the medium. The
squeezing is reduced at higher intensities for this situation
as the detuning between cavity and pump increases. The
range of intensity giving good squeezing is narrower at
the choice P-2C/b i. Also plotted is the squeezing for a
cavity detuning /=0. The squeezing is reduced (com-

pared to the case P-2C/hi) at low intensities, because of
the detuning between cavity and driving field. However,
at higher intensities saturating the atoms, the dispersive
response yt(5) decreases and the cavity moves back into
resonance with the driving field. Thus the squeezing im-

proves for this case /=0 at higher intensities. These ef-

fects have been well discussed in the preceding Sec. V.
The key feature to be noted from the result Fig. 17,

concerns the spontaneous emission limit to squeezing for
the nondegenerate 5=40 situation. We have calculated as
a comparison the squeezing predicted for degenerate 5=0
four-wave mixing. We see that the best squeezing then

occurs at lower intensities I and is reduced compared to
the nondegenerate situation. This is because of the in-

crease in the fluorescence at 5=0 as one increases the

pump intensity. This is not the case for the nondegen-

erate situation 5=40 corresponding to the experiment, be-

cause we are several atomic linewidths detuned from the
central pump frequency. Thus, considerably more squeez-

ing is attainable in principle in the nondegenerate scheme

by further increasing the pump intensity and thus the
nonlinearity of the cavity.

The present Slusher et al. experiment is operating in a
regime of very low intensity (I/I, -0.02) (Fig. 16). We
notice that there is less difference between degenerate and

nondegenerate predictions in regimes of low intensity than
in the higher intensity regimes. In fact, a theory based on
the degenerate 5=0 noise terms derived by Reid and
Walls has been presented by Klauder et al "for the. ex-

periment, and includes additional effects such as phase ji-
tter. It shows quite reasonable agreement with the present
experiment. A theory based on degenerate 5=0 noise

terms, however, would wrongly indicate that fluorescence
kills the squeezing at even moderate intensities. We also
note that in this present experimental regime of very low
nonlinearity, the degenerate situation 5=0 gives better
squeezing than the nondegenerate 5=40, for the particu-
lar value of intensity I/I, -0.02 [see Fig. 11(b), I=300].

We make a final comment concerning the role of the
pump in determining the squeezing generated from the
squeezing cavity. From Eqs. (37), we see that the relevant

pump parameters are the intensity I at the medium, and
the detuning P between the pump laser of frequency col
and the central resonant mode cubi of the squeezing cavity.
It is the frequency of the laser coL, which is relevant since
this determines the frequency for the medium polarization
ut [Eq. (7)]. The results given above for the squeezing
generated from the squeezing cavity thus may also apply
to the situation where one has no pump cavity but simply
a pump laser of frequency roL pumping the medium.

VII. CONCLUSION

We have presented a quantum theory of nondegenerate
four-wave mixing via S two-level atoms in a single-port
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cavity. The pump cavity is driven by an external driving
field detuned from the cavity by P (in units of the cavity
relaxation rate a) and forms a steady-state intracavity
pump intensity I (in units of the resonant saturation in-

tensity for the medium). The external pump field is de-
tuned 6i atomic linewidths from the atomic resonance.
We assume pure radiative damping. The four-wave mix-
ing occurs between the pump mode and two sideband
modes separated in frequency from the pump by +5, in
units of the longitudinal relaxation rate for the two-level
atom.

We have calculated the squeezing in the steady-state
transmitted field external to the cavity at the sidebands
under the assumption of a high-Q cavity where the atoms
relax much more quickly than the fleld (yi, y~~ &&a) and
the variables may be adiabatically eliminated. The solu-
tion is valid for regimes where the zero deterministic
steady-state solution for the sidemode amplitudes is
stable. Although the deterministic steady-state solution is
zero, intensity builds up in the sidemodes because of spon-
taneous emission. Our theory assumes small intensity
fluctuations and is linear in the sidemode amplitudes, not
taking into account any feedback effects of the sideband
intensity on the pump.

Our aim has been to study possibilities for optimizing
squeezing via nondegenerate four-wave mixing. The two-
level atom provides the nonlinear coupling X(5) between
the three modes and that which squeezes the light. The
squeezing becomes significant as the nonlineuity of the
cavity increases [1X(5)1—1) so that threshold is ap-
proached. However, the medium also absorbs radiation
yx(5) and induces a phase-insensitive fluorescence radia-
tion A. The absorption yet(5) and fluorescence A are
phase insensitive thus tending in general to destroy the
squeezing generated via the phase-sensitive couphng pro-
cess X(5}. In addition, there is the dispersive response of
the medium yr(5) which introduces a change in the
resonant frequency of the nonlinear dressed cavity. Signi-
ficant detuning between the external pump field and the
nonlinear dressed cavity will tend to decrease the effective
nonlinearity and hence the squeezing. We require, for ex-

ample, greater 1X(5)1 to obtain threshold [for example,
the threshold condition at 5=0 becomes 1X(0)

1=
I y(o)11.

The spectra X(5),A, yii (5),yr(5), . . . , have been calcu-
lated and discussed in some detail. There are four distinc-
tive regimes: 5=0 corresponding to degenerate four-wave
mixing; a sideband detuning of several atomic linewidths
but less than the Rabi frequency —,

' (2I+b, i)'/; the re-

gime 5 at the Rabi frequency; and 5 well beyond the Rabi
frequency. We have considered in some detail the case of
h~ ——100, a well-detuned atom, and revise the major
features of the various spectra.

The coupling spectrum X(5) [Fig. 6(c}] shows broad
peaks at the Rabi frequencies 5=+

2 (2I+hi)'~2 and rel-

atively flat rejmes of significant coupling I X(0)
-2CI/b i(1+6 i)[1+I/(1+ hi)] J between the Rabi fre-
quencies. The enhancement of the coupling at the Rabi
frequencies is particularly significant at higher intensities
and is understood by the coupling process depicted in Fig.
3. Beyond the Rabi frequencies the coupling decreases.

The magnitude of the coupling is small at low intensities
but increases with increasing intensit~, reaching a max-
imum at the saturation intensity I-h~, and then decreas-
ing as the medium continues to saturate. The absorption
yii(5) and dispersion yi(5) have nonzero linear com-
ponents and are thus significant at low intensities I, e.g.,
yii(0) =2C/(I+ 6 i)[1+I/(I+hi)] and yI(0)
= —2Cb i/(1+hi)[1+I(1++)] . At low intensities
the absorption [Fig. 4(c)) shows a large absorption peak at
the Rabi frequency coinciding with the atomic resonance.
This absorption tends to destroy squeezing. The absorp-
tion, however, saturates more readily than the coupling
and becomes insignificant (provided one is away from the
narrow resonances at the Rabi frequencies) at intensities
above the saturation intensity I, -b i. We notice at such
high intensities that the absorption profile shows absorp-
tion at the Rabi frequency closest to the atomic resonance
coo but gain at the other Rabi frequency. This gain results
also from the resonant process depicted in Fig. 3(b) cou-

pling sidebands detuned at the Rabi frequencies
+ —,'(2I+hi)'~2. The resonant coupling process generates

good squeezing at the Rabi frequencies for intensities
saturating the atoms.

At such higher intensities the fluorescence A increases
(Fig. 7). It is at these higher intensities saturating the
atoms that nondegenerate four-wave mixing is clearly ad-

vantagixius. The fluorescence spectrum then has three
peaks positioned at 5=0+ —,

'
(2I + hi)' . There is a signi-

ficant central peak at 5=0. This is in contrast to the cou-
pling spectrum which has no significant central peak. Be-
cause of the central fluorescence peak, degenerate four-
wave mixing 5=0 is not so suitable for generation of
squeezed light.

The fluorescence spectrum A, however, reduces signifi-
cantly between peaks, as compared to the coupling. Thus,
by increasing the sideband detuning over several orders of
atomic linewidth (5&2), dominance of the coupling be-

comes possible. Good squeezing is then possible provided
the coupling is sufficient in absolute terms and that the
absolute absorption and detuning of the external driving
field from the nonlinear cavity is insignificant (Fig. 11).
At sufficiently high intensities I & b, i well above satura-
tion the absorption and dispersive terms are indeed small.
One obtains approximate resonance of the driving field
with the nonlinear cavity for all intensities by setting the
cavity detuning P= —yr(0). For the high intensities we
are considering, however, yr(5) becomes very small as the
medium saturates and one can obtain good squeezing for
$~0 [Fig. 13(b)].

As the sideband detuning increases to approach the
Rabi frequency [5—+ —,'(2I+bi)'~ ], the broad coupling

peak is encountered first and coupling increases, thus in-

creasing the squeezing. The behavior of the two-level
atom in this regime of 0«5& —,

' (2I+hi)', such that
absorption y~(5} is small but coupling X(5}significant, is
like that of the dispersive ideal squeezer (22}. Increasing 5
further to coincide with the Rabi frequency 5
= —,

' (2I +b i )', one encounters the narrow (width -y j )

resonant peaks of the spectra yx(5), Xs(5), A, etc. The
behavior of the atomic medium is no longer that of a
dispersive medium. Good squeezing is possible ho~ever
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[Figs. 13(f) and 14] because of the resonant process depict-
ed ln Fig. 3(b). This ls Ilot tllle at lower intetlsltles below
saturation [Fig. 3(a)] where loss is still important and in-
creases significantly at the Rabi frequency destroying the
squeezing (Fig. 11). In many cases, however, the increase
in coupling near the Rabi frequency results in instability
where our theory no longer holds. %ell beyond the Rabi
frequency the nonlinear coupling and thus the squeezing
diminishes.

Good squeezing is possible for a broad range of cavity
cooperativity C values provided one increases the intensity
sufficiently. Lower C values (2C «b, , ) require high in-
tensities to attain sufficien nonlinearity, but this is no dif-
ficulty providing one can increase the sidemode detuning
5 to avoid the central fluorescence peak [Fig. 11(a)].
Lowering the C value too much, however, will reduce the
nonlinearity and hence the squeezing obtainable before
saturation sets in. For higher C values (2C.~b, , ) it is
possible to attain significant nonlinearity with lower in-
tensities (below saturation). The absorption ya, however,
is increased and tends to reduce the squeezing possible
[Fig. 13(e)]. However, the absorption profile saturates
more readily than the coupling. Thus it is possible to ob-
tain good squeezing by increasing the intensity sufficient-
ly (well above saturation) to saturate the absorption, while
still maintaining sufficient nonlinearity [Fig. 13(f)].

We have studied in this paper the effect of enhanced
coupling between sideband modes detuned from the cen-
tral pump mode by frequencies approaching the Rabi fre-
quencies in a two-level atomic medium. %e have shown
how phase-insensitive atomic fluorescence is minimized
provided one can look for squeezing in a sideband mode
detuned several atomic linewidths from the central pump

mode. In a limiting high-Q cavity (tt«yi, y~~) such as

considered here, the width of the transmitted spectrum of
the external central pump (5=0) is determined by the
cavity linewidth x and is thus always within the central
fluorescence peak. Hence we are required to look at adja-
cent cavity modes. In a low-Q cavity (tt&&yi, y~~), how-
ever, the transmitted spectrum of the central pump mode
broadens until determined by the atomic linewidth y&.
Thus the effects described in this paper can also be ob-
served in the transmitted field of a single mode low-Q
cavity. The results for this case are discussed in Ref. 51.
The limiting "low-Q" (yi « tt) cavity has identical out-
put. squeezing spectra to those presented here.

Our work indicates that by saturating the atoms in a
nondegenerate four-wave mixing scheme one can avoid
spontaneous emission due to the atoms and yet maintain
sufficient four-wave-mixing coupling to produce good
squeezing in the transmitted light. This is possible for a
broad range of cavity cooperativity C values and
sidemode detunings 5. Good squeezing is possible at low
atomic detunings (b, i-4) for 5 corresponding to the Rabi
frequencies and at intensities sufficient to saturate the
atoms. Although squeezing is best achieved in general by
keeping the external pump approximately resonant with
the nonlinear pump cavity [P= —yt(0)], good squeezing
is still possible in the vicinity of the Rabi sidepeaks for
fixed P not quite resonant, in particular for /=0 at high
intensities. It ~ould seem that good squeezing is possible
for a wide range of cavity situations.
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