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A model of a coupled atom —quantum-field system is presented, consisting of a time-independent
Hamiltonian and a realistic dynamical initial condition. The Hamiltonian describes a fixed bound
atom coupled to the complete electromagnetic field. The initial condition is a consistent quantum-
mechanical description of an atom in the exact ground state of the coupled atom-field system, on
which is superimposed an approaching quasiclassical excitation of the field which will cause the in-

teresting dynamical processes later on. Tools are presented for the manipulation of this model, with

emphasis towards series expansions of all relevant quantities suitable for small strength X of the
atom-field couphng and (potentially) large magnitude a of the coherent field excitation, such that
the influence of the coherent excitation on the atom" (i.e., the product 4z) remains constant as ~
tends to zero. The following results are obtained, at the lowest nontrivial order in A, , in an approxi-
mation suitable for times much shorter than any radiative lifetime of the atom: (a) The change in

free-field energy due to the interaction with the atom is exactly compensated at all times by the
change in bare-atom energy plus the atom-field coupling energy. This checks the consistency of the
proposed scheme. (b) The frequency distribution of this change in free-field energy has a (somewhat
unexpected) component, with a smooth spectrum, spreading over the whole width of the spectrum of
the exciting pulse, in addition to 5 and dispersive singularities centered on the atomic transition fre-
quencies. This frequency distribution is discussed in detail and its features are illustrated by a num-

ber of figures, in a simple case, numerically tractable. (c) The heterodyne detection of the radiation
emitted by the atom is investigated, with emphasis on the issue of causality and propagation of light.
Strict causality is obtained, without further approximation, in a model with an atom-field coupling
involving the field at a single point and a detector similarly sensitive to properties of the field at a
single point. This result breaks down if one uses nonlocal approximations such as the rotating-wave
approximation or a detection observable E (r) E+(r). Finally, an appendix is devoted to the use, in

quantum mechanics, of bases moving with respect to each other.

I. INTRODUCTION

Time-dependent quantum theory is still far from being
as well understood and developed as the quantum theory
of stationary situations. This reflects the formidable diffi-
culty of dynamics in general (particularly for systems in-
volving a field and/or a large number of particles), and
also the scarcity of time-dependent experimental results
requiring precise quantum theory for their interpretation.
Even such a basic and apparently simple model as the in-
teraction of a fixed bound (i.e., not ionized) atom with the
quantized electromagnetic field presents considerable dif-
ficulties when one undertakes to predict its dynamical
behavior entirely from the exact quantum equations of
motion.

A first source of problems is the initial condition for
which no satisfactory general solution is available. For
instance, (a) assuming the irradiation of the atom station-
ary for a long time (i.e., removing the problem att~ —ao } is not directly compatible with the study of the
decay of an excited state by spontaneous emission, (b}
turning on the atom-field interaction adiabatically does
not fare better, and (c) approximations like "the atom in a

bare excited state and the field in its ground state at
t =to" are very rough descriptions of any realistic situa-
tion and do not correspond to any physically plausible
past for t (to.

A second source of problems is particularly acute when
one deals with irradiation pulses of high intensity; either
one describes the field classically with the advantage that
the corresponding Bloch equations for the atom easily
predict the strongly nonlinear short-time response, and the
major drawback that radiative effects (such as spontane-
ous emission) are absent from such a model in which they
can only be simulated by the ad hoc incorporation of
phenomenological damping terms, or one uses a properly
quantized description of the field and faces serious diffi-
culties in discussing the strongly nonlinear behavior of the
atom by time-dependent perturbation techniques (even for
short times}.

A third source of problems, of a more fundamental
type, arises in the discussion of the long-time behavior.
For instance, little is known, entirely from first principles,
about the asymptotic situation of a coupled atom-field
system with persistent irradiation or the transient ap-
proach to it. Even in the absence of irradiation, the stan-
dard solution is still the approximation proposed by
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Weisskopf and Wigner' in 193O (and its variants), which
does not lead to a systematic perturbation scheme.

In this and a subsequent paper, we present a model of a
coupled atom-field system which alleviates the above-
mentioned problems of qu'mtum dynamics. The model
consists of a time-independent Hamiltonian and a reahstic
dynamical initial condition, with well-defined expansion
parameters. The H~miltonian describes a bound N-level
atom, at a fixed position in space, interacting with the
complete electromagnetic field. The initial situation is a
consistent quantum-mechanical description of the "naive"
idea of an atom in the exact dressed ground state of the
coupled atom-field system, on which is superimposed an
approaching q~~iclassical (also called coherent) excita-
tion of the field which will cause the intetesting dynami-
cal processes later on. This initial situation is ~~ily gen-
eralized to the thetmal equilibrium state of the coupled
atom-field system, again with superposition of an ap-
proaching quasiclassical excitation. The main parameters
are the strength A, of the atom-field coupling and the mag-
nitude a of the coherent-field excitation. We shall con-
sistently treat A, as a small expansion parameter, and let a
increase when A, tends to zero in such a way that the "in-
fluence of the coherent excitation on the atom" (i.e.„ the
product Aa) remains constant.

In this paper we priment the model together with some
tools for its manipulation and a detailed discussion of its
short-time behavior, using fairly standard quantum
mechanics. The examples show that this„ indeed, provides
a particular, usable solution for the "first source of prob-
lems" (initial condition) mentioned above and also, for
times much shorter than all radiative lifetimes, for the
"second source of problems" (classical versus quiuitized
field). Of course, the short-time expansion techniques
could be pursued to higher order, but this would rapidly
lead to forbidding complications.

In a forthcoming paper we shall show how this model
can be treated with nonunitary transformations (in "Liou-
ville" or operator space) of the type introduced by Prigo-
gine and his co-workers. The second law of thermo-
dynamics, which remains the guiding principle for the
long-time behavior of complex systems, is incorporated in
the construction of these basic "star unitary" transforma-
tions. The method le ds to a transformed evolution equa-
tion for the transformed density operator in which dress-
ing, decay, and excitation are disentangled. Using this
equation one obtains satisfactory results for times com-
parable to the lifetimes of atomic excited states, hence
providing a solution to all three sources of problems men-
tioned above. We hope to present specific predictions for
situations of actual experimental interest in further publi-
cations.

In Sec. II of this paper we first define the notation for
the Hamiltonian and basis states, and recall some proper-
ties of the quasiclassical states of the field. Next we use a
time-dependent unitary transformation [denoted M {t)),in
the way indicated by Mollow, to disentangle the quasi-
classical field pulse from the rest of the problem. The re-
sult is a transformed state of the system from which the
(potentially large) field pulse has bxn removed, and a
transformed equation of motion with a generator of the

motion containing a time-dependent term describing the
coupling between the atom and the classical-field pulse to-
gether with all the terms in the original Hamiltonian. The
time-dependent term is proportional to the product Aa of
the strength A, of the atom-field coupling by the magni-
tude a of the field pulse. Hence this term can be kept
constant, possibly describing a large effect of the field
pulse on the atom, even in the limit of A, ~O, by suitably
increasing a when k decreases.

The first significant use of this transformation M(t) is
to provide an explicit quantum-mechanical expression for
a realistic and stable initial condition valid for all times
before the beginning of the overlap between the atom and
the classical field associated with the quasiclassical excita-
tion of the qu'mtized field. Let us emphasize that the uni-
tary transformation actually describes the quasiclassical-
field excitation, hence this transformation depends upon
the initial situation for the field and not upon the bare-
atom Hamiltonian or the atom-field coupling. Let us also
note that, in its present form, the whole pro&xdure used
here hinges on a transformation which is defined only for
q~~~iclassical excitations of the field.

From this point on the discussion in our forthcoming
paper will involve nonunitary transformations and strong-
ly deviate from the more conventional techniques used in
the rest of this paper.

In Sec. III we set up a perturbative scheme for solving
the transformed equation of motion obtained in Sec. 11, in
which the "unperturbed" starting point is the exact solu-
tion of th6 corresponding Bloch equations (classical-field
approximation) and the "perturbation" is a transformed
version of the atom-field coupling Hamiltonian For this
we use two additional time-dependent unitary transforma-
tions to successively "eliminate" the motion due to the
bare-atom and free-field Hamiltonians, and the motion
which would take place in the classical-field approxima-
tion. The result is a transformed equation of motion with
a generator of the motion proportional to the strength A,

of the atom-field coupling, and a transformed state which
is close to the ground state of the free field and bare atom.
This combination is very suitable for using the standard
expansion of the trtmsformed state (described by a density
operator for convenience) as a power series in A,; such an
expansioa is very useful for times much shorter than any
radiative lifetime of the atom as, in such conditions, one
can restrict oneself to the first few terms as in standard
perturbation theory.

As an illustration of the use of the proposed proccxiure,
we have examined a few examples in the perspective of a
strength A, of the atom-field coupling tending to zero
while the magnitude a of the (quasiresonant) field pulse
increases in order to keep Aa constant. The first example,
in fact a check on the consistency of the procedure, rests
on the fact that the basic Hamiltonian Hs of the model is
time independent, hence the quantum average energy
(Hs) is an exact invariant of the motion and this must
also hold true for each term in a series expansion in
powers of A,. In Sec. IV we first show that the leading
term (in a, hence in A, ) of such a series expansion is the
time-independent energy of the unperturbed field pulse.
At the next nontrivial order {in A, ), some care is required



FIXED BOUND ATOM INTERACTING KITH A COHERENT. . .

in the discussion to show that the changes in bare-atom
energy and in atom-field coupling energy are exactly com-
pensated at all times by corresponding opposite changes in
free-field energy. This result holds in situations in which
the properties of the atom may have very fast time depen-
dences, hence indicating that the heuristic notion of "wide
energy level" which is often associated with fast evolu-
tion, is in no way required for a satisfactory interpretation
of exact calculations.

In Sec. V we examine the frequency distribution of the
change in free-field energy caused by the atom-field in-
teraction, again in a short-time approximation which ig-
nores spontaneous emission. For an experiment of the
type sketched in Fig. 1 this would be the difference in the
response of the "high-resolution spectrometer" to a pulse
with and without atom, for pulses much shorter than the
radiative lifetimes of the atom (and neglecting the fraction
of spontaneous emission which hits the spectrometer). In
the approximation of weak pulses, which leave the atom
almost unaffected, the spectrum of the absorbed radiation
has the anticipated structure of one 5 function at each un-
perturbed atomic-transition frequency, with the coeffi-
cients which would be given by Fermi's golden rule.
However, for pulses which strongly affect the state of the
atom, two qualitatively new components of the "absorp-
tion spectrum" appear: one with a continuous frequency
distribution spreading over the whole width of the pulse
spectrum, and one with dispersionlike singularities cen-
tered on each 5 function. In the particular cases where
the pulse leaves the atom "exactly" in an eigenstate of the
bare-atom Hamiltonian, the singular spectral features are
exactly zero, leaving only the continuous component. For
large pulses, the various spectral features can be positive
or negative, and the energy moved by the atom from one
frequency range to another in a single short pulse can be
larger than the maximum energy stored by the atom itself.
This somewhat unexpected spectral behavior is illustrated

by a number of figures, which have been worked out nu-
merically for a simplified model with a two-level atom.

In Sec. VI we briefly discuss the heterodyne (also called
phase-sensitive} detection of radiation emitted by the atom
in the context of the experimental setup roughly sketched
in Fig. 1, where the relevant output is now the average
counting rate of the "fast detector. " The phase-sensitive
detection technique provides detailed information about
the nondiagonal part of the atom reduced density operator
(in a representation which diagonalizes the bare-atom
Hamiltonian), and is, in this respect, complementary to
the direct detection of spontaneous emission. We have
also examined the issue of causality and propagation of
light for phase-sensitive detection with a point atom and a
point detector. The result of our calculations is that the
detector output at time t depends only upon the state of
the atom at the single time r —b, t, where ht is the propa-
gation delay from atom to detector, provided that the
atom-field coupling involves the field at a single point and
that the detector is similarly sensitive to properties of the
field at a single point. This gratifying exact result breaks
down if one uses a nonlocal approximation of the electric
dipolar atom-field coupling such as the rotating-wave ap-
proximation, or if one replaces the (local) electric field
operator E(r) by its (nonlocal) "components" E+(r) or
E (r} in the construction of a model for the photoelectric
observable.

In Appendix A we give some details about the coherent
states of a single harinonic oscillator and propose a basis
of orthogonal states which is very suitable for the discus-
sion of states close to a coherent state. The particular
case of a two-level atom is discussed in A.ppendix 8, and
miscellaneous calculations are collected in Appendix C.

Finally, in Appendix D, we discuss the use of bases
moving with respect to each other in quantum dynamics,
and the relations between mobile bases and interaction
representations.

Coherent pulse
gate end

po~er amplifier

, High resolution
spectrometer:

J{u),+oo)

Single mode (r)
reference
oscillator

Fast detector: (Ds) (t)

FIG. 1. Sketch of the fast-pulse experiments for which the
theory is discussed in this paper. The high-resolution spectrom-
eter measures the pulse spectrum and the spectruia of the ener-

gy exchanged between the atom and the field modes which con-
tribute to the coherent pulse. The fast detector measures the
beats between the radiation emitted by the atom and the
coherent reference radiation ( r).

II. DESCRIPTION OF THE MODEL

A. Hami1tonian and sketch of the initial condition

The model presented here consists of a quantum state
space, a time-independent Hamiltonian, and an initial
condition. The state space and Hamiltonian describe a
bare and bound atom with a nucleus at a fixed position in
space, the complete electromagnetic field, and an atom-
field coupling. The simplest initial condition corresponds
to the naive picture in which the atom and the field in its
vicinity are in the ground state of the coupled atom-field
problem, whereas the distant field contains a (perhaps
large) quasiclassical excitation which will interact with
the atom 1ater on. In Sec. II0 this naive picture wi11 be
formulated in a consistent quantum way.

The quantum state space for the coupled atom-field
system (labeled by the index S) is the tensorial product of
the state space for the isolated atom (labeled by the index
A) with that for the unperturbed field (labeled by the in-
dex F) which, itself, can be represented as a tensorial
product of state spaces for each individual field oscillator
(labeled by the oscillator index k). For clarity, all quan-
tum objects such as bras, kets, operators, and traces, mill
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usually be labeled to indicate the relevant quantum space.
To avoid too clumsy notations, the operators ak and ak
will be tacitly extended to the whole field whenever neces-
sary {by tensorial multiphcation with the unit operators
lk for all the other modes k' of the field), and the indices
E, A, and S will be dropped when this does not cause am-
b191ty.

The Hamiltonian Hs of the coupled atom-field system
can be written in the form

Hg ——(igeHcp)+(Hcge lp)+A Vs, (2.1)

where denotes teiisorial multiplication and lz and 1~
are unit operators {respectively for the bare-atom and un-
perturbed field state spaces}. The unperturbed field Ham-
llfoman Hcp ls glvell by

HOF= g~kukuk ~ {2.2)
k

where ak and ak are the usual boson creation and annihi-
lation operators for the field oscillator with label k, and
the zero-point energy has been omitted. The bare-atom
Hamiltonian ls given by

Ho~=+~ li&~ ~&i I
(2.3)

where i =1,2, . . . , labels the eigenstates of the bare
atom. In this paper, we shaH implicitly ignore the ionized
states of the atom, hence use the fiction of a bare-atom
state space of finite dimension spanned by bound states.
For further simplicity we shall often assume that the
ground state of Ho& is nondegenerate {and label it i =1).
We shall usually approximate the atom-field coupling by
an expression linear in the ak and ak,

~Vs{r~}=~gg[Vki{r~) li&~ ~&J Iuk+Vki{r~) I
J'&~ ~&i lukj

k i,j
=~XX I Ii &~ ~ &J I [Vkg{r~)uk+ Vkp«~)ak] j, (2A)

where the complex quantities Vk,i(rz ) are functions of the
(fixed) position rz of the atom and the real number A, is
introduced for further use as an expansion parameter in
perturbation calculations. For the time being, the
"strength" A, of the atom-field coupling may be replaced
by unity. For instance, the Hnearized electric dipolar ap-
proximation for A, Vs is given by

A, Va s(rw )= —Ap, a .Ep(ra ), (2.S)

where p,,~ is the atomic electric dipole operator and E~
the electric-field operator [see (2.7)], and the magnetic di-
polar interaction of a spin with the radiation field is
described by

k V e s(rq )=—Ap q 8~(r~ }= —A yh'I„.B (r„),
(2.6)

where p q is the spin magnetic moment operator, AI& the
aetna) spin angular momentum operator, Bz the magnetic
induction operator [see (2.7)], and y the magnetogyric ra-
tio. In (2.S) and (2.6) the dot indicates scalar product in
configuration space and tensorial product of qmmtum
operator spaces. The particular case of the "two-level
a&om" is discussed in Appendix B.

The quasiclassical excitation, which is the time-
dependent feature of the initial condition ar the initiol
time r; is completely specified by the corresponding classi-
cal 6eld af,~(t;), which is chosen to be exactly zero in the
vicinity of the atom. The notations f,i(r, t) and f, (t)i
symbolically stand for the E,i and 8d fields at time r and,
respectively, at point r and at all points in space. The real
number a is introduced for further use as an expansion
parameter in perturbation calculations. For the time be-
ing, the strength a of the irradiation field may be replaced
by unity.

B. Quasiclassical ("coherent") states
of the unperturbed fieM

We shall not further specify this basis here in order to re-
tain the possibility of describing the {linear) optical instru-
ments used in the experiments (mirrors, lenses, polariza-
tion analyzers, etc.) by the corresponding basis of normal
modes of the field. The complex numbers ak{t}evolve in
time according to

ak(i}=ak(ro}exp[ izaak(r —ro—)], (2.8)

We consider an unperturbed classical electromagnetic
field with a linear and conservative set of equations of
motion with constant coefficients and no source (this in-
cludes the specifications about bound~ay conditions). The
state of this classical field can be completely specified (for
all positions r accessible to the field and for all times t) by
the electric field E,j(r, ro) and the magnetic induction
8,~(r, to), both at the single time tc In Co. ulomb gauge,
an alternative complete specification is provided by the
(real) function A,~(r, to) and its time derivative
BA,~(r, ip)/Brc. As a preparation for quantization, we fol-
low standard practice and introduce a discrete basis of
(complex-valued} normal modes of the classical field, la-
beled by an index k and such that the unperturbed classi-
cal field at any time t is given by

E,~{r,t) =Re+ I ek(r)ak(t) j

= —,
' g I ek(r)ak(t)+ek(r)ak(t) j,

(2.7)
8,~(r, t}=Re+ Ibk(r)ak(t) j

k

= —,
' g I bk(r)ak(r)+bk(r)ak(r) j
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with real positive frequencies rok/2c; and the total field
energy E,1 is given by

E.i= g~k I ilk I
'. (2.9)

If.i(t) &F=
I It k(t) l &p= g I

1 k(t) &k (2.11)

where gk indicates an infinite tensorial product,

I
ak(t})k is such that

(2.12)

and the set of complex numbers I ak(t) I specifies the clas-
sical field f,i(t) in the sense of (2.7). If the above require-
ments are used to specify a density opeilitor, the result is
the pitre state

I f,i(t))p F(f,1(t) I.
The extension to quantum theory of ideas borrowed

from classical theory of fields (such as the classical super-
position principle), and the manipulation of quantum
states which are exactly or approximately quasiclassical,
are greatly simplified by the use of the "displacement"
operator introduced by Glauber, l which we shall denote
M. To ally glvcll unperturbed classical field f 1(t), olic as-
sociates a unitary displacinnent operator Mp(f, i(t)) de-
fined by

MF(fc1(t)) =Mp( I ilk(t) J )= g Mk(ak(t}), (2.13)

The set of complex numbers I uk(to) I provides an alterna-
tive complete specification of the classical field.

A very important tool in the discussion of such a classi-
cal field is the classical-superposition principle. Namely,
if the fields f,11(r,t) and f,i 2(r, t) both satisfy the equa-
tions of motion and boundary conditions„ then the field

f,1 1(r,t)+f,i 2(r, t) also does.
In the standard quantum description the unperturbed

field Hamiltonian (omitting the zero-point energy) is
given by (2.2) and the quantum observables for the electric
field and the magnetic induction are

Ep(r) = g Iek(r)ak+ek{r)ak I

(2.10}
Ilp(r) =

g g Ibk(r}ak+bk(r)ak I
k

This quantization procedure ensures that, for any quan-
tum state of the unperturbed field (this includes fields
known only in a statistical way), the quantum averages
(fp(r) )(t) of the field operators exactly satisfy the classi-
cal equations of motion and boundary conditions. The
notations fp(r) and fp symbolically stand for the pair of
observables (2.10), respectively at point r and at all points
in space.

To any given unperturbed classical field f,1(t), we can
associate a single well-defined "qi~siclassical" (or
coherent) quantum state of the field, which we shall
denote

I f,1(t})p, by the requirements that (a) the quan-
tum average field is equal to f,1(t}, i.e.,
&fp{r)&{t)=p&f1{t}

I fp«) Ifc1(t) &F=f 1« t} «»1 posi-
tions and times, and (b) the quantum average field energy
(Hop) has the minimum value compatible with the given
average field. These requirements are satisfied by the
state

Mk(tlk(t)) exp[tlk(t)ak +k(t)ak] ~ (2.14)

and has the simple symmetries

Mp '(f,i(t)) =Mp(f, i(t)) =Mp( —f.1(t))

and Mp(0}= 1p, and the group property

MF{fcl,2 )MF{fcl, 1 } MF(fc1,2+fcl, 1 )exp(t'F21) ~

where the real phase

1

(}21 1 (ak, 2+k, 1 ak, 2+k, l)
k

(2.16)

(2.17)

(2.18)

only causes minor inconveniences which completely disap-
pear in a density-operator formalism. We have dropped
the time variable in expressions valid at all times, in
which all quantities are taken at the same time and no
time derivative is involved.

Useful properties of the unitary transformation M are

Mk(ak(t))akMk(ak(t)) =ak —uk(t),
(2.19)

Mk«k{t»akMk«k{t}) =ak —tlk(t),

and similar relations with the roles of M and Mt inter-
changed using (2.16) or (A7). These relations can be ex-
tended to any function g(ak, ak) which can be expanded
in a power series [see (A12}], and to the complete quan-
tum field space [see (2.13)]. As an example, combining
(2.10) and (2.19), we obtain

Mp(f.1{t})fpMp(f,1(t))=fp f,1(t)1p . — (2.20)

A straightforward quantum version of the classical-
superposition principle for the classical fields f„, and
f,1 2 is obtained by combimng (2.1S}and (2.17),

I fc1,2 +fc1, i & &fc1,2 +fci, i

=MF{fci,2+fci, i) I o&» F&o
I Mp(fci 2+fc1,1'

=Mp(f, 1,2) I f,1, 1)pp&f. 1, i I M»{f.1,2} . (2.21)

The coherent state associated with the classical superposi-
tion f,i 2+f,i 1 is generated by the M transformation as-
sociated with one of the classical fields (f,1 2), acting on
the coherent state associated with the other classical field
{f,i 1). A useful extension of this idea is obtained by
starting with any quantum statistical state pip of the field,
in which the (quantum statistical) average field will be
denoted by

(2.22)

and acting on this state with the unitary transformation
Mp(f, 1 2). In the resulting transformed state, the average
flCld ls glvCll by

As discussed in more details in Appendix A for a single
oscillator, the displacement operator provides a simple
tool for constructing coherent states from the ground state
IO)p of the field,

I f.i{t)&F=MF(f.1(t)} I 0&p
(2.15)

If 1(t) &F F&f 1(t}
I
=Mp(f 1«)) I o&» F&o

I
Mp'{f 1«)}
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T"lfFMF(f. i, i)piFMF(f;i, .}I= &f.&i+f.i, I Us(t, tp) =Ms{t)U, (t, t, )M, (t, ), (2.33)

Clearly, the transformation MF(f,ii) superimposes the
classical f1cld f i z oil tl1c plcviously cxlst11lg quantlllil
average field &fF)1. Note that if piF is not a coherent
state, then MF(f, i 2)piFMF(f, i I) is also not a coherent
state.

Next, we briefly examine the time dependence of MF(t),
where the explicit reference to the classical field will be
omitted for simplicity. Combining (A13) and (2.13) we
see that MF(t) satisfies the evolution equation

iA ps—(t) =[Hs,ps(t)] (2.34)

with Ms(t) given by (2.30}. Whenever a relation between
the original quantities involves neither time derivatiue nor
time integration, it holds also between the corresponding
transformed quantities. For instance, its(t) =Us(t, tp)

ps{tp) Us(tp, t), then ps(t) =Us(t, tp }ps(tp) Us(to, t).
The original equation of motion

i fi MF—(t)= [HQF(t), MF(t)] . (2.24)
for ps(t) leads to the transformed equation of motion

I'&—ps(t) = [Hs+A( Vs(t) —Vs) ps(t)] (2.35)
Further discussions of time evolution will be simplified by
the introduction of the unitary evolution operator
QF(t, tp ) for the unperturbed field, defined by '

i% QF(—t, tp) =HpFQF(t, tp) with QF(tQ tQ) =1,
Bt

or equivalently by

QF(t, tp) =exp[ i (t —tp)HQFI—A) .

(2.25)

(2.26)

The solution of (2.24) can be written in various forms,

MF (t)=QF(t, tp)MF(t p)QF(t p, t),
M (t)g (t, t )=g (t, fp)MF{tp),

[H pF MF ( t )]QF ( t tp )=QF ( I t0 )[HOF&MF ( t0 }]

(2.27}

(2.28)

(2.29)

Similar relations hold with MF(t) and MF(tp) replaced,
respectively, by MF(t) and MF(tp); more relations of the
same type are obtained by multiplication by QF{tp,t} from
the left and from the right and use of
QF(t tp)QF(tp t)=1F

) t)s Ms{t}[ t)s. s——&T] =s&t [Ms(t), (2.31)

for operators involving a single time t or no explicit time
dependence,

Rs(t) =Ms(t)RS(t)MS(t), (2.32)

and for operators connecting two times (e.g., evolution
operators),

C. Disentanglmg the qmsiclassical-field pulse
from the rest of the problem

Using the naive picture for the initial condition present-
ed at the beginning and at the end of Section IIA we anti-
cipate that the field will remain for a long time "close" to
the quasiclassical state ~af,~(t))F. This suggests using
the unitary transformation

Ms(t)= ig@MF(af i(t)) = lg@MF( —af,i(t)) (2.30)

in the ~ay shown by Molly, to "remove" the undis-
turbed coherent excitation af,i(t} from the field [see
(2.23)], hopefully leaving the field close to its ground state
and, hence, easier to discuss.

The transformed quantities will be indicated by a bar
above the symbols, and defined as follows: for kets and
bras,

for Ps(t) [see (2.24), (2.1), (2.32)].
In many respects, the "bar" transformation introduced

here is analogous to the standard transformation to an in-
teraction representation used to remove parts of the Ham-
iltonian from the transformed equation of motion. How-
ever, there are also significant differences: the bar
transformation removes the coherent excitation of the
field from the transformed state of the system, but the
corresponding unitary operator Ms{t) is not associated
with a large part of the Hamiltonian evolution operator,
hence no large part of the Hamiltonian is absent from
(2.35).

When the atom-field coupling is given by (2.4), the sup-
plementary term A[VS(t,) Vs]—which appears in the gen-
erator of the motion of ps(t) has the very simple form [see
(2.19) and (2A)] of a time-dependent operator acting in a
nontrivial way on the bare atom only,

A(VS(t) —Vs)=~+ I ~

I'&~ ~ &j ~ Vg, (r~, t)I1F
/,j

=A[V(t) —V]ge 1F, (2.36)

where the complex functions of time VJ(rz, t) are given
by

VJ{r~,t) = g [V~J(r~ )ak(t)+ Vpj,.(r~ )ak(t)],
k

(2.37)

and the notation [V(t)—V]z indicates an operator pro-
portional to a and acting in the state space of the atom
only. The operator A,[V(t)—V]q is exactly the time-
dependent term which would be introduced to describe the
atom-field interaction in the conventional semiclassical
description in terms of a quantized atom and a classical
field. As an example, in the hnearized electric dipolar ap-
proximation (2.5), one has

A[ Va(ra, t) —Ved(r~ )]q ———+,~ E,i(rq, t) . (2.38}

If the atom-field coupling is nonlinear in the field, the
operator A,[VS(t)—Vs] is shghtly more complicated than
(2.36), and is no longer the semiclassical atom-field cou-
pling. For instance, in atomic spectroscopy, the term
quadratic in the field has a coefficient of the order of the
fine-structure constant whereas the term linear in the field
is of the order of the square root of this small constant.
Using A, to denote this squ~re root, ~e can write the
atom-field coupling under the form ZVs ——~vs, , +~'Vs 2,
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where A. Vs i is the term linear in the field discussed above
and A, Vs& is quadratic in the field. The contribution of
the term A, Vs& to A[V, s(t) —Vs] involves towns linear in
the field operators ok and ak, with a coefficient A,(4x), in
addition to terms of the semiclassical type (i.e., acting
nontrivially on the bare atom only}, with a coefficient pro-
portional to (4z) .

As no approximation is involved in going over from
(2.34) to (2.35), the generator of the motion of Ps(t) still
contains the eotnplete quantum-mechanical atom-field in-
teraction problem, although the semiclassical coupling of
the atom with a time-dependent classical field appears ex-
plicitly in (2.35).

During all time periods in which the unperturbed clas-
sical field f,i(r, t) is exactly zero in the region of space oc-
cupied by the atom, the "supplementary term"
A[Vs(t) Vs] —given by (2.36) is also exactly zero. This
property still holds for couplings which are nonlinear in
the field. Hence, during these time periods, ps(t) evolves
exactly as if the (perhaps large) quasiclassical excitation
af,&(r, t) of the field was absent, and f,i(r, t) itself appears
only in the unitary transformation Ms(t) which leads
back from ps(t) to ps(t).

The standard basis for the present problem is obtained
by tensorial multiplication of the basis of eigenstates of
the bare-atom Hamiltonian by a basis of eigenstates of the
energy for each normal mode of the field,

(2.39}

When matrix elements of "bar-transformed" operators
[see (2.32)] are needed in this Ii, I nk j j basis, the following
identity may be useful:

s(i', Inkj ~Rs(t}(i,Inkj)s

=s(i', Ink j ~
[Ms(t)Rs(t)Ms(t)]

~
i, Ink j )s

=[s(i', Ink j (Ms(t)]Re(t)[Ms(t) ~i, Ink j )s],
(2.40)

p (t; )=[1/Z(T)]exp( Hslktt T)—, (2.44)

where ks is Boltzmann's constant and the partition func-
tion Z(T) is given by Z(T)=TrsIexp( HslkjtT) j-,
hence the state of the system during the initial idle period
iS glVCIl bg

p, (t; )= M, (f„(t;)}(I/Z(T'))

Xexp( —Hs/ktt T)Ms(f,~(t; )) . (2.45)

Hamiltonian Hs for the coupled atom-field system. This
ground state is close to the tensorial product of the
ground state

~

1)z of the bare atom with the ground state

~
0)F of the unperturbed field. More accurate expressions

for
~
G)s can be obtained by perturbation techniques.

Going back from ps(t;) to ps(t; ), we can write the initial
condition corresponding to (2.42) under the form

ps(tt)=Ms(fbi(ttj) I G&ss&G IMs(f i(ti)) (243)

which describes a situation in which the field is close to
the quasiclassical excitation

~ f,~(t;))zz(f,~(t;)
~

and the
atom is almost in its bare ground state; the only deviations
are the direct radiative effects of the atom-field coupling
which already exist in the absence of the approaching
quasiclassical excitation. Expression (2.43) for pz(t; ) is an
exact solution of the equation of motion (2.34) during the
initial idle period, and the strong time dependence of
ps(t; ) is quite natural because it describes the propagation
of the quasiclassical excitation of the field.

An atom can be prepared in the stable initial condition
described by (2.42) and (2.43) by first being left alone
without any irradiation for a period much longer than any
of its radiative lifetimes, before being subjected to the
coherent radiation which will cause the interesting
dynamical processes.

If the whole experiment, including the long preparation
period, takes place in the presence of blackbody radiation
at temperature T, then the relevant stationary solution of
(2.41}is the equilibrium density operator

where the new basis formed by the kets
IMs(t)

~
i, [nk j )s j is the extension to the case of atom

and field of the basis discussed from (A17)—(A19).

iA ps(t; )=[He,ps(t;)] .
Bt;

(2.41)

When the initial idle period is also one «rest, during
which the only thing that "happens" is the propagation of
the quasiclassical pulse excitation of the field, then ps(t; }
ls tMM 1BdepcQdexlt dl&1Ilg this pell, od.

The simplest stationary solution of (2A1) is

(2.42}

where
~
G)s is the exact ground state of the complete

D. Realistic, stable initial conditions

For all times t; during the initial idle period, the ab-
sence of overlap between the atom and the classical field
pulse f,i(r, t) implies that the tenn A,[Vs(t) —Vs] in (2.35)
is exactly zero„hence the equation of motion for ps(t; ) is

Qs(t) =Qg (t)e QF(t),

where'

Q~(t) =exp[ i (t —to)Hc—g/A]

and67

Q~(t) =exp[ —i (t —to)Ho+/g] .

(2.46)

(2.47)

The new transformation will lead from the bar quantities
to the "tilde" quantities, much in the uune way as
(231)—(233) led from the original quantities to bar quan-
tities. For instance, the transformed density operator is

E. Removing Ho& and Ho+
from the equation of motion

For the rest of this paper, it will be convenient to re-
move the unperturbed Hamiltonian (Ho~ IF)+(lq
Ho&) from the equation of motion by going to the usual
"interaction representation" based on the unitary operator
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ps(t) =gst(t)ps(t) gs{t)

=Q,{t)Ms(t)p(t)Ms(t)gs(t)

and obeys the transformed equation of motion

(2.48)

iA p—s(t) =[AVs(.t),ps(t)]

=[I ~gs(t) VsQs{t)

+Ags(t)( Vs(t) Vs—)gs(t) I,ps(t)], (2.49)

from which Hoq and Ho~ have been removed. The
transformed initial condition (2.42) during the whole idle
Pcf1od 18

ps(t;}=gst{t;)[ I G)ss(G I ]Qs(t;) . (2.50)

Both terms in the curly brackets of (2.49) are time
dependent. As it does not involve Ms, the first term is in-
dependent of the state of the field. The second one is dif-
ferent from zero only during the overlap of the classical-
field pulse f,i{r,t) with the atom.

III. SHORT TINES, %'EAK-COUPI. ING A,,
ARBITRARY EXCITATION STRENGTH 4x:

A CONVENTIONAL SCHEME OP SUCCESSIVE
APPROXIMATIONS

where the superscript 8 stands for "Bloch equations
without relaxation" (a similar notation will be used for
average values of observables) and the stable initial condi-
tion before the atom —classical-field overlap is given by

In the remaining part of this paper we will discuss a
successive approximation scheme, suitable for short times
(i.e., much shorter than the radiative lifetime of the atom),
weak coupling A„but arbitrary excitation strength hx. In
order to avoid unessential complications we shall consider
a coupling linear in the field and the sitnple initial condi-
tion (2A2) involving the ground state of the atom-field
system. The results for a twa-level atom will be given,
and further discussed in Appendix B.

A. The traditional classical field approximation
(Bloch equations without relaxation)

In the traditional classical-field approximation the ef-
fect of the classical field on the atom is taken into account
as a time-dependent contribution to the Hamiltonian of
the atom, whereas all effects of the atom on the field are
ignored: Lamb shift, spontaneous emission, any reaction
of the atom on the exciting field. In the present model,
with linear atom-field coupling, this corresponds to keep-
ing the term A,[Vs(t)—Vs], which is proportional to hz,
in the generator of the motion of ps(t) or ps(t) [see (2.35)
and (2.49)] and dropping the isolated term involving A, Vs,
which is independent of the magnitude a of the classical
field. In this approximation, taking into account {2.36),
where [V(t) —V]z is an operator acting only in the atom
space, (2.49) becomes

iR—ps(t) =[Q„(t)A(-V(t) —V)„g„(t)elt;,ps(t)], (3.1)

Bs(t, tp) =By(t, to)8 lp, (3.3)

where~

iR Bg(t i'0)= Igg(t)A[V(t) —Vjggg(t) IB/(t to) (3.4)

and 8&(to, to)=1&. Furthermore, starting with the fac-
torized initial situation (3.2), the density operator will
remain factorized at all times,

p (t) p„(t)( IO) (Ol )

=[Q~(t)p~(t)g~(t)](
I
0&F F(0 I

)

and

i' ps(t) =-[g„(t)A(V(t)—V)„Q„(t),p „(t)]at

p:(t;)= I »» & I
I

(3.5)

The tilde transformation used here for operators acting
in the bare-atom state space is defined by Aq (t)
=Q~(t)~~(t)g~ {t)

In most cases of practical interest in pulse spectroscopy,
the generator of the motion in (3.4) does not commute
with itself at different times, so that salving this equation
is not an easy task. This generator of the motion is Her-
mitian at all times, hence 8„(t,to) is unitary and has all
the usual properties of evolution operators. Useful tools
for approximate evaluations of 8&(t, to) are provided by
numerical methods (in the case of finite time intervals and
atom state space of finite dimension} and by the Magnus
transformation. The simple case of a two-level atom is
discussed 111 APPeIldix B.

8. Iterative procedure for weak coupling A.,
short times, and arbitrary excitation strength A,e

The solution of an equation of the type (2.34), (2.35), or
{2.49) by the conventional short-time expansion limited to

Ps{t )=Ps(t )=. { I 1}~~(1 I
){ I0)~F(0I }

The above two equations are derived from the exact
equations (2.34) and (2.43) by an ad hoc procedure, one
consequence of which is to make the generator of the
motion of ps(t) time dependent so that the average "ener-
gy" evaluated with ps(t) is no longer an invariant and
conservation of total energy loses' its role as a simple, gen-
eral property. As we shall show in Sec. III B a more ac-
ceptable approach is to use a perturbation scheme in
which A, tends to zero and a to infinity in a correlated
way such that the excitation strength 4x remains finite
and constant. Such a systematic procedure indeed leads
to very satisfactory results in its limited range of validity
(i.e., short times). Nevertheless, we shall briefiy discuss
the solution of (3.1) and (3.2) because this provides a satis-
factory solution for the evolution of the atom reduced
density operator and useful tools for further calculations.

Like the generator of the motion in (3.1), the
evolution operator Bs(t, to), such that p s(t)
= Bs ( t, to )p s( to )Bs(to, t), is the tensorial product of an
operator acting only on the atom by the unit operator 1F
for the field
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a few terms is a useful approximation only for time inter-
vals during which the corresponding density operator nev-
er deviates much from its initial condition. For (2.49) and
(2.50}, in which the generator of the motion still contains
a term proportional to the excitation strength Aa, this re-
stricts the usefulness of such an expansion to irradiations
which have little effect on the state of the atom (hence to
small values of 4x} even for pulses much shorter than the
radiative lifetime of the atom. This limitation to very
weak irradiation pulses can be overcome by a further
time-dependent unitary transformation which removes the
atom —classical-field coupling from the generator of the
motion. A suitable unitary operator Bs(t) is constructed
from the "single-time" version ' B&(t) of the evolution
operator defined by (3.4),

the overlap between the irradiation pulse and the atom,
but the large parameter a does not appear in a multiplica-
tive way in the generator of the motion of ps(t) H. ence,
this generator of the motion is of the order of magnitude
of the strength A, of the atom-field couphng at all times,
and a short-time expansion of the solution of (3.9},limited
to a few terms, will be satisfactory at least for time inter-
vals b, t such that Abt , is small. If no strong irradiation
takes place during the time interval, it is well known that
this range of validity extends to b.t much shorter than the
radiative lifetime, i.e., A, b t small.

In the conventional technique for short-time approxi-
mation, the solution of (3.9) and (3.10) is a formal series
expansion in the (small) strength A, of the atom-field cou-
pling,

Bs(t)=B~(t) lp,
where4

i'—B„(t)= I g„(t)A,[V(t) V]—& Q~(t) IB~(t)

(3.6)

(3.7)

P ( )=p' '+Q'"( )+&'p"'( )+
with [see (2.42)]

pos= I G&ss&G I =pos+Qos+~ pos+ ' ' '

(3.11)

with Bq(to)=lq.
The transformed quantities will be denoted by a caret

above the symbol. For instance,

P s(t) =Bs(t)ps(t)Bs(t)

=Bs(t)gs(t)Ps(t)gs(t)Bs(t)

=Bs(t)Qs(t)Ms(t)ps(t)Ms(t)Qs(t)Bs{ t),
(3.8)

Vs(t) =Bs(t)gs(t) Vs(t)Q (t)Bs(t) .

With the linear atom-field coupling (2.4), ps(t} obeys
the equation of motion [see (2.49)]

P'os=(
I

1&A A &1
I
){

I 0&F F&o I »
and to a first-order term

pos=pos(~s } +~s pos
-(1) -(0) (1) 4 (1)-(0)

where

(3.13)

(3.14)

(3.12)

The usual perturbative expansion of the ground state

I
G&s of the complete Hamiltonian Hs in powers of A, ,

assuming a nondegenerate ground state
I

1&z for the
bare-atom Hamiltonian, leads to

i%' ps(t) = [A—Ss(t)gs(t) Vsgs(t)Bs(t), ps{t)] . (3.9) W,'"=gg ' Iq&„„(1I
eo,'.

t0J —Co i +tok
(3.15}

Note that the generator of the motion in (3.9) is not
A, Vs(t). For a reference time to for Bs(t) in the initial idle
period, Bz(t;)= lq and the stable initial condition (2.42),
(2.50) has the simple form

Ps(t }=Qs(t )posgs{t )=Qs{t ) I
G &s s(G I Qs{t ) .

(3.10)

Combining (3.9) to (3.13) we obtain

p' '=(I 1&„„&II)e(I0&„&0I)
and, for n & 1, the recursion relations

(3.16)

t'A ps"'(t) =[Bs—(t)gs(t) Vsgs(t)Bs(t), ps" "(t)],

A strong irradiation of the atom (i.e., 4z large) causes a
fast time dependence of the unitary operator Bs(t) during

l

which can also be written in integral form as

(3.17)

ps"'(t) =Qs(t;)P osgs(t;)+( Ihh') f [Bs(t')Qs(t') Vsgs(t')Bs(t'), ps" "(t')]It',
t

(3.18}

where t; is chosen in the initial idle period. Using (2.41)
and (3.10), one can easily verify, through derivation of
(3.18) with respect to t;, that ps"' is a function of t, but
not of t;.

Going back to the tilde version, we have
p's'(t) =Bs(t)ps 'Bs(t) =ps(t) [see (3.1)—(3.5)]. Hence,
the starting point ps of the proposed iterative proccxlure
is the traditional classical-field approximation, and
higher-order terms in (3.11) can be seen as correcting for

( Cs &(t)=Trs I Csps(t) ] =Trs I Cs(t)Ps(t) I

and may also be expanded in powers of A, ,
(C&(t)= g ~-& C&'-'(t)

(3.19)

(3.20}

the error made by not properly treating the field quantum
mechanically in the first place.

When ps(t) is known, average values of observables can
be evaluated from the relation
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with m taking integer values. However, great care must
be exercised in going over from the formal series expan-
sion (3.11) of ps(t) to an expansion of the type (3.20) be-
cause the large parameter a, which appem~ in many
caret-transformed observables combines with the small
parameter k to give the constant excitation strength hx.

The H'uniltonian of our model, as given by (2.1), is
time independent, hence the probabihty distribution in to-
tal energy is time independent and, in particular, the aver-
age total energy

& Hs &(t)= & ig HoF &(t)+ &Hog IF &(t)+ & Vs &(t)

(4.1)

is a constant. As an illustration of the use of the iterative
scheme, we now evaluate in some detail all the traces and

I

iiltcgf als Ilccdcd to check that

&Hs&' '(t)= & lqHoF&' '(t)

+&H ei &' '(t)+&V &' '(t) (42)

is indeed exactly constant for all values of m up to m =1,
for a linear atom-field coupling.

In these calculations we make extensive use of the cy-
chc invariance of the trace and of the factorization prop-
erties (2.30) for Ms(t), (2.46) for Qs(t), (3.3) for Bs(t),
and (2.36) for Vs(t) —Vs. One should also keep in mind
that the single-time operators Qs(t) and Bs(t) still involve
to parametrically and that to and tt are both assumed to
be in the initial idle period. Moreover, in the calculations
involving HoF, we have repeatedly used the commutation
properties of MF, QF, and HoF which are given in Appen-
dix C l.

We begin with &HoqelF&(t). The contribution Ei
arising from Pq ',

&i =Trst Bs(t}Qs(t)Ms(t)(Ho~e lF)Ms(t)gs(t)Bs(t){ I 1&~ ~ &1
I I o&F F &o I

) j

=Trs [Ho~g~(t}B~(t) I 1&~ ~ &1
I B~«}Q~(t) I o&F F&o

I j

=T"IH-p:(t) j = &H- &'{t}, (4.3)

is the average atomic Hamiltonian in the traditional classical-field approximation. The contribution arising from ps (t)
is identically zero because ps"(t) is linear in a~ or ak, and the caret version of &Ho~a 1F & acts on the field as lF. Con-
tributions from higher-order terms ps"'(t) will be of order iL.

"with n ~ 1. As a conclusion,

A, &HoqIF&' '(t}=0, for tn &0

& Hope 1F &' '(t) = &Hog & (t), (4.4)

)t.&Ho„e 1,&& "(t)=O.

Next we evaluate &)I,Vs &(t). The contribution EC2 arising from Ps ' (taking into account that Vs is linear in ak or ak ),

X2 =Trs I AVsP s"j.
=Trs[Bs(t)gs(t)[A[Vs(t) —Vs]+A Vsjgs(t)Bs(t)( I 1&~ ~ &1

I
e

I o&F F&o I
)

I&[v(t)—v] p (t)e Io& &0I j=&)L,[v(t) —v]„& (t), (4.5)

is the average atom-field coupling in the traditional classical-field approximation. This is a qiumtity of order 4z, hence a
contribution to & Vs &+'(t). The evaluation of contributions to &A, vs &(t) arising from further terms ps'"'{t) is simplified
by writing A, Vs(t) again as A[Vs(t) —Vs]+A, Vs. For n odd, the contribution is only from A. vs and is of order ){,"+',
whereas for n even the contribution is from ){[Vs(t) —Vs] and is of order (An)A, . As a conclusion,

&A, vs&' '(t)=0, for m &0

&A, V &'o'(t)=&A[V(t) —V]„& (t),
x&zv, &"&(t}=o .

Finally, we evaluate &1~HoF&(t}. The contribution K3 from ps ',

E3 Trs IBs(t)gs(t)Ms(t)( la HoF)Ms(t)gs(t)Bs(t)( I 1 &~ ~ & 1
I
e I o&F F&o I )

=TrsI I
1 &„„&1IeHoFMF(t) IO&FF&OIM (t) j =a'gawk

I uk I',

(4 6)

{4.7)
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is exactly the average energy which the field would have if
the atom was absent. In the present notation this term in
a appears as "of order A, ,

" hence a contribution to
(1gSHop)' '(t).

The contribution « to ( l&SHcz)(t) from the initial
vallle ps (tg }iil (3.18) for ps (t) ls

« =Trs [ Bs(T)gs(t)Ms(t)(1& SHO~)Ms(t)gs(t)Bs(t)

~g'«;}I I »»« I
I0&"&0I(IVs"}'

where Ws" is given by (3.15). As shown in Appendix C 2
tllis cail be wrifteil as

«=Trs g ttok[&k+ak(t )][&k+ak(t;)]
k

&&[I 1&w ~&1110&FF&01(IVs")'+H c ]

=Aalu [—Vk»ak(t; }+c.c.]
k

+H.c.Igs(t;)], (4.8) = —(A,[V(t. ) —V]„)'(t ) . (4.9)

This is minus the average atom-field interaction energy at time t; in the traditional classical-field approximation, hence

(4.10)

The contribution Es to (1&SHOF)(t) from the time integral in (3.18) for ps"(t) is given by

K5 ——(1/t'A') f, dt'TrsIBs(t}gs(t)Ms(t)( lq SHOD)Ms(t)gs(t)Bs(t)

&& [Bs(t')Qs(t'}A Vsgs(t'}Bs(t'»
I

1 &~ ~ &1
I I

o &F s &o I ] I . (4.11)

The integrand in the integral over t' can be recast as a sum of derivatives with respect to t', the equations of motion of
M~(t} and p q(t) [see (2.24) and (3.5)] being used to this aim. As (2.24) involves [HO~, Mt;(t)], a first very useful step is
to replace Hot M~(t) by Mt (t)HO~+ [HO~, Mt (t)] in (4.11). The contribution of Mt. (t)HO+ to the trace is zero because,
for this term, the M~ operators cancel and Vs remains the only nondiagonal field operator in a representation which di-
agonalizes HOF. After some algebra (see Appendix C 3), one obtains

K5 —— t'Trs Bg t' 1 g g I Bg t' (8)Mp to 0 FF 0 Mp to s t'
—, Ms t' VsMs t' + Vs s t' . 4.12

l

Vt' —V ~t'

(4.13)

The order in A, of the contributions to ( lqSHoz)(t}
arising from a general ps"'(t) can be evaluated easily by
noting that MF(t)HOFMt (t)= gk fkok[ttkak+a(akak
+akttk)+a2~ak (2]. Contributions in a2 arise only

from n=0 because Ps"'(t) is traceless for n&0. For n

odd, the contribution is only from the term in a and is of
order A,

" '. For n even (larger than zero), the contribu-
tion is only from the term ajak and is of order V. As a
conclusion,

A, '(1&sHO+)' "(t)=a'g~k ~ak ~'

A.-'&1„SH„&'-"(t)=0,
(1 SHo &'"(t)=+(H & (t;)—&Hog &'(t)

—&[V«}—V]A& «»
A.&1„SH„&"'(t)=0 .

(4.14)

The next step is to introduce the operator Vs(t) Vs wltll-
the help of relation (2.30) under the form
MF(Iaak(t) J )=MF(( —aak(t)] ), which implies that in-
terchanging Mz and MF is equivalent to a change of sign
of the parameter a After som. e algebra (see Appendix
C 4), one then obtains

Collecting relations (4.4), (4.6}, and (4.14), we can easily
check that the average value of the energy of the atom-
field system is indeed exactly time independent at each or-
der in A, up to the highest order (i.e., ni= 1) for which de-
tailed calculations are shown. Of course, this detailed ver-
ification of (4.2) provides only a check of the soundness of
the model, iterative scheme and series expansions, and not
a check about the general features of quantum mechanics.
However, the way in which various contributions to total
energy conspire to keep it constant is not trivial and will
now be discussed briefly.

The leading term in the series expansion of the average
energy in powers of the small strength A, of the atom-field
coupling is the (time-independent} unperturbed field ener-

gy a gk Acok
~
ak

~
. The fact that this term is of order

is quite natural in the present approximation scheme
in which the small A, and the large a are related by the re-
quirement that the strength Aa of the atom-field coupling
is a constant.

The next nontrivial contributions to the average energy
are the terms of order A, , i.e., independent of A, . In a typi-
cal experiment, the coupling of the atom with the irradia-
tion field is much smaller than the bare-atom Hamiltoni-
an; more precisely, (1/iri)( [V(t) —V]z )s(t) is much small-
er than the Bohr atomic frequencies roi mf. As a conse-—
quence, for irradiations which strongly affect the state of
the atom (i.e., the atom reduced density operator), the
contributions of order A, to the average energy involve
terms of two different orders of magnitudes. The larger
terms (Ho&), involving the Bohr frequencies, corre-
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A. Frequency distributions

In order to display frequency as the essential parameter,
and ignore the detailed mode structure of the field as
much as possible, we introduce a time-dependent frequen-
cy distribution J(co,t) for the field energy, defined for
co & 0, by lumping together the average energies
(lqAcoaaaaa)(t) of all the field modes in each small
frequency interval (co„co+hco),

J(co,t) = g ( 1g Rcoaaaaa )(t)$(co coa)—
k

=Aco lim (1/hco)
hgy-+0 '

k (u~ruk gcu+hep)
& i~ aaaa &«},

J

{5.1)

where the last summation is over all modes k for which
co & coa &co+ Rico. Clearly, J'(co, t) is such that

f J(co,t)dco = g {lg SANaaaaa )(t),
k (mp gm)

(5.2)

where the summation is over all modes k for which
coa & co. Following the same procedure as for all other ob-
servables, we shall express J'(co, t} as a series expansion in
powers of A, ,

J(co,t)= +A, J' '(co, t),

valid for short times [see the discussion between (3.10)
and (3.11)].

The complex functions G;J(co, t) defined as [see (2.37)
where the explicit indication of the location rz of the
atom has been dropped]

Gtt(co, t)= g Va; aa(t)5(co —coa)
k

( I/&c0)
hgy~O ' Vactcza(t} .

k (m&u~ ~e)+Au)
J

{5.4)

are useful to discuss the first contributions {up to ni= 1)
to (5.3). The co and cot dependences of these functions are

spond to the idea that any energy gained by the bare atom
is exactly taken from the field energy. The smaller terms
& [V(t) —V]„),in hx, show that the saine idea also holds
exactly for the atom-field coupling energy, also at order
Xo, of course.

Finally, we emphasize that the relevant contributions of
order A, to the average free-field energy (1„H&r) arise
from the term Ps", offirst order in A, in the power expan-
sion of the transformed density operator. This is clearly
due to the presence of multiplicative factors a in the
transformed version {C2) of the free-field Hamiltonian.

V. SPECTRAL DISTRIBUTION OP THE ENERGY
EXCHANGED BE+&%',EN THE ATOM
AND THE COHERENT FIELD PULSE,

Up TO ORDER k

factorized [see (2.8}]

e '"'G~J(co, t) =e G J(co,to) . (5.5)

Notice that the only nonvanishing contributions to (5.4}
are from those modes k which contribute to the pulse (i.e.,

( aa ) +0) and are coupled to the atom (i.e., ( Va~t ( +0 for
one pair ij at least}.

The functions G,z(co, t) are directly related to the
Fourier transform of the time-dependent Hamiltonian
used in the line irized classical-field approximation.
Indeed, using (2.8) and (2.37), the Fourier transform of the
fuilctloil Vct(t) is

t V te'~'

i&to + i(e-uk)(t -to)=e dt [Va,J.cta(to }e
k

I'(co+ruk )(t -to)
i+ Vajlcta(to) e

(5.6)

Interchanging the summation and the integral, noting
that, for real values of co, the integrals of the exponentials
give 2tr5(co coa) or—2n5(co+coa) and that coa &0 by defi-
nition, and using {5.4},one obtains the relations

t V te'"'

21re Gjt(
~

c0 ~, to), lf c0 (0
2.e""Gcj(~,t, }, if ~&0. (5.7)

8. Bvsjuation of J' '(ru, + co ) for m & 1

Using the same technique as in Sec. IV, one can easily
see that the contributions to the average energy

Measuring J(co,t) would involve the use of a dispersive
spectrometer which {in a somewhat idealized picture)
would sort out the incoming field in frequency bins" of
width b,co and measure the amount of energy received in
~~h bin. In any conventional dispersive system, a fre-
quency resolution hco imphes a distribution of propaga-
tion times between input and output of width ht, with a
lower bound given by hcobt & 1 (this is a rough statement
concerning orders of magnitude for ill-defined quantities
hco and bt). As a consequence of this, the relevant fre-
quency distribution of field energy is J(co,t) for times t as
late as possible after the beginning of the overlap between
the classical-field pulse and the atom. The validity of the
approximations of the present paper, which retain only
the terms (5.11) and (5.13) of J(co,t), is hmited to dura-
tions much shorter than any radiative lifetime of the
atom. However, these radiative lifetimes go to infinity
when A, tends to zero so that useful indications will be ob-
tained by taking the limit of J(co, t) for t~+00. Of
course, the 5 and principal part singularities generated by
this limit process may only be taken as an indication
about the presence of fast-frequency-dependent features,
presumably extending over frequency ranges of the order
of the inverse of the rachative lifetimes.
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& lzeficokakak )(t) of the field mode k, arising from the
first terms of (3.11) for ps(t), can be expressed as
a'iilt0k

I ak I' for n=O [see (316)] and as

K6 ———4x[Vkiiak(t;)+c c. ]. (5.8)

E7 ——4xcok2im X k)J I,.d™k( t)
i,)

x& I j&„„&iI
&'(t') . , (5.9)

respectively, for the initial value and the integral terms for
n= 1 in (3.18). Contributions for n & 2 are of order 2 or
higher in A, in the present short-time approximation,
hence the contributions to &1&Acokakak )(t) up to order
1 in A, are given by

& IA(8)~kakak &' "(t)=a'~k
I ak I

'
'& 1„(3)Acokakak )' "(t)=0,

(5.10)
& l„cWkak'a„)'"(t) =X,+Z, ,

A, & 1„(8)~kakak )'"(t)=0 .
The time-independent teiarx of order a (i.e., of order A, )

is the unperturbed average energy of mode X. The time-
dependent term I('6+K7, of order A, , is the energy "given
by the atom to mode k of the field" in a first, short-time
approximation which ignores radiative effects such as
spontaneous emission and Lamb shifts. Equations (5.8)
and (5.9) show that & lz(8)Acokakak )io'(t) is different from
zero only for those modes k which contribute to the pulse
(i.e., I

ak I +0) and are coupled to the atom (i.e.,
I Vkij I +0 for one pair ij at least).

Combining (5.1)—(5.10), we can express A™J' '(to, t) for
ltd +1 as

~-'z'-"(~, t) =o, u'"(~, t) =o,

A, 2J' i'(ro t)=a2Aco lim (1/boi)
hop-+0 '

k (cogruk &co+bc@)
Iak I' (5.11)

J' '(rat)= —41[,G~, (at t;)+ac.]+ 2hxaHm. QG&(ru, &o) f dt e ''('"(J)w z(( ( ) (&') . (5.12)

t
Aa[G, i—(to, to)e +c c.]+2Am. oiIm Q, . Gii(to, to) J dt'e' ' "

[& Ij &~ q&i I & (t') —Sii, ii] (513)

The leading term (5.11) in this series expansion is the
time-independent frequency distribution of the unper-
turbed field pulse. The next nontrivial term (5.13), of or-
der A, , is the frequency distribution of the change in free-
field energy due to the interaction with the atom, in a first
approximation valid for times t & tb+ikt, where tb is the
beginning of the overlap between the classical-field pulse
and the atom, and ht is a time interval much shorter than
any radiative lifetime of the atom [see the discussion be-
tween (3.10) and (3.11)].

We now discuss some of the properties of the limit
J' '(to, +ao). When (t —to) is large, the first term in
(5.13) has a fast oscillatory dependence upon to, arising
from the factor expIioi(t —to) j. As a result, the average
of this term over any finite frequency interval (which is the
quantity of actual interest) approaches zero when t~+ ao

for any smooth function Gii(to, to). Hence, we can ignore
this first contribution to J' '(ai, + oo ).

To evaluate the time integral in the second term in
(5.13), we choose the initial time t; close before the begin-
ning of the overlap between the classical-field pulse and
the atom, and introduce an intermediate time tf close
after the end of this overlap. The first part of the in-
tegral, over the finite time interval from t; to tf, is a con-
tinuous function of co, appreciably differing from zero
over a frequency range at least of the order of magnitude
of the inverse of the pulse duration (tf t; ). For a puise-
of finite duration, the G,z(to, to) are also functions of co,
with similar hmitations on frequency range. Hence, the

first part (from t; to tf ) of the integral in (5.13) will, in
general„contribute a nontrivial continuous function of to
to S"'(~,+

For t'& tf, i.e., after the end of the overlap between the
classical pulse and the atom, one has, in the classical-field
approximation,

&Ij& & I&(t')

=& Ij)gg&t I) (tf)e ' ' (514)

In the particular case of a pulse which leaves the atom
exactly in the eigenstate i' of Ho&, the only average value
given by (5.14) which differs from zero is
&

I

i') q q &i'
I ) (t') =1, hence the second part (from tf to

t~ ao ) of the integral in (5.13) is easily evaluated as
im(t —to) iu(tf —to)(1/ice)(e —e )(5""—5J i i) (5.1S)

The terms in exp I iso(tf to ) j in (S.15) g—ive a contribution
to J' '(to, + ao ), which is a continuous function of oi, with
a frequency dependence essentially govemied by that of
6;;(te, to) and 6ii(to, to), and the toms in

exp[iso(t —to) j can be ignored in the limit t~ ao brause
of their fast oscillatory dependence upon co.

Hence, a first conclusion is that, if a short pulse
transfers the atom completely from the ground state to
any eigenstate of Ho& (in the classical-field approxima-
tion), then the change of the field energy due to the excita-
tion of the atom is continuously distributed over the field
modes in a whole range of frequencies with no singular
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spectral feature at the atomic-transition frequency. Fig-
ures 2—5 (for the angles 8 which are integral multiples of
m) illustrate this situation for the particular model of a
two-level atom which is discussed in detail in Sec. VD
and in Appendix B. Almost all graphs display positive
and negative excursions of J' '(t0, + 00) and the curves for
8=7tr and 9m in Fig. 5 clearly show that a single atom ex-
cited by a pulse not only takes its excitation energy Acoo

from the field pulse as anticipated, but can also move even
larger amounts of energy from one region of the pulse
spectrum to another.

Whenever the pulse does not leave the atom exactly in
an eigenstate of Hoq in the classical-field approximation,
the present "pure-state" model implies that at least one
pair of complex-conjugate average values

& IJ&~~&i I
&'«I) and & It&~~&J I

&'(tI) with tvtj' is
different from zero at the end of the atom-pulse overlap.
Using (5.14), the second part (from tI to + ao ) of the in-
tegral in (5.13) for one of these average values can be
evaluated as

Qs(t) —. J (m.+00)
Exchanged energy

+

(ola~)) (t) o--

p
lA--t---gl &

(cga')a(t) o -—,
0

+ljC ":
&mot«)(o ~ 'v ~

4 0

1

0)o

J„(e)
Normalized

pulse spectrum

FIG. 3. Similar to Fig. 2 except that, here, a sequence of two
resonaot pulses, phase shifted by m/2 with respect to each other,
eventuaOy bring the atom back exactly in its ground state. Note
that amounts of energy of order Rcoo are moved from one spec-
tral region to another, for a total exchange of energy of exactly
zero.

&x(t

Q~(t) =o
J ( Q, +oo)

Exchanged energy

+l/2------------
(ala'))s(t) o--

-1/2- —------ - -i-- ~-
I
I

+g ---------*---+----------.
(tua'g(t) o--

----------------- ~------~--
+g'- —------- -i------

««n'&,'«&( 0
-g-

+o

J„(m)
Normalized

pulse spectr um

)aQ~(t)
20.5x2ff PaQ&(t) =0

iaa„(t)

+lj'C **l ~ « ~ ~ ~ ~ ~

(a(a')aa(t) o --:

I I

'
I I I o (~a.g(, )

""s"('-i »
I

~ '4 & & I 4 I L & & & I I & ~ ~ I ~ I & I F I

FIG. 2. Frequency distribution of the change in free-field en-

ergy J' '(m, +00}, due to the interaction of a two-level atom
with a short pulse of radiation, ignoring spontaneous emission
(negative excursions correspond to energy absorbed by the
atom). The vertical scales for the exchanged energy and for the
normalized pulse spectrum are such that equal areas under the
curves correspond to equal amounts of energy, and the pulse
spectrum has been normalized to correspond to the energy fuego

of a single resonant photon. The vectors 4xQ{t) and

(QIQ ) (t) are defined by (89)—(812) and (816), and related by
(818). The "flip angle" 8 (which is equal to 3n. here) is defined

by ($25). In a standard NMR experiment, AaQ(t) is the spin
angular velocity as seen from the "rotating frame, "
&g(QIQt)s(t) is the average spin angular momentum and XYZ
is the rotating frame with Z parallel to the constant magnetic
field. Before the pulse, the atom is in its ground state. The
techniques used to generate the data are discussed in Sec. V D.
In this figure, a resonant pulse with a Ciaussian envelope and
8=3+ eventuaHy leaves the atom exactly in its excited state.
Note the smooth, nontrivial frequency distribution of the ex-
changed energy, for a total exchange of energy of %coo from field
to atom.

I ~V

J (g+oo)
Exchanged energy, :

\

Normalized
pulse spectrum

al. t.L
~ plvv' m WS

$
I t&r

xf,

J„(ro)
x)

~ )%40O

N~ +o+ &Rabi

FIG. 4. Similar to Fig. 2 except that, here, a resonant pulse
of constant amplitude and large Aip angle 8=20.5 X 2m eventu-

ally leaves the atom exactly in its excited state. Note the smooth
frequency distribution of the exchanged energy, with the expect-
ed peaks at the resonant frequency plus or minus the Rabi fre-
quency. For convenience, the wings of the normalized pulse
spectrum are also shown enlarged vertically by a factor of IOOO.
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l oP(f —fo) —t(ctP) —Cgt )(g —ff ) g

hm ' dtie e & ij&gg&l i & (tf)t~+ co f
I

=e I
& ) j)„„&i

~
) (tf)[m5(e (t—0 —e;))+iP[1/(co —(co co—;)j)j . (5.16)

Combining (5.13) and (5.16) we conclude that, for a general pulse, the extension to + 0o of the integral in (5.13) can add
a 5 and a principal part singularity at each classical atomic-transition frequency

~
coJ —c0; ~,

tfJ' '(t0, +~)=2(M)lm tog+GJ(toto) I, «'e '[& lj&~~&i I & {t'}—6iJ»]
J

+ie'"" "'yGJJ(rd, to)[&
~
j)g g&j ~

& (tf) —
5JJ, ii]

+ge' f $ $ & f j)g g&i f ) (tf)I7F5($ ($J——s;))+i&[1/ft0 —(+J —toy)j]j ~ (5 17)
i J' (+i)

Of course, the "tails" of the principal parts add to the continuous parts of J+'(to, + 00 ). Figures 5—7 provide examples
of functions J' '(t0, + co ) showing either type of singularity, or both together, sup+imposed on the continuous part. Fig-
ure 5 also shows that the amount of energy exchanged in a 5 singularity can be positive or negative, and may be larger in
absolute value than the excitation energy of the atom.

C. Comparison with standard elementary tine-dependent perturbation theory

One of the main assumptions used in the traditional evaluation of atomic-transition probabilities is that the interaction
only causes a very small change in the state of the atom-field system during the irradiation. In the model discussed in
this paper, this condition will be satisfied by taking the limit of weak pulses, i.e., by treating Aa as a small parameter and
retaining only the first nontrivial term in a series expansion of the relevant observables in powers of )L.a.

For the frequency distribution of the energy given by the atom to the field, (5.13) indicates that the relevant term is in
(4x) and arises from contributions in (Aa) to & ) J )q „&i

~
) (t'}=Tr& I ~ J )z z & i

)
pz(t') j. These contributions can be

evaluated by integration of an approximate form of (3.5) in which p z (t) is replaced in the commutator by its initial value

pq(t')=
) 1)q q&1 (

+(1/iA) I dt"[Qg(t")iL(V(t")—V)egg(t"), [ 1)g g&1) ]+0((hz) ) . (5.18)

The bare-atom Hamiltonian can be written as
Hoq fuoofz~, a——nd the generator of the motion for p z(t)
as RI~ AaQ(t}, where [see (815}—(819)] Iz is the
pseudospin associated with the atom, hzQ{t) is the
pseudo-angular-velocity describing the action of the clas-
sical field on the atom, and F00 is the unperturbed atomic-
transition frequency. We assumed a situation analogous
to NMR of a single spin —,, with a near-resonant irradia-
tion, circularly polarized in such a way that Q(t) lies in
the XY plane [hence Qz(t) =0] and differs from zero in a
simple and slow way over a time interval (duration of the
pulse} much longer than 1/F00. The time dependence of
Q(t) is used as a starting point in the calculations, and is
shown in the figures by its real Xand Y components.

When Qz(t) and Q~ QJt(t}+iQr(t) a——re known, Vz(t)
can be evaluated easily by combining (2.36), (87), and
(89), with the result that V» (t)= Vzi(t) =0 and

Vip(t) = V2i(t) =(A'/2)e Q (t), (5.20)

As shown in Appendix C 5, this leads to

J' '(co, +co)=—Bra g I(4nliI )(Aa)~
j (+1)

X
~
GJi((tDJ toi), to—)

~

X 5(t0 —(coJ —c0~)) j

+0((M)'), (5.19)

where to is only a dummy variable as shown by (5.5).
Equation (5.19) agrees with the standard prediction that,
for weak irradiation, energy is exchanged between the
atom and the field only at the atomic-transition frequen-
cies. As a further check of agreement, one can easily veri-

fy that the coefficient {4n/irt )(hx)
~ GJi((toJ toi), to) ~—

of the S function in (5.19) is exactly the probability of
transition &

~ j)A A&j ~
& {tf} «om state

~
1)g

~ j)z, as evaluated from (3.5), to second order in (4z).

D. Simple ex~~plea for a two-level atom

In this section ere discuss the techniques and approxi-
mations used to generate the data shown in Figs. 2—7.
The calculations were performed for a two-level atom, us-

ing the techniques and results discussed in Appendix 8.

hence GJ(co, to) is given by (5.7) as Gii ——Gi2 ——0 and

Gig( ~co(, to), if a)(0
Gii(co, to), if co~0. (5.21)
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FIG. 5. Frequency distribution of the change in free-field en-

ergy due to the interaction of s two-level atom with resonant
pulses with Gaussian envelopes of increasing magnitude (but
constant duration between half-power points). The 5 singulari-
ties in the exchanged energy spectrum are graphically shown ss
thick vertical bars, with heights proportional to the integral over
the singularity. The inset shows the normalized pulse spectrum
and the 5 singularity, for amounts of energy Reo and Meo.
Other details are as in Fig. 2.
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FIG. 6. Similar to Fig. 2 except that, here, the atom is even-

tually left half way between ground state and excited state, and
the exchanged energy spectrum has a dispersive principal part
singularity in addition to a continuous (mainly negative) part.
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FIG. 7. Similar to Fig. 6, except that, here, the exchanged en-

ergy spectrum has all three types of components: 5 singularity,
dispersive singularity and continuous part. The graphical repre-
sentation of the 5 singularity is the same as in Fig. 5.

In the present case Gi&(to, to ) is appreciably different from
zero in a narrow frequency range around to=coo, and
much smaller outside that range, and Gi2(to, to) is very
small for all co.

When 4xQ(t) is known, the equation of motion (818)
and (819) for (QIQ ) (t) can be solved (numerically in
the present case}, hence the functions (

~ j)q q (i
~
) (t)

are known and (5.17) and (5.21}can be combined to evalu-
ate J' '(oi, + oo). Of course, in our numerical calcula-
tions, the smooth part of J' '(co, + &6 ) is treated separately
from the singularities.

The "pulse spectra" J' '(co, t) have been evaluated
from the given function Q (t) by assuming that the
relevant matrix elements Vk,j have negligible frequency
dependence over the narrow frequency range of interest
around too. With this approximation (5.4) and (5.11) show
that J' '(to, t) is proportional to m

~
G&2(co, to)

~

. The
normalized pulse spectra

( l„ceo~)'-" (5.22)

shown for reference in the figures are such that the area
under the J„' '(to) curve corresponds to a total energy
%coo (note also that the irrelevant time variable has been
dropped). The same vertical scale is used in the figuies
«r J' '(co, + &e) and J„' '(to), so that equal areas corre-
spond to equal amounts of energy.

Let us emphasize that, in the present context, the re-
sults shown in the figures do not involve any truncation of
the atom-field coupling Hamiltonian (except for the as-
sumed linear dependence in the field}. In the case of more
general (linear) coupling or irradiation, the rotating-wave
approximation would lead to rather similar results for
J' '(co, t) and J' '(co, +Do) for co close to coo, with the
slowly time-dependent truncated quantity Qz(t), defined
by (812) in Appendix 8, playing the role of Q(t).
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VI. PHASE-SENSITIVE DETECTION
OF THE RADIATION "EMIYTED" BY THE ATOM

field operators, which depends on the type, shape, and po-
sition rD of the detector,

& Ds &(t) =Trs IDsps(t) I (6.1)

of a Hermitian "observable" Ds describing the detection
process, for a state of the atom-field system described by
ps(t) As usu. al, the detector will not be included in the
Hamiltonian Hs of the system.

In the simple type of phase-sensitive detector discussed
here, the relevant beats are in narrow frequency bands
around the differences (and sums) between the reference
oscillator frequency (co„/2ir) and the atomic-transition
frequencies, hence (to„/2') will usually be chosen very
close to one of the atomic frequencies in order to make
the corresponding component of the beat a slow-enough
function of time to be directly observable. As suggested
by Fig. 1, it will be convenient to assume that the refer-
ence mode r does not interact with the atom [hence
V„J(rz }=0 for all i and j in (2A) and (2.37)] and does not
participate to the pulse, and that the pulse does not in-
teract directly with the detector.

The detector is directly coupled to the field but not to the
atom, hence the observable Ds acts trivially in the atomic
state space,

Ds= &~Ds (6.2)

For simplicity we shall assume that the detector is operat-
ed at such a low light level that the counting rate observ-
able Dt; is well approximated by a bilinear combination of

A. A simple model for phase-sensitive detection

The scheme which we shall discuss here is indicated in
the lower part of Fig. 1: radiation emitted by the atom is
superposed with a much stronger coherent "reference" ra-
diation in a detector and, for a photoelectric detector, the
relevant measured quantity is the change in the counting
rate of photoelectrons due to the atom radiation (often
called "beats" between reference radiation and atom radia-
tion}.

In spite of much effort and progress, the general theory
of photoelectric detection is still, in many respects, an
open problem. Following the tradition, we shall replace
this missing theoretical link by a conventional educated
guess" which, hopefully, is suitable for the problem at
hand. Hence, we shall assume that the average measured
photoelectric counting rate at time t can be predicted by
evaluating the quantum average value

(6.4)

where Dkk = ,' (Dkk—+Dkk ) and Dkk = ,'(Dak-+

+ Dk+k+) are invariant for permutation of the mode labels
k and k', and Dkk ———,

'
(Dk+k +Dkk+ ); the Hermiticity of

DF implies that (Dkk )'=Dkk and (Dkk )'=Dkk, hence
Dkk is real. The idealized detector which we consider
here will have a counting rate of exactly zero whenever
the field is exactly in its ground state, hence

g Dkk
k

(6.5)

The reference radiation used in the phase-sensitive
detection scheme vrill be described as a quasiclassical exci-
tation of a single field mode, with label r (standing for
reference), parameter a, (t), and frequency to„. In order to
avoid ambiguities in the discussion of weak atom-field
coupling (i.e., A, ~O with 4z remaining constant), we have
not included the real number a [see (2.30), (2.36), and the
end of Sec. II A] in the definition of the a(t} parameter of
the reference mode r. With this notation, the properties
of the detection scheme are not affected by the limit pro-
cess and the disentangling operator Ms(t), originally
given by (2.30},can be written in the form

Ms(t) = 1g Mp( I aak( t) I )Mp(a„(t) ) . (6.6)

The assumption that the pulse does not interact with the
detector implies that Dkk ——Dkk =0 for all modes k
for which

I
ak(t} I &0 (or, more compactly, that

[D+,M+( Iaak(t) I }]=0), and hence the bar version of Ds
1s

DF(rD) = g [Daa (ro)akak'+Dao' (ro)akak'
—+

k, k'

+Dk+k (ro }akak +Dka+ (ro)akak ] .

(6.3)

Using the boson commutation relations, we may write Dz
under the more convenient form

DF(rD) g [Dkk'(rD)akak'+2Dkk'(rD }akak'0

k, k'

+Dkk'(rD)akak']+ y Dkk (rD) IF ~

k

Ds(t)=Ms(t)DsMs(t)= lgMJ(a, (t))D M (a„(t))

=1~ g (Daa aaaa +Daa aaaa }+2a'(t}g (Draaa+Drkak }+ID~ [ar'(t)]'+D~
I ar(t}

I
'] lr +H c.

k, k' k

We can now use the same techniques as in Sec. V to
evaluate the first terms of a series expansion of the
quantum-average value (Ds)(t) in powers of A, [see
(3.20)]. Equation (6.7) for Ds(t) does not involve the pa-
rameters k or a, hence

"(Ds ) '"'(t) =
A, ,"Trs I Dsps"'( t) I =A"Trs IDsp s"'(t.) ) .

The leading term is easily evaluated because all nontrivial
field operators in (6.7) have an average value zero in the
ground state of the field,
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&Ds)'"{t)=Trs[Dsps"'l

=ID [a,'(r)p+D'
I a„(r) I'j+c.c.

=2D
I a„(to) I

+2ReID.-[a„'(r,}]'e '"" "'~ . (6.8}

The first term in the right-hand side (rhs} of (6.8) is the
expected time-independent rate of photoelectric detection
of the reference radiation in the absence of the atom (i.e.,
A, =O). The second teil~ oscillates around zero at twice
the reference-mode frequency, a frequency much too high
for direct observation with present technology for
(ei„/2n ) in the optical range.

As ps"{r) is linear in ak and ai„only the terms linear
in ak and ak in (6.7) contribute to A, &Ds)'"(t) and this
contribution is proportional to

I
a, I. The contribution

K9 to A, &D~)" (t) arising from the initial condition in
(3.18) for ps '(t) is easily evaluated, and is exactly zero in
the linearized dipolar approximation (see Appendix C),
hence we shall ignore it here. The contribution to
A, &Ds)"'(t) arising from the integral in (3.18) for Ps"(t),
computed in much the reme way as &Hop)(i) in Sec. ~,
can be written as

Z&D, )'"(t)-K,

Equation (6.9) expresses the behavior of the phase-
sensitive detector in terms of the quantities
TJ.(rz, rn, t t—') which are joined ProPerties of (i) the
atom-field coupling Vs(rz), (ii) the detection observable

Ds(rn ), (iii) the reference mode r, and {iv) the mode struc-
ture of the electromagnetic field which may be strongly
affected by the optical instruments inserted between the
atom and the detector. For practical instruments with
high collection efficiency, good approximations for (6.10)
should be provided by techniques of the type given, for in-

stance, by Kline and Kay. '0

In Appendix C we make an exact evaluation of (6.10) in
the simple case of (a) the linearized electric-dipolar cou-

pling (2.5), (b) a point detector sensitive to the electric-
energy density (with sensitivity K), (c} a free electromag-
netic field (i.e., no optical instrument), and (d) a reference
mode with propagation vector k„, frequency ai„/2', and
linear polarization vector s, . In this computation, the
electric-energy density operator is taken proportional to
the normally ordered version:E~(r) Ep(r): of the squared
modulus EF(r) E~(r) of the electric-field operator (i.e.,
the version of EF(r) E~(r) obtained by replacing each
term akak by akaq, ' we shall indicate this transformation
by writing the operator between colons). The correspond-
ing detection observable,

=A2Re (1/iA')2a, (ro)e
Dp(rD) =K:Ep(rg) ) Ep(rg) ):, (6.11}

X TJ(rg, rp, t t'), —(6.9}

where
T(g(rg, rn, t t') =—g I

—V~g(rq )D k{rn)e
k

+ Vkj «~ »'a«n)e "
l

(6.10)

where K is a constant, is Hermitian, bilinear in the field
operators, and satisfies condition (6.5) for zero detection
in the ground state of the field. Arguments for this
choice will be given in Sec. VIS. Using the result (C18)
of this computation, expression (6.9) for A, &Ds)"'(t) is
easily evaluated as (R=rn —rq is the relative position of
atom and detector and R=R/

I
R

I
)

A, &Ds)"'(t)=AX(1/8m)Re a, (to)(leo, /2L')' ~e ' e ' '(1/c
I
R

I }

,, & Ii&~ ~&j I
&'(t —IR I/c)

xI(&i IV,& I
j&.s, )—2(&I Ip,,„IJ& R)(s, R)) +( ~ ) (6.12)

where the ellipsis represents similar terms in
I
R

I
and

I
R

I
3, also involving & Ii)z z&j I ) (r —IR I/c). At

distances
I
R

I
much larger than the wavelengths at the

atomic-transition frequencies„ the teims in
I
R

I
and

I
R

I

3 in the rhs of (6.12}can be neglected.
In typical experimental situations, the time evolution of

p~(t) is caused essentially by Ho&, hence the time evolu-
tion of & I

i )a a &j I ) over a few periods is well approxi-
mated by

& Ii&»&j I
&'(r}

and the second time derivative at time {r—
I
R I /c} is

wdl approximated by

—(;—j}'&I ) &jI) (r —IRI/)
The standard photoelectric detectors are unable to follow
time dependences of the electric-energy density at optical
frequencies, hence the scheme discussed here requires ad-
justing ei„close to one of the atomic-transition fre-
quencies, for instance (coj —co;} with coj ~co;, in such
a way that the combined time dependence
exp(i'„t)exp[ i (co co;)t—] which appear—s in (6.12) is
slow enough for actual direct observation. With this tech-
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nique, the time evolution of each term ( I
i )~ ~ ~J I }

be measured in great detail by suitably choosing to„.
The detection of beats between the atom radiation and a

reference radiation is qualitatively different from the
direct detection of "spontaneous emission": spontaneous
emission manifests itself from n=2 on in (3.11) and
causes observable effects of order A, in the present short-
time-approximation scheme, whereas A, (,Ds)'"(t) is an
observable quantity of order A, , arising from the term
n=l in (3.11}. Also (ADz)"'(t) is proportional to the
amplitude

~
a„~ of the reference radiation, hence can be

made large (without affecting the atom in any way) by
suitably increasing

~
a,

~

. Note, however, that increasing

~ a„~ does not improve the detectability of the radiative
effects of the atom because A, (Ds )"'(t) is Superimposed
on the direct detection (,Ds)' '(t} of the reference radia-
tion itself, which jves a photoelectric counting rate pro-
portional to

~ a„~, hence an rms fluctuation in counting
rate proportional to ~a„~. Furthermore, for a point
detector and free field, spontaneous emission is detected
proportional to

~
R

~

whereas (6.12) clearly shows that
the beats are detected proportional to

~

&
~

Performing an experiment in the optical-frequency
range with the type of setup suggested by Fig. 1 would be
very difficult because it would require an exceedingly ac-
curate and permanent alignment of the optical system,
detector and atom to avoid averaging the beats to zero.
However, the beats discussed here have already been ob-
served in the optical range many years ago, using a more
suitable experimental setup. "

[Az(ri), BF(rz)]=0, whenever r»r2 (6.14)

including the particular case [AF(r, ),Ar(r2)] =0, of
covrse.

Let us now consider a state pdeF of the field such that,
in a three-dimensional region 9P of space (and on its bor-
der}, the average value of all functions of field com-
ponents have the same value as in the ground state poF of
the field. Another necessary condition for locality of the
observable AF(r) is that

TrF [AF(r)p~F I
=TrF IAp(r)pgpI, (6.15)

whenever r is in 9P.
It is quite obvious that operators such as EF(r),

[E~(r) E~(r)I, and

:EF(r) Ep(r):=Ep(R).EF(R)—lr g ~
ek(r)

~

(6.16)

uum (or for an ideal optical system imaging rz onto ro).
Let us briefly examine the question of locality in gen-

eral. For the sake of uniformity of presentation, we shall
use the Schrodingex picture in which the field operators at
fixed locations are time independent. In a Heisenberg pic-
ture all these operators would be at the same time. We as-
sume that the operators AF(ri} and B~(rz} are both local,
respectively at ri and at rz, meaning, for instance, that
&p(ri) describes some physical condition at the particular
location ri (and not at other locations}. In analogy with
the well-known situation for the components of the E and
B fields, ' we expect that the local character of A and B
implies that

8. Digression about locahty, causality,
and propagation of light

In contradistinction with the rest of this paper, the dis-
cussion presented in this section rests on heuristic argu-
ments.

As far as causality and propagation of light are con-
cerned, Fig. 1 suggests the bold idea that the response of
the fast detector at location rD and time t depends upon
the radiation emitted at location r„and time t bt-
(where ht is the delay for propagation of light from r„ to
rn), hence depends upon the state of the atom at time
t bt and upon —the irradiation field at location rz and
time t ht. However, i—n a description in which atom and
field are treated as a single system, using the notion of
"state of the atom*' may be misleading. The model used
in this paper allows a more cautious formulation of the
idea, which avoids this weakness: if the classical field as-
sociated with the coherent excitation pulse has a sharp
front which crosses the location r„of the atom at time t&,
the effect of the pulse on the atom should not be felt at
the location r~ of the detector at any time earlier than
(tb+h, t) These simp. le ideas can be expected to hold in
the above form for a point detector for which the detec-
tion observable Dx is "local at rn" (i.e.„ involves proper-
ties of the field at the single location ro and not at other
locations), and for an atom-field coupling Vs which is
similarly local at rg. Furthermore, the "bold" idea above
clearly assumes that there is a single propagation time ht
from xz to rn, as would be the case for a free field in vac-

where gk ~
ek(r)

~

is a c-number, are local in the above
sense and satisfy (6.14) and (6.15). In contrast, the opera-
tors

EF (x) = yek(r)ok, EP(r) = y„ek(r)ak,
k

(6.17}

such that Er(r)=Et;(r)+EP(r) and Ep(r)=(EP(x)},
appear as nonlocal (in spite of the typography used).
Indeed, one can show after some calculations that, for a
free field and for two different locations ri and rz,

[Ep (ri),EF+(rz)] = IF(Pic/xr )
~
ri —r2

~

(6.18)

in clear contradiction to (6.14). One can also show easily
that the operator Ez+(r) does not satisfy (6.15}by consid-
ering the particular quasiclassical state of the free field in
which ai ——(8L/%cubi, )'~z for all k pointing exactly in the
+ z direction (in a discrete k space) and si, ——2, and all

other a parameters are equal to zero. The average field in
this state is given by

( Ez(r }}=x5(z), (6.19}

( E~+(x) ) =xI ,' 5(z)+ (i /2n }9—'(1/z}I, (6.20)

and is clearly different from zero for locations x outside

and one can easily verify that other combinations of field
components, such as:Er(r) Er(r): for instance, also devi-
ate from their ground-state value only if r is in the z=0
plane. However, the average value of EP(r) in this state
is given by
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the z=O plane, in contradiction to (6.15).
Coming back to the specific problem at hand, the

lincmized electric dipolar coupling

V~,s(r~)= p—~ Ez(r~)

= —g 1 j&~ ~&i
I &J Iv.~ li& EF«~}

APPENDIX A: QUASICLASSICAL STATES
OF A SINGM HARMONIC OSCILLATOR

1. Generalities and "displacement operator"

The state of a classical harmonic oscillator of frequency
co/2w can be completely specified by the complex number
a(t) which evolves in time according to

(6.21)
a( t) =a(to)exp[ iso(t ——to)], (A 1)

appears as a local operator because it involves the field
only through the local operator Ez(rz). In contrast, the
rotating-wave approximation (RWA) to V~s(rq ), which
amounts to replacing EF(rz} in (6.21) by EP(rq) when
coj p t0;, and by E~ (rq } when toj. & co;, appears as a nonlo-
cal operator because E~+ and E~ are nonlocal.

The usual rough caricatures for the photoelectric detec-
tion observable are proportional to the electric-energy den-
sity. Of course, E~(rn).E~(rn) is not a suitable observ-
able because of its (location-independent) divergent aver-
age value in the ground state of the field. One way out of
this difficulty is to subtract the offending ground-state
average value from the operator, as shown by equation
(6.16), hence leading to the proposal D~(rn )
=E:E~(r n) E~(rn }:,much in the same way which leads
to the Hamiltonian H~ ——gk Acokakak for the free field
itself. This proposal is local at the single point rn.
Another way out of the difficulties with E~(rn) E~(rD ) is
to replace it by E~(rn) EP(rn}. However, as indicated
above, this replacement leads to a proposal for DF(rD)
which is not local at rn.

It is very gratifying that, in the framework of the
present model and to first order in A,, exact causality [see
(6.12}] is obtained without any approximation when the
atom-field coupling Vs(rq } and the detection observable
D~(rn) are both local, and the field propagates freely in
vacuum. Equation (6.12) is even in agreement with the
bold version of causality described at the beginning of Sec.
VIS. This result, however, should be taken with caution
bx:ause it was obtained in a first approximation in A,

which is still very close to classical physics. It is also gra-
tifying to verify (after some calculations) that replacing
V~s(rz ) by its RWA„or using a D~(rD) proportional to
E~ (rn) EP(rn), or both, destroys this exact causality, as
expected for nonlocal interaction or detection. The same
relation between exact causality and the choice of interac-
tion and detection observable has bxn obtained by de
Haan' in a different context.

and is defined such that the oscillator energy is given by
Z„=e ia(t) i'.

To each classical state, specified by a(t), we can associ-
ate a cp~siclassical or coherent quantum state

~
a(t) ) by

requiring that (a) the quantum average annihilation opera-
tor &a(t)

~
u

~
a(t)) is equal to a(t) and (b) the quantum

average energy has the lowest value compatible with the
first requirement. These requirements imply that

a
~
a(t)}=a{t)

~
a(t)), (A2)

and, if we omit the "zero-point energy" from the oscilla-
tor Hamiltonian

H =fuuata, (A3)

M(a(t)) =exp[a(t)at —a'(t)a] . (A5)

We shall now collect some properties of M(a(t)) which
can be derived easily with the help of the rich set of
theorems and methods given by Louisell. ' The displace-
ment operator is uaitary,

Mt(a(t)) =M '(a(t)), (A6)

has the simple symmetries

Mt(a(t))=M( —a(t)), M(0)=1,
and the group property

M(a2(t))M(ai(t)) =M(az(t)+ai(t))exp(iy2i),

where grani is a real, time-independent phase

uzi ———
2 i[az(t)ai (t)—az (t)ai(t)] .

Useful commutation properties of M are

(A7)

the quantum average energy &a(t)
~

~
~

a(t)} is equal to
the classical energy.

Quasiclassical states can be constructed from the
ground state

~
0} by the action of the Glauber~ displace-

ment operator M,

i
a(t) }=M(a(t))

i 0), (A4)

where

We are grateful to I. Prigogine for his continued in-
terest in our work and his encouragements. We thank M.
de Haan for informing us about his results well before
publication, and for several helpful discussions. One of us
(J.J.) would like to thank D. P. Weitekamp for an il-
luminating discussion in which D.P.W. first mentioned
the continuous spectral feature described in Sec. V.

[a,M(a(t))] =a(t)M(a(t)),

[a,M(a(t))] =a'(t)M(a(t)),

[a ta, M(a(t))] =[a(t)a t+a'(t)a
—(a(t) ( ]M(a(t)) .

(A10)

The first two relations of {A10)can also be written as
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M(a(t))aMt{a(t)) =a —a(t),
M(a(t))a M (a{t))=a —a'(t),

(Al 1)

and similar relations with the roles of M and M inter-
changed using (A7). Following the lines indicated by
Louisell, ' the above results can be extended to any func-
tion g (a,a }which can be expanded in a power series,

M(a(t))g (a,a t)Mt(a(r)) =g(a —a(r),o t —a'(r) ) .

(A12)

A little algebra shows that

Hence, the kets M(a(r}) In& are the eigenkets of the
Hermitian operator

[a —a'(r)][a —a(r)]=M(a(t))NM (a(t)),
and the corresponding eigenvalues are the non-negative in-
tegers. The eigenstate of [a —a*(t)][a—a(t)] with the
eigenvalue 0 is the coherent state

I
a(t) &.

Further insight in the relations between the kets
I

n & of
the usual basis and the kets M(a(r))

I
n & of the new basis

can be gained by starting from the well-known relation

I
n & ={n!) '~2(a t)"

I 0&, (A18)

ji}l—M(a(r)) =[H,M(a(t))] .

2. "Large" and "smaH" operators, states close
to a coherent state

I a{t })

(A13)
multiplying both sides at the left by M(a(r)) and using
(A10) to obtain

M(a(t))
i
n & =(n!) 'i [ai—a'(r)]"M(a(r))

i 0&

=(n!) ' [a —a'(r)]"
I
a(r) & . (A19)

With the notation Ii if&II =&Pig& for the square of
the norm of a ket, one can easily show that

II[& —«i)] I
a{i)& II'=0 llo I

a{r}&ll'=
I
a{i)I'

(A14)

for a normalized ket ia(t)& [i.e., &a(t) ia(t)&=1]. In
this way, when acting on the coherent state

I
a(r) &, the

operator [a —a(t)] appears as the zero operator and the
operator a as of order

I
a(t)

I
. If these operators act on a

state
I y(r) & (not necessarily coherent) which is close to

ia(t)& in the sense that ii i@&(t)&—ia(t}&ii &~1, a a(t)—
will appear as a very small operator and a will still appear
as of order

I
a(r) I. Conversely, when acting on a state

which is close to the ground state
I 0&, o —a(t) appears

as of order
I
a I, and a as very small. We have found

these remarks helpful in sorting out contributions involv-

ing various powers of
I
a(t) I

.
The obvious relation

II I +«) &
—

I
«i) & II'= IIM'««})[ I t«) &

—
I
«r}&]II'

IIM'(a(r))
I p(r) &

—10& II' (A15)

shows that, if
I p(t)& is close to the coherent state

I
a(t) &,

then M (a(t)')
I y(t) & is close to the ground state IO &.

3. A convenient basis for states close to
I
a{t}&

The representation and manipulation of states which
are all close to some known quasiclassical state

I
a(r }& are

simplified by the use of a basis which is constructed by
the action of the unitary transformation M(a(r)) on the
usual basis [ I n&j, which diagonalizes the occupation
number operator N =a a. Starting from

aiba in&=n in), n =0, 1,2, . . . , (A16)

we multiply both terms of this equality by M(a{t})at the
left, insert the unit operator 1=Mt(a(t})M(a(r}) at the
left and at the right of a, use (Al 1), and obtain the rela-
tion

i[a a'(r)][a ——a(t)] ][M(a(t))
I
n &]

=n[M{a(t})
I

n &] . (A17)

Clearly, going over from [ I
n &) to jM(a(t)) I

n &J only
requires replacing a by a a(t)—, a by a —a'(t), and the
vacuum state IO& by the coherent state

I
a&. In this re-

placement, the commutation properties of the basic opera-
tors are not changed: [a,at]=1=[a —a(t},a a'(t)]. —

Going over from the usual time-independent basis to a
time-dependent basis such as [M(a(t)) I

n & j calls for
some precautions and gives some new possibihties which
are discussed in Appendix D. For the convenience of the
reader we mention that, using the notation of Appendix
D, with [ I

n &J as basis c and jM(a(t)) In&J as basis b,
one has the relations Ws, (t) =M(a(t)) and Ds, (t)
=H —M(a(r})HMt(a(t)), with H given by (A3).

If one prefers to avoid the use of a time-dependent
basis, the time independe-nt basis [M(a(to))

I
n & i still

provides a very useful tool.

APPENDIX 8: 'j.WO-LEVEL ATOM

In this appendix we shall use the fiction of a two-level
atom to illustrate some features of our model in a simple
case.

1. The bare taro-level atom

Let the two orthogonal and normalized kets
I 1&z and

I2& ~ form a basis in the two-level atom ket space. From
these two kets we can construct a convenient set of four
orthogonal Hermitian operators, which spans the corre-
sponding four-dimensional operator space, as

1 =I» &li+I»
~x, =-,'(

I »» &2 I+ I»» & 1
I
},

~r~=i2{ I1&A A&21 —I2&g ~&1I }

+zx= '(12&a a&2 I I
1&A el&1 I

}

This set contains the unit operator, and the other three
operators have the same simple corn.mutation relations as
the Cartesian components of angular momentum (divided
by A'), hence can be considered as the components of a
pseudo-angular-momentum 8„ for a pseudo-spin- —,

' asso-
ciated with the atom in some abstract XYZ space. In gen-
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eral, this abstract space has nothing to do with the usual
configuration space in which one describes such things as
positions of atoms, polarization and propagation of fields
etc.

Any operator is completely specified by the coefficients
of its expansion as a linear combination of the operators
of a set such as (81), and vice versa. For instance, the
density operator pz(t) describing any quantum-statistical
state of the two-level atom can be expressed as (using the
relation Trz Ipz j =1)

p„(t}=—,
' [1„+4&I„)(t}I„], (82)

in terms of the real vector

where the first two terms are the contributions of i =j
while the last two are the contributions of i+j in the
summations over atomic states.

In the linearized electric-dipole approximation all Vko
and VkU are identically zero and Vkz and Vky are related
by VkR

—Vki. In the case of NMR, Vko is identically
zero and the other three coefficients are typically of the
same order of magnitude for each inode k, with a notable
exception for modes which are circularly polarized in the
XF plane (see below). The subscripts 8 and V stand for
the traditional denominations "real" and "virtual. "

Using (88) we have

~as(t) l Vs{t) —Vs]QS(t)

& 4 )(t)=Tr~ Ip~(t)4 j (83) =iri1, .4z Q(t)8 1F+A'A, aQo( t)1„ 1F,
and any Hamiltonian Hz (t) for the atom can be expressed

Hg(t)=[ —, Trg IHg(t) j]lg+[2Tr„IHg{t)lg j] Ig .

(84)

where

Qo{t)={1/2A')g Vkoak(to)e ' +c.c. ,
k

(810)

With this notation, and using the relation'
[Iz a, I& b]=i(aXb) Iz valid for any e-number vectors
a and b, where X denotes a vectorial product, the quan-
tum equation of motion i Abpz(t)/Bt =[H„(t),pz(t)] can
be written as the equivalent relation

and the pseudo-angular-velocity 4zQ(t) is given by

kaQ(t) =LzQa(t)+AaQy(t)+4zQU(t), (811)

where Qtt (t), Qi (t), and AQU(t) are real vectors of XFZ
space, with components given by

—
& I„)(t)=(2/R)Tr„{H„(t)l„jX &I„)(t), (85) Qa+(t) =Qax(t)+i Qar(t)

which only involves real c-number vectors of XYZ space,
and describes a rotation of vector & Iz )(t) at the instan-
taneous angular velocity (2/R)Tr& I Hq(t)Iq j. It is a re-
markable feature of the two-level model that exact
quantum-statistical predictions can be obtained from such
a simple and easily visualized classical calculation.

In the case of the time-independent bare-atom Hamil-
tonian Hoq, it is convenient to take the ground state of
Hoq as

~
1)~ and its excited state as

~
2)~, and to choose

a zero of energy halfway between the two eigenvalues of
Hog, so that

Ho~ =~oIz~
where NO=N2 —N ~ is a positive angular velocity. %e also
introduce the convenient operators

I+~ ——Ix~+iIr& ——
i 2)g g& 1

i
and I g=(I+g)

(87)

2. The coupled two-level atom and fieM system

For the two-level atom expression (2.4) for the linear
atom-field couphng becomes

~ Vs(rA )= Y~ 1A ~ g[ Vko(rA )~k+ Vko(rA )~k l

+Ized SAg[ VkU(rg }ak+, Vku(rg )ak 1
k

+I ~g [Vks(r~)& + V (rw)&k]

+I—w~"-iA g [Vkv(rx)&k+ VkR(r~ )ukl
k

=(2/A')g V a (t )e
k

Qy+{t)=Q~(t)+iQ~(t)

k

QUz(t) =(1/R) g VkUak(tO)e k +c.c. ,
k

Qaz(t) =Quiz(t) =QUI(t}=QUr(t) =0,

(812)

ifi ps{t) = [—I A gs(t) Vsgs(t)

+A'1„4zQ(t)e 1. F j,ps(t)] . (813)

[The last term in (89) leads to a vanishing contribution in
the commutator in (2.49)].

The initial condition, given by (2.50), is easily obtained
explicitly, to first order in A, , using (3.12), (3.14), and the
fact that (3.15) becomes here

Vkv
1Vs =g'

&
I+„ak

il cdo+cok

{Vku —Vko)/2
+ ( ~1)„&1~)

(814)

(c.c. means complex conjugate). In these relations, all
quantities of the type Vka, etc. , are tacitly evaluated at the
location rz of the atom.

Using (89), the equation of motion for ps(t) becomes
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3. The classical-field approximation

Using (89)—(813), the equations of motion {3.1) and
(3.4) can be writtm in the compact forms

iR —pg(t}=[fiIq 4xQ(t),p „(t)],

by using the Magnus txxuisformation. s Of course, the
rotating-wave approximation would also replace Q(t) by
Qa {t},but this procedure would involve a major trunca-
tion of the atom-field coupling Hamiltonian itself, with
far-reaching consxxluences (see Sec. VI). These remarks
also apply in the case of a multilevel atom.

iR- B„(t,tp)=[BI„hxQ(t)+fi4zQ o(t)lg]Bg(t, t p) .

( QIQ ) (t)= ( Qg (t)Ig gg(t) ) (t)

=Trw Ipw (t)gq (t)Iw ga (t) I

=Trw Ipa(t)lg I, (816)

where (QIQ ) (t) is a shorthand notation. When pz is a
pure state (i.e., a projector)„ the length of the vector is —,'.
Smaller lengths correspond to mixed states and lengths
above —, are impossible. The density operator is given by
[see (82)]

p~(t)= —'[1~+4(glg & {t)1~] (817)

and the equation of motion for (Qlgt) (t) is the Bloch
equation without relaxation,

(815)

The behavior of the solutions can be visas&ized easily by
introducing the real vector of XYZ space

4. A simple ample from Z'xnan spectroscopy

Let us briefly discuss the application of these ideas to
the case of NMR of a single spin —,', in which XYZ space
and ordinary configuration space are directly related. The
spin Hamiltonian can be written as —yirilq. (Bp+B,~(t)),
where y is the magnetogyric ratio of the spin, Bp is the
constant magnetic induction which is the source of Hoq,
and S,i(t} is the irradiation magnetic induction at the lo-
cation of the nucleus. In order to satisfy (86), the unit

vector t must point in the direction of the vector —ySp,
so that too ———ySp Z is positive. The supplementary term
A,[Vs(t) —Vs], which appears in the equation of motion
{2.35} of ps(t), is given here by —yi}ilq B,~(t) l~. The
following relations are helpful in going over to the tilde
version (3.1) of the equation of motion:

Q~ {t)1+~g~ {t)=I+~exp[ —+t o(t —to }]

Q„(t)Ized Qg (t) =Ized

Ia Ba«)= x [I+~B.i-(t)+I-~Be+(t)1

—(Qlgt)~(t) =4xQ(t) X (QIgt)s(t), (818) +Ized&cd

where the time derivative is for an observer which moves
with the XYZ frame of reference. The initial condition
(3.5) takes the form

(819)

where the caret denotes a unit vector.
Equation (818) describes the motion of the classical

vector (Qlgt)~(t) as a rotation at the known angular
velocity 4xQ(t} with respect to the XYZ frame. Solutions
of (818) and (819) have been discussed extensively in the
literature of NMR and quantum optics, so that only a few
remarks will be made here.

In a typical experiment in pulse spectroscopy, the pulse
is approximately at the resonance frequency coo of the
atom, its duration is much longer than the atomic period
2nltpp, and the strength of the atom-pulse coupling is
much smaller than the bare-atom Hamiltonian (i.e.,
Aa

~
Q(t)

~
&&pip at all times). Under these circumstances

Qa(t) varies with time at frequencies much lower than too,
QU(t) oscillates at frequencies close to top and —cup, and
Qi (t}oscillates at frequencies close to 2pip and —2tpp. As
a consequence, a useful (although sometimes misleading)
approximation for the solution of (818) for not-too-long
times can be obtained by first dropping the "fast oscillat-
ing" parts Qz and QU of Q, and then solving (818) with
Q(t) replaced by the remnant Qa(t) of this truncation.
Usually this makes the equation soluble analytically, or, at
least, amenable to numerical methods. If the above ap-
proximation [i.e., keeping only Qx(t)] is not accurate
enough, it can be improved in a particularly efficient way

with

B,&+ (t)=B,Ut(t)+iB,&r(t) . (820)

The angular velocity hxQ(t) can be evaluated from the re-
lation

B,i+(t) =B,Ut{t)+iB,)y(t)

=h (t)e'~e (821)

where h (t) is the modulation amplitude, qr is the phase at
time tp, and tpZ is the angular velocity of rotation of
B,i(t) around Z (with the sign of tp giving the sense of ro-
tation}. Then, Q(t) is given by

4zQ+(t}= —yh (t}e'ee

Qz(t) =0 . (822)

In the simple case where co =top and h (t) is any real func-
tion,

4rQ(t) = —yh (t)p, (823)

sphere the time-independent unit vector y =Xco~
+Ysiny, lying in the XY plane, describes the phase of
the irradiation field, the exact solution of (818) satisfying
(819) is

Qg(t) j —yiriIq 8,)(t) )Qq(t)=drily hxQ(t) .

A particularly simple situation arises when 8,~(t) re-
sults from the amplitude modulation of a wave of con-
stant frequency, circularly polarized in the XYplane,
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( QIgt)x(t)+i (QIgt) r(t) =(i /2)e's'sin8(t),
(824)

( QIgt )z(t) = —,
' c—os8(t),

where the angle 8(t) of rotation around qr is given by

8(t)= f, —yh(t')dt'. (825)

When 8= (m/2+ n m } for any integer n, the vector
(QIQt) lies in the XY' plane, hence the two atomic
states are equally populated and the quantum average of

l
2) q ~ (1 l

is maximum in absolute value. When
8=(m+2nm}, the atomic populations have been inter-
changed and, when 8=2nn, the atom goes back to its ini-
tial situation.

When to+top, an exact analytical solution of (818) is
available in a few other particular situations. ' In all oth-
er cases, approximations have to be used (including nu-

merical methods).
In this example, one sees clearly that the simple form

(823) of AaQ(t) results from a realistic (although particu-
lar) choice of the bare atom (NMR) and of the exciting
classical field f,i(r~, t) and is not the consequence of some
truncation of the atom-field coupling Hamiltonian such
as, for instance, the rotating-wave approximation (RWA)
in which all terms for the atom-field coupling Hamiltoni-
an Vs [see (88}for instance] involving Vki or VkU are re-

placed by zero. This remark is well illustrated in the case
where the field [see (2.7)] described by (821} involves a
single mode k', circularly polarized and propagating
parallel to the Z direction for a plane wave. Then h (t) is
a constant for all times. If we compare (812) and (822),
keeping in mind that cop and rpk =

l
t0

l
are both positive

whereas the sign of cp indicates the sense of rotation of
Re (bk (rq )ak (t) j, we conclude that Vk i

——0 if the field
rotates in the same sense as the free precession of the spin
(t0k positive) and that Vka ——0 for the opposite sense of
rotation, in agreement with the well-known selection
rules.

In the case of NMR there is a direct relation between
XYZ space and ordinary inertial configuration space,
which can be visualized in two useful ways. In the first
visualization, the XYZ frame rotates with respect to the

inertial frame at the angular velocity tppZ of the free pre-
cession of the spin, i)1(QIQt) (t) is the averaged spin an-

gular momentum as seen from from the rotating XYZ
frame, and —(1/y)AaQ(t) is the magnetic induction

8,~(t). In the alternative visuahzation, the XYZ frame is
at rest with respect to the inertial frame, R(I) (t} is the
(averaged} spin angular momentum so that A'(QIQ ) (t)
is R(I) (t) rotated back at the angular velocity —t0QZ to
undo the effect of Hpz, and —(1/y)hzQ(t) is the mag-
netic induction B,i(t) similarly rotated back at the angular

velocity —copZ.

APPENDIX C: MISCELLANEOUS
CALCULATIONS

1. Commutation properties of HQF, MF{t), and QF{t)

The commutation properties (2.27)—(2.29} involvin~ the
time-displacement operator QF(t, tp) can be rewritten ' as
similar relations involving the single-time operator QF(t},
keeping in mind that QF(t} still depends on tp parametri-
cally and that (2.27}—(2.29) remain valid if t and tp are
interchanged. The result is the following (the operators
U,F introduced in Appendix D have not been written ex-
plicitly because they are irrelevant when all bases used are
immobile with respect to each other):

MF(t)gF(t) =gF(t)MF(tQ),

QF(t)MF(t) =MF(tp)QF(t),

[HQF MF(t)]QF«) =QF(t)[HQF MF{to)1

gF(t)[HpF, MF(f)] =[HpF, MF(tp)]gF(t),

(Cl)

and similar relations with MF(t) and MF{tp) replaced,
respectively, by MF(t) and MF(tp).

2. Derivation of (4.9)

We start from (4.8) and use the commutation relations
(Cl) for the operators QF, MF, aild HpF to move succes-
sively the operators Qs(t}, Bs(t), and Qs{t;) to the left
until they cancel with their counterparts Qs(t), Bs(t), and

Qs(tt). As a result, the operator outside the inner curly
bracket can be written as

1g MF(tt)HQFMF(tt)

1Ag kp[kka+ kts( )t][ ka+ iz( k}t] .

The only remaining operators which do not act trivially in
the atomic state space are Ws" and ( Wz")t, hence only
the terms j=1 in expression (3.15) contribute to the trace.
The only nonvanishing contributions to the trace over the
field state space arise from the product of each ak from
{Ws")t with the corresponding ak from (C2), and similar
combinations for Ws", with the result that (4.8) can be
written under the form (4.9).

3. Derivation of (4.12)

We start fi'oiil (4.1 1) i'eplace HpFMF(t)
MF(t)HQF+ [HQF,MF(t)] and use

(C3)

As explained in the main text, only [HQF, MF(t)] gives a
nonvanishing contribution. Moving B~t (t') and
Qz(t'} through the long string of field operators, one ob-
tains

t
&5=(1«&)J, «'TrsIB~«')

I
1 &~ ~(1 IB~(t'} I0&F F(o I

X[1~SQF(t)MF(t)[HQF MF(t)]QF(t) Qs(t )A Vsgs(t )]j . (C4)

To go from this to (4.12}, write the outer commutator explicitly, use the commutation relations (Cl) repeatedly to
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move Mi; and [Hoi. ,Mi. ] close to A, Vs, insert the unit operator 1=MJMF ——MzMJ when necessary, use (2.24) and note
that Vs is time independent (hence M, Vs/dt'=0)

4. Derivation of (4.13)

Using (3.12}, (2.32), and (2.36), the right-hand part of the operator in the trace in (4.12) can be written as
Qs(t')[8[ —Vs(t')+ Vs]/Bt'Igs(t'), which can be further written as —B[gs(t')[Vs(t') —Vs]gs(t')j/Bt' plus terms in-
volving time derivatives of Qs and Qs. Using (2.36) and (2.46), the result is

, I g (r')&( V (r') —Vs)gs(r') j +(1«'&)[gs(r')~( Vs(t'}—Vs }Qs(r'»Ho~ le+ l~ Hor]t'

(C5}

The contribution of the first term in the inner large braces is evaluated easily by taking the operators 8& (t') and 8& (t')
inside the derivative with respect to r' and showing that the correcting terms cancel. Then one is left with the first term
in (4.13). The contribution from the second term in the inner large braces is shown to be equal to the second term in
(4.13) by noting that the terms involving 1&Ho~ cancel in the commutator, using (3.5) and (2.36).

5. Derivation of (5.19)

Equation (2.36) for A[V(t) V]q—shows that the only contributions of order hx to p z(t') are of the types I j&z z & 1
I

and
I

1 &q z &j I, and, using (3.5), one obtains for j+1,
& I

1 &~ ~ &j I
&'(r') =Tr~ Ig~(t')

I
1 &~ ~ &j I

g~(i')u~(r') l

(C6)
fg

&oting that & I j&q g &1 I & (r') =
t & I 1&q q &j I & (t') J, and using (513), we can now write the contribution in (Aa)z to

J'o'(co, t} in the form Es,
I

Ks ——2(hz} oi(1/R)Im g iG»(co, t—o)f dr'e ' e ' ' ' f dt"e ' ' '
VJ i(r")

' J(+1)

iao(t' to) i(mj e&)—tt' —to)—, „—i(m& —~&)ft" to)—
J !

g fi
(C7)

Expression Es can be evaluated in the limit r-+ Do by the
following procedure: (i) write the double integrals as an
outer integral over t" from t; to r and an inner integral
over r' from r" to t, (ii) evaluate the inner integral which
is easy because the t' dependence is through exponentials
only, (iii) take the limit of the inner integral for t~ao
with the usual result

~ ia)pj i (al —@up)tlim, dt'e et~ ce

where 9' denotes a principal part and coo may be (coJ —col )

or (cubi
—coj ), (iv) use (5.7) to evaluate the outer integral in

which t; may be replaced by —ao because the Vij.(t) differ
from zero only during the overlap between the atom and
the classical-field pulse, (v) note that co and (co~ —coi) are
non-negative quantities. This leads to (5.19).

6. Exact evaluation of (6.10) for a particular
choice of interaction, detector, and optics

When the field evolves in empty space with periodic
boundary conditions in a cube of side L, a convenient
basis of normal modes is given by linearly polarized plane
traveling waves with real polarization unit vectors si,

(C9)

Dhl, g (rn) =E(A'/SL )(co~|, ) sl, si;e3 —i{k+k'& rD

Dl i,; (rD)=K(A'/SL )(co~|;) sl, sl, e0 3 —i (k—k' &-r~
(C10)

Combining (C9), (2.10), and (2.5), we also obtain, for the
linearized electric-dipolar coupling,

where col, ——c
I
k I, the x, y, and z components of k are in-

tegral multiples of 2'/L, and k and the two correspond-
ing sk are mutually orthogonal.

Combining (C9), (2.10), (6.4), and (6.11),we obtain

We evaluate here the function (6.10) in the particular
case described in Sec. VI, immediately before (6.11). x~&j IP ~ Ii &~'sle (C11)
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R=rn —rq,

V=s, —R(s, R)—U(s, U),

(C12)

in which the direction of vector k is specified by the usual

polar angles 8 and qr, such that k R=cos8,
k U=sin8coap and k. V=sin8sinq&. Using (C10} and
(Cl 1), we can write (6.10) in the form

Ttj(rg, rg), t —t')

= K(a /S L')'"(~,)'" e
'" "

1

xg~&. g(&t I p.~ 1 j& s~}{s.si }
s

ik (r& —r&) i~(,t —t')
x(e e —c.c.), (C13)

where the reference mode has propagation vector k, and
polarization unit vector s„. Using the mutual orthogonal-
ity of k and the two corresponding polarization unit vec-

with V~t ——0 because all diagonal matrix elements of is,z
are equal to zero in a representation which diagonalizes
Ho„. A first consequence of this last property is that the
contribution K9 to A, (Ds&"'(t} arising from the initial
contribution in (3.18} for Pz'"(t} is exactly zero for the
electric-dipolar coupling because Ds ——1q DF acts trivial-
ly in the atomic state space. A second const~uence is that
all contributions with i =j in {6.9) and (6.10) are equal to
zera.

To evaluate the sum over k, we introduce a frame of
reference based on the orthogonal vectors U, V, and R
(and the corresponding unit vectors U, V, and R) defined
by

tors, one can show easily (using these three directions as a
system of coordinates for instance) that the sum over po-
larizations in (C13) is given by

Kio= g (&i IIt.~ 1 j& s~}(s. s~}
s =1,2

=&i le.~ I j& s, —{&i li.~ l j& k}{s.k» «14}

where k is a unit vector pointing in the direction of k.
Using the UVR frame of coordinates, (C14) can be writ-
ten as

Kio ——(i [ p,z ( j& s, —(cos8)i((i
~ p,z [ j& R)(s„k)

—[1—(cos8) ]r(coop) ((i ( p,,z ( j& U)(s, .U)

+{sing&)2((i ( p,z ~
j& V)(s„V)}

+(. ) (C15)

where the ellipsis contains terms in situp, ~, and
sing~, and the specification of k appears only in the
angles 8 and p.

In the limit of L -+ cc we can now replace the sum over
k by an integral over the continuous variable k and
proceed with the evaluation of Ti as given by (C13}and
{C15). The integral over p is trivial and the integral over
cos8 is easily evaluated. In the evaluation of the integral
over

~
k ~, use ismadeof the relation toq ——c

~
k ~, and the

dummy variable ro can be eqiml to cot, or to —
an't, . The in-

tegral over
~

k
~

will be separated in three parts, accord-
ing to the dependence in

~
R

~

=
~
rn —r„~ . The contri-

bution in
~
R ( involves an integral of the type

2 ~k[ ~k~t t ~ 2 ~i (k ( (R
~ 8

—i (k I

0

(2il
~
R [

i}f +
dto(eicu&t t' Ia I

—~c& —ei&t t'+ Iti I lc)~—

(4ni//R
(
—~)[5(t t' —/R f

Ic)——5(t —t'+ fR [/c)] . (C16)

The contributions in
f
R [ and

/
R

f

' involve similar integrals which are easily evaluated with the help of the rela-
tion

QB +a& . +m
[2n'5(y)]= I deme'"& =i"I des ego'""

By ()y —IXI CO
(C17)

for n =1 and 2.
Combining the above relations from (6.11) on, we obtain, for a free electromagnetic field,

T&(r„,rD, t t') =K(%co,/2L —)'~ (i%/32m)e

X —(1/c'iR i),5(t t' iR i
ic)——5(t t'+ (R [/c}—

j2

X[{&t tV,~ IJ &.s, }—2(&i l},~ l j& R)(s, R}}
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)& I((i Iis,„ I
j).s, ) —3((i Iy,,„ I j) R)(s„.R)I

I et us stress that the calculations that lead to this result
involve no approximation, and that the 5 functions (and
their derivatives) in (C18) are obtained without any
ad hoc extension of integration range or neglect of fast
oscillating terms.

APPENDIX D: THE USE OF TIME-DEPENDENT
BASES IN QUANTtJM MECHANICS

It is traditional in classical mechanics to use a frame of
reference specially adapted to the problem at hand, or
even to discuss various aspects of the same problem using
different frames of reference moving with respect to each
other. Of course, this procedure introduces the minor
complication that the time derivatives of nonscalar quan-
tities depend upon the frame of reference used, but this is
often compensated by considerable simplifications of the
equations and improvements in the qualitative under-
standing of phenomena. Surprisingly, a similar procedure
is almost never used, in the strict sense, as far as the state
space of quantum mechanics is concerned, in spite of the
fact that "absolute rest" is not a valid concept in quantum
state space any more than it is in ordinary configuration
space (if we use two inertial frames moving with respect
to each other for the description of a position observable,
the two corresponding bases in quantum state space ob-
tained by the usual quantization procedure also move with
respect to each other). However, we have found "mov-
ing" bases in state space quite useful and this appendix is
devoted to an elementary discussion of some of their
properties, in the simple case of discrete bases.

1. Representations

As a starting point, we choose a basis b in ket space,
which is a collection of normalized kets

I b;(t}) which, at
any time t, satisfies the orthonormality condition

l

easily extended to linear operators A (t} involving a single
time. Such operators are defined by the linear relation be-

I 1i&(t)) and
I p(t)) =A(t)

I g(t)) fpr any
I
f(t)).

~en a basis I I b;(t) ) I has been chosen in ket space, it is
convenient to use the corresponding single-time level-shift
basis I I

bt(t))(bj'(t)
I ) in operator space. A representa-

tipn of opeiatpi A (t) as a linear combination of the basis
operators

I b;(t))(bJ(t) I
is easily obtained by multiplying

A(t) with the closure relation (D2) from both left and
right,

A(t)=g
I b;(t))(b, (t)

I
(b;(t)

I
A(t)

I b, (t)) . (D4)

The extension of this procedure to Liouville operators (or
superoperators) involving a single time, and further on, is
straightforward.

Time displacement operators, like evolution operators
for instance, deserve a somewhat more elaborate treat-
ment. Such operators K(ti, to) are defined by the linear
relation between the ket

I g(to) ) at time to and the ket

I e(ti ) & =K(ti 4) I P(to) &

at the different time ti, for any ket
I
P(to) ). In this case

it is convenient to construct from the basis I I b;(t)) I of
ket space a "time displacement level-shift" basis

( I
b;(ti))(b;(to}

I j in operator space, and a representa-
tion of K ( t i, to } is easily obtained by multiplication from
the left with (D2) at time ti and from the right with (D2)
at time to,

K(ti, tQ)=y I b;{ti))(bj(to)
I
(b;(t])

I
K(t[,to)

I bi(to)) .

( b;(t) I bj(t) ) =5;1,
and the closure relation

(D2}

The extension of this prcxxdure to Liouville operators
("superoperators"), and further on, is also straightforward
(note that the maximum number of different times in-
volved increases by a factor of 2 at each step of such an
extension).

where 1 denotes the unit operator. If we take a ket
I P{t))

and multiply it from the left by the closure relation (D2),
we obtain the relation

I
@(t)& =1

I
@(t)& =y I b;(t) & &b;(t)

I
@(t)&, (D3)

which expresses ("represents")
I P(t)) as a linear com-

bination of the b basis kets
I b;{t)). This procedure is

2. Immobility as seen from a basis

Quite naturally, a ket
I
P(t)) is called immobile (or

constant) as seen from basis b if all the projections of
I P(t) ) on this basis are time independent. Hence, any ket
I g(t) ) which is immobile as seen from basis b can be ex-

pressed in the form
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I P(t)) =g I b, (t) ) (b;(t) I Pt) )

=y ) bi(t) & & b;(tp) ) y(to) &

=Us(t, to) I f(tp)),

Uq (t, to )=g I
b;(t) ) (b;(tp) I

(DS)

has all the usual properties of evolution operators, includ-

ing the group property for connected time intervals

where tp is some fixed time, and the unitary time dis-

placement operator

where the time derivative of the ket has to be indexed by
the relevant basis whereas the time derivatives of scalar
quantities, such as scalar products or matrix elements, are
not indexed because they do not depend upon the choice
of basis.

The same problems arise with the definition of time
derivatives of bras, operators, Liouville operators etc., and
the procedure described above leads, for example, to the
following definitions of time derivatives as seen from
basis b:

&q(t) I =+&bi(t) I

—&q(t))b (t) &
Bt s ; Bt

Ug(t, to) = Ub(t, ti )Us(ti, tp)

and the relations

) Us(t, to) j =) Us(t, to) j '=Us(to, t) .

(D9)

(D10)

~(t)=y lbl(t)&&bJ(t) I

— &b/(t) I
~(t) Ibj{t)&

Bt Bt
(D13)

K(t, to)=g I b;(t))(b (t, ) IBt

A trivial example of immobile kets as seen from basis b is
provided by the basis kets

I
b;(t) ) themselves. Obviously,

if one uses two bases which are mobile with respect to
each other, a ket which is immobile as seen from one basis
will, in general, be mobile as seen from the other basis.
Similarly, a linear operator is called immobile or constant
as seen from basis b if all its matrix elements in the basis
are time independent, and examples of such operators are
given by

A'(t) =Us(t, tp)A '(to) U, (tp, t )

(Dl 1)

K'(t„t') = Utp(t, f p)K'(tp, ti ) Us(ti, t'),
where t and t' are variable times and tp and t, are fixed
times. Again, the extension of this idea to Liouville

operators, and further on, is straightforward. Note also
that for scalar quantities (numbers) the notion of immo-

bility is much simpler and does not depend upon the
choice of basis.

3. Time derivatives as seen from a basis

In the perspective of the use of bases which are mobile
with respect to each other, the naive definition of the time
derivative of a ket as a limit of (

I q (t +Et) ) I y(t) ) )I&t-
for dt-+0 has to be supplemented with a procedure for
comparing (subtracting) kets at two different times. A
natural way out of this problem is to subtract kets which
are both defined at the same time {t +ht) and to interpret

I y(t)) in the above formula as the ket which would be
obtained at time (t+ht) if the ket ) p(t)) remained im-
mobile as setm from basis b during the time interval t to
(t+bt). With this procedure the time derivative of a ket
as sixn from basis b is given by

X (b (t)
I
K(t tp) I bj(to))

K(t, tp)
Ep

—
&q (t)

I g(t) & = — (q (t)
I I

P(t) &
Bt I Bt

+&q(t)
I

.
Bt

I I~

(D14)

4. Quantum dynamics as seen from different bases

We shall consider two bases. The first is basis b, with
orthogonality and closure relations given by (D 1) and (D2)
and the characteristic evolution operator Us(t, tp) given by
(DS). When seen from basis b, the operator Us(t, to) is in-
dependent of time and behaves like an identity operator.
However, when seen from any basis c which is not immo-
bile with respect to basis b, the operator Ub{t, tp) is a
time-dependent evolution operator. The second basis is
denoted c, with orthogonality and closure relations analo-
gous to those of basis b, and a characteristic evolution (or
time displacement) operator

=2 I
b'(t) & &bi(to) I

&b (t)
I
K(t to)

I bj{to) &
Bto

It is worth noting that, if the time derivative of a scalar
quantity is evaluated from the separate time derivatives of
the components (bra, operators, ket) of the scalar quantity,
care must be taken to evaluate all the time derivatives of
nonscalar quantities as seen from the same basis. For in-
stance,

) Ip(t) ) = lim (1/bt)[ ) y(t +Et))
Bt ht~p

v, (t+~t, t)
I q-«»~

U (t, tp)=g I c;(t))(c;(tp) I
(D15)

=g Ib, (t)) —-(b, (t) ) q(t)),
Bt

The relation between the two bases can be described
completely by the single-time unitary operator
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W&(t)=g I
b;(t)) &c;(t) I

= Ub(t, t, )WE (tp)U, (tp, t), (D16)

or p(t), evolves accA)rding to the usual Schrodinger or von
Neumann equation of motion,

such that, for any j, I bz(t)) = Ws, (t)
I cj(t)) I.f we inter-

change the roles of the two bases, we can define the
unitary operator ~ca(t)=g,.

I
c;(t) ) &b;(t)

I
= Wt„(t).

Another convenient tool for describing the relative motion
of the two bases is provided by the operator Db, (t) defined
by the set of differential equations

i A —
I bJ(t) ) =Di (E) I b, (t) )

C

(D17}

if& —
I
c (t))= DE„(t)

I
c—(t))

Bt J (D18)

for all values of j. This operator has the dimension of en-

ergy and is Heimitian because the kets
I b;(t)) are nor-

malized at all times. If we interchange the roles of the
two bases, the corresponding operator D,s(t) can be
evaluated by the following procedure: (i) write (D12}with
any I cj(t) ) playing the role of

I y(t) ), (ii) use {D14),with
time derivatives as seen from basis c, to evaluate the time
derivative of &b;(t) I c~(t)), (iii} note that
[BIBE], I cE(t)) =0 and use the adjoint of (D17). The re-
sult is

I q(t)) =H(t)
I q(t))

Bt

(D22)

i% —p(t) =[H(t),p(t)],Bt

OI

I
q&(t)) =U(t tp) I q&(tp))

p( E) =U{t Ep)p(tp) U(tp t»
(D23)

where the unitary evolution operator U(t, tp) describing
the motion of the system is the solution of the differential
equation

where the Htmtnitian operator H(t) is the Hamiltonian of
the system. The complete specification of a physical situ-
ation requires some additional information which may be
supplied, for instance, by the state of the system, I p(tp) )
or p(tp), at some fixed time tp. With this initial condition
a formal solution of (D22) can be written in the form

for all values of j, hence, D,b(t) = —DI (t). Using similar
techniques one obtains the following differential relations:

iR —U(t, tp) =H(E) U(t, tp)
Bt

(D24)

with the initial condition U(tp, tp)=1. Note that the
operator U(t, tp) is a property of the physical system
which is not related to any specific basis; it is only the
particular form (D24) of the equation of motion of
U(t„tp) which is expressed in a particular basis.

In order to prepare motivations for the coming discus-
sion we shall decompose the Hamiltonian as

iA —Us(t, tp) =Ds, (t)Us(t, tp),

(D20)iA' — WE„(t)=DE (t) WE„(t),
Bt

which have to be supplemented with the initial conditions
Us(tp, tp) = 1, and W&(tp) known at some fixed time tp

Finally, still using the same techniques, the following
relations are easily obtained between time derivatives as
seen from the two bases b and c:

(D25)H (t j=Hp(t)+ [H (t)—H, (t)] .

In a first type of problem, the interesting properties of
the system as seen from basis c are obscured mainly by
fast time dependences generated by a large and trivial part
Hp(t) of the Hamiltonian. By analogy with the situation
in classical mechanics, one suspects that these fast time
dependences will not be "visible" any more if the system
is seen from a basis b which moves with respect to basis c
according to the dynamics generated by Hp(t). Such a
basis b is easily constructed from basis c by choosing
basis vectors

I b;{t)) which move with respect to basis c
in the same way as the kets describing the state of a virtu-
al physical system with Hamiltonian Hp(t). Comparing
(D17) and (D22) we see that such a basis b obeys (D17)
saith

I
g(t) ) =inert —

I g(~) ) —DE„{E)
I
g(t) ),ifi-

Bt

&P«) I+&@«)IDE «»
Bt b Bt

(D21)

~ a 8
iA K(t Ep)=i ll K('t fp) D~{t)K(ttp)—

Bt Bt
C

i'
Btp

K(t, tp) =i' K(t, tp)+K(t, tp)Ds, (tp) .
tp Db, (t) =Hp(t} . {D26)

In order to display some simple and obvious uses of
Eqs. (D21}, we choose basis c as a conventional basis in
which the state of a physical system, described by I y(t) )

Hence the equations of motion (D22) and (D24) can be
rewritten with time derivatives as seen from basis b [see
(D21)] in the forms
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iR —
~
P(f)) = {H(f)—Hp(f) I ~

P(f)),
Bf

i R —p(f) = [H (f)—Hp(f), P(f)],
Bf

(D27)

is U(f, fp)= {H(f)—Hp(f)I U(f, fp),
Bf

which clearly show that the fast time dependences gen-
erated by the large tefm Hp(f) are not visible any more
when the system is seen from basis b. Furthermore, if the
initial situation is known at time fp it will often be con-
venient that the two bases b and c coincide at time fp,
hence Wf„(f) will be the solution of the differential equa-
tion

terpart. More explicitly, if we denote interaction pictures
by a tilde above the symbol, the correspondence is the fol-
lowing for kets, bras and operators:

~
P(f)) =Wf„(f)

~
q(f)),

(ip(f)
~

= (Ip(f) j Ws (f),

A(f) = Wf„(f)A (f)Wf (f),

K(f,f, )= Wf„(f)K(f,fp)Wf (fp) .

(D29)

By this procedure, the interaction picture objects as seen
from basis c have the same appealing simple behavior as
the original objects seen from basis b,

P

i% —
~
y(f)) = {H(f)—Hp(f)]

~
PTER(f)),

df

iirf —Ws, (f) =Hp(f) Ws, (f)
Bf

iR —P(f) =[H(f) —Hp(f), p(f)],
f)f

(D30)

with the initial condition Ws, (fp) =1.
In a second type of problem, the interesting properties

of the system are also obscured by the complexity of the
initial situation (at time fp), as seen from basis c. This
type of problem can be solved or mitigated by choosing a
basis b in which the initial situation is simpler. If the ini-
tial situation is specified by

~
g(fp) ), a very suitable basis

b would have
~
p(fp) as one of its basis kets at time fp

Of course, such a choice for basis b does, in general,
prevent the unitary "basis changing" operator Wf, (f}
from being equal to 1 at any time, but this is a minor de
tail. After having solved the problems with the initial
condition by a proper choice of W& (fp), one is still free to
solve further problems with fast time dependences by a
suitable choice of Ds, (f) as discussed above.

5. Interaction pictures {or representations}

The appealing simplicity of the equations of motion
(D27) and of the corresponding initial situation may be
utterly deceptive because these describe the state of the
system as seen from basis b, whereas almost everything
else in the problem (initial conditions, Hamiltoman, ob-
servables, etc.} is usually known in its form as seen from
basis c. Hence, actually working in basis b very often im-
plies many changes of basis to express kets in terms of
{ ~b;(f)) I, operators in terms of { ~b;(f))(bj(f)

~ I or
{ ~

b;(f))(bj(fp)
~ ), and great care to keep track of the

basis in which each time derivative, ket or operator is ex-
pressed.

These deviations from tradition, and inconveniences in
notation, can be avoided, without losing the advantages
provided by the use of a suitably chosen basis b, by the
standard procedure called "going over to an interaction
picture. " This procedure can be visualized in the follow-
ing geometrical way: at each time t, we lock all the
relevant objects (kets, bras, operators, state of the system,
etc.} to basis b, then we (instantaneously) move the basis
and locked objects until the basis coincides with basis e
(transformation Ws, does exactly this), and we call each
moved object the interaction picture of its unmoved coun-

iA —U(f, fp) = {H(f)—Hp(f) I U(f, fp) .
Bf

The unitary transformation Ws, (f) used in (D29) satisfies
(D28) with an initial condition Ws, (fp} chosen to suit the
initial condition of the physical system. In this way, a
single basis (c} is used and there is no need to index time
derivatives according to the relevant basis. This is the
procedure used in this paper (except in this appendix, of
course).

Summing up, the use of moving bases and that of in-
teraction pictures appear as two very closely related ways
for disentangling the discussion of problems in quantum
dynamics in a succession of steps. The interaction-picture
technique avoids the multiplicity of bases and enables one
to perform the quantum calculations in the conventional
way, at the price of introducing transformed versions of
the state of the system and of all dynamical operators.
Conversely, using bases moving with respect to each other
avoids the multiplicity of transformed versions of each
ket, operator, etc.

6. Further remarks about situations involving more
than a single time

In the perspective of using a multiplicity of bases mov-
ing with respect to each other, one must be extremely
careful in dealing with situations involving more than a
single time. As an illustration of this idea, we shall now
come back to the two related objects of this type explicitly
discussed so far: time displacement operators and time
derivatives as seen from a basis.

Time displacement operators K(f i„fp) were defined
by the linear relation (D5), namely,

~
y(f i )

=K(fi, fp)
~
g(fp)), between any

~
p(fp)) and the corre-

sponding
~
y(f i ) ). In this hnear relation, the two times fp

and fi do nof play equivalent roles: K(fi, fp) is defined
only in the perspective where the object on its right is at
time fp and the object on its left is at time f, . We have
systematically reflected this dissymmetry in the typo-
graphical order of the time arguments of the operators.
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~
g(t) & =G, (t)

~
g(t) &,

dt
(D31)

where no particular assumption is made about Gb(t}, so
that

~
g(t) & does not, in general, describe the state of any

I

A minor source of ambiguity arises with the inverse or
the adjoint of a time displacement operator. The adjoint
is defined by taking the adjoint of both sides of (D5),
namely, (&p(t])

~

= (t](&(to) ) IK(t],to) ] . Clearly, the ad-
joint of K(t],to) is defined with t] on the right and tz on
the left so that, if we give this adjoint the name K' and
use the standard typography for the arguments of K', we
shall write IK(t»to) f =K'(to&t] ). Of course, it is tempt-
ing to replace the prime by a dagger in this last formula
aild to def1ne the Ilew Ilotatloll K (to&t])= IK(t]&to)I
However, we felt that this natural notation would conflict
too much with traditions, hence we have not used it in
this paper. In practice, we avoided ambiguities by almost
never using adjoints of such operators.

An equivalent situation arises with the inverse of
K(t„to), defined by the relation 1=IK(t],t]])I

K(t],t]]), in which the identity operator behaves as an
operator involving the single time to.

Let us now examine, as an example, the differential
equation

physical system. Gs(t) is given an index b to recall its
particular role in basis b. As a preparation for solving
this equation by iterative techniques, we shall first rewrite
(D31) and its initial condition

~
g(to) & as an integral equa-

tion, using the definition of the time derivative given by
(D12). The result is

~
g(t) & = Ub(t, t]])

~
g(to) &

+(1/i]]])f, dt'Us(t, t')Gs(t')
~

g(t') & . (D32)

We note that the left-hand side (lhs) and each term in the
sum (and integral) in the rhs of (D32) are kets which are
all defined at the same time t, with the required changes
in time provided by the characteristic evolution operator
Us for basis b. The presence of the operator U]] in (D32)
may seem superfluous in the perspective of a calculation
performed in basis b. However, (D32) as it stands is a
general, base-independent relation in which Us is the rem-
nant of the fact that Gs(t) ]s the generator of the motion
of

~
g(t) & as seen from basis b.

Pursuing the calculation in the standard way, we can
express the evolution operator K(t, to) for

~
g(t) &, defined

by the requirement that
~
g(t)&=K(t, to) ~g(to)& for any

~
g(t]]) &, in the form

K(t&tp)= 1+ g ( 1hA') f dt] f dt's
' ' ' f dt» U]&(t&t] )Gb(t] )U](t]&&t2)G]&(t2) ' ' '

Ub(t&& ]&t» )G]&(t&& )U]&(t&»tp)
n=1

(D33}

K(t to)= U]&(t tp)exp (1/l'fl) dt] U (t ]&t o)]G(]&]t)
tp

X U]&(t],to) (D35)

where the quadrature is to be evaluated in a first step, and
the exponential of the result taken in a subsequent in-
dependent step. If condition (D34} is not satisfied, the

Of course, if Gs(t) is not Hermitian, then, in general,
K(t, to) is not unitary in the sense that its adjoint and its
inverse are not equal.

If the operator Gs(t} satisfies the commutation relation

[Us(t2, t] )Gs(t] ) Us(t], ti ),Gy(t2) 3 =0
for all values of t] and tz in the range between to and t,
then (D33) is "easily" evaluated as

usual problems of time ordering arise. The lhs of (D34) is
a satisfactory expression, in the viewpoint of this appen-
dix, of the usual idea of the commutator of a time-
dependent operator with itself taken at two different
times; we note that it is an operator acting at a single time
(t2 in this particular case), and that it depends upon the
basis used to relate the situations at the two different
times. Of course, the same situation exists for the com-
mutator of two different operators taken at two different
times.

In the main part of this paper, care has been taken to
systematically denote single-time operators with a single
time argument and time-displacement operators with two
time arguments, but the precautions shown in
(D32)—(D35) have not been taken, so that all relations in-
volving more than a single time (or time derivatives) are
valid only as seen from the standard basis in which the
Hamiltonian is the operator of the motion.
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