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The energy-level shifts for a multilevel atoxn interacting with a squeezed vacuum are calculated.

The level shifts are made up of two contributions: (i) the ordinary Lamb shift and (ii) a shift due to
the squeezed-vacuum intensity spectrum (similar to the blackbody-radiation shifts).

I. INTRODUCTION

The interaction of a bound electron with the vacuum
state of the field leads to a shift in the atomic energy lev-
els, the Lamb shift. A similar calculation deteiaaines the
level shifts that result when the atom interacts with a
blackbody radiation field, i.e., a nonzero tenperature
"vacuum". '2 In both these cases the radiation has time
stationary field statistics, equivalently that the modes of
the field are uncorrelated. Rieimtly there has been consid-
erable interest in states of the field which do not have this
property, the squeezed states. Squeezed states are charac-
terized not by time stationary field statistics but rather by
time stationary quadrature phase statistics. ' This im-
plies that for such fields there exist mode-mode correla-
tions. It thus becomes of interest to inquire how the
atomic-level shifts are modified in the presence of a
squeezed field. Squeezed states have recently been ob-
served in four-wave mixin~s in confirmation of the pre-
dictions of Retd and Walls.

In this paper we calculate the atomic-level shifts due to
the interaction of an atom with a multimode squeezed
state of zero mean amplitude, i.e., a squeezed vacuum.
The problem has some similarities with blackbody radia-
tion induced level shifts. There is an important difference
however. The bulk of the blackbody spectrum is usually
very far from resonance. In the case of squeezed light the
situation is different. Squeezed states may be generated
by parametric optical processes couphng a strong field at
frequency 0, the pump frequency, to two side bands at
0+e. The noise spectrum of the light at the output of
such a device is concentrated near the frequency of the
pump and this frequency may be close to the atomic tran-
sitions of interest.

In the first part of this paper we present a simple model
for a squeezed vacuum. The statistics of the field is con-
structed in such a way as to model the output of an ideal
parametric amplifier. We then calculate the level shifts
due to the interaction of such a field with a multilevel
atomic system, using the method of Louisell. s In this
treatment the field modes are treated as a quantuin ressu-
voir to which the atomic system is coupled. We work in
the dipole approximation but do not make the rotating-
wave approximation.

E(t)= [Xi(t)cos(Qt )+Xi(t)sin(Qt )] .

In terms of the field amplitude operators a(t) and at(t}
(the positive and negative frequency components, respec-
tively),

(t) ~ [a(t)eint+a t(t}e int]'—

Xg(t)=(1/2i)[a(t)e'n' —at(t)e '"'] .

The field amplitude operators may be written as

a(t)= J droD(ro)a(ro)e

(2)

(4)

where D(ro) is a density of states factor. We now define
the ideal squeezed state by

lo"') =Ul0),

where
l
0) is the usual field vacuum state and U is a uni-

tary operator defined by

U a(co)U=p(ro)a(ro)+v(ro)a (20—ro),

Utat(~)U=i. (&)at(~}+v'(u}a(20 ~),

where

l) (~}I'—l&~}I'=1.
This unitary transformation models the coupHng of a
field mode of frequency io to its image sideband at fre-
quency 20 ra with respect to th—e carrier frequency Q.

Using Eqs. (6) and (7) one easily establishes the follow-

ing squeezed-vacuum correlation functions:

II. SQUEEZED-VACUUM STATES

The prototypical squeezed state generator is the
parametric amplifier. In Ref. 9 the output statistics for
such a device are calculated. We can model these results
as follows. Let us write the electric field in terms of its
quadrature amplitudes at frequency 0 (the carrier fre-
quency},
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( a(ai)a(to') ) =p, (to)v(co')5(2Q —to —to'),

& a(ei)a t(to') ) =p(co)y', (a&')5(rd —a&'),

& at(~)«~')) =a~)v'(~')5(~ —~') .

(a (co)a (m')) =v'(a&)ti'(co')5(2Q —t0 —t0') .

(9)

(10)

(12)
(a (t)a(t))=, J dcoco'iv(co) i'. (19)

pi (e) or Sz (e) drops below the vacuum level of zero.
It is important to note that a squeezed vacuum may

have quite a high intensity. In fact one may show

One may regard these relations as an equivalent definition
of a squeezed vacuum. For the case of the usual vacuum,
v(to) =0 and y, (to) = l.

Using Eqs. (9)—(12) and assuming Q is much greater
than the bandwidth of the squeezing [that is the band-
width over which y, (a&) and v(a&) are significantly dif-
ferent from their vacuum levels] one shows that the quad-
rature phase variances are time stationary and given by

We may thus regard
i

v(e&}
i

as the intensity spectrum
for a squeezed state.

III. ATOMIC-LEVEL SHIFTS

We now consider the interaction of a multilevel atom
with the squeezed-vacuum state of the field. We follow
the treatment of Louisell. In the dipole approximation
the field-atom interaction Hamiltonian is

1/2

(Xi(t)Xi(t') )

e2N @+M e+ 'a+1 e

kBr=it E= t g-
2eo V

(20)

N(e) =
i
v(Q+e)

i
',

M(e) }u(Q+e)v(Q —e) (16)

with r=t t'. The—results are similar to those given in
Ref. 9 for an ideal squeezed-vacuum state generated by
parametric amplification. Using heterodyne detection we
may probe the normally ordered quadrature phase spectra
defined by

S i (e)= —„' [2N(e)+M(e)+M'(e)], (17)

S2 (e) =——,
' [2N(e) —M(e) —M'(e)] .

Squeezing at frequency e is said to occur if either of

(13)
(X,(t)X,(t') )

=4 e2Ne —Me —M'e+1e '", l4

where

where y, is the atomic dipole operator, el, is a unit polari-
zation vector and the sum over k contains an implicit sum
over polarizations. We now define the interaction picture
field operators

ft~(t) = ——g
k 2' V

' 1/2

(ake ' —ake '
)dt (k)

where dt~(k)= eg, (—1 lit Itii) and Il) Im) are atomic
states. The many modes of the field may be treated as a
reservoir and with the Markov approximation may be el-
iminated from the atomic dynamics. (This should be a
reasonable approximation when the bandwidths of the
atomic transitions are small compared to the bandwidth
of squeezing. ) This results both in dissipation and level
shifts. For our purposes we write down only the shift in
the transition frequencies coif . The modification of the de-

cay constants in a squeezed vacuum has been considered
by Gardiner. '0 As shown in Louisell

g f, ut f, dt"l'"'"&fjr(t'&f&(&"»a+e ' &fl~&'&fi lt"»al (22)

where Im indicates the imaginary part, ( )F indicates an average over the set of the field, and ~= t' t". —
To evaluate the reservoir correlation functions we assume that all modes are in the vacuum state except those parallel

to a particular direction. Those modes with wave vectors parallel to this direction are in a squeezed-vacuum state de-
fined in Sec. II. (That the squeezed-vacuum state should have a preferred wave vector is ultimately due to phase-
matching conditions in the squeezed light source. } One then finds

, I d~~ie ™~
4l}ieo c'

I dfi I'
+ 3 6) CO CO 8 +8

6%0m e

—J dcoei [co(2Q —co)]'f [p,(ei)v(2Q —co)e ' ' ' +&M'(2Q —co)v'(a&}e'"'+ ' ' ]

(23)
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where
f djg f

=
f (j f p [

l ) f
'.

The first term in Eq. (23) leads to the usual Lamb shift.
The final phase-dependent terms average to zero in the
time integrals due to the rapidly oscillating term at the
carrier frequency.

Oilce these correlations are evaluaf ed Eco,y may be
found using Eq. (22}. Writing he@;~ =b,ai; —haij, we find
hr0;=hc0I +hr0I ', where the first term represents the
usual Lamb shift and is given by

Si (e}=~w f
(e/yr )'+P'

S(N)( )
(e/yz) +1

(30)

(31)

To evaluate this integral we need to assume some form
for the squeezing spectrum. We will take as a typical ex-
ample the squeezing spectrum at the output of an ideal
parametric amplifier:

kaii =
3 g ~dg ~ f dCOC0

i}'ieoc N;~ —N

(24)

In this case the carrier frequency Q is equal to the cavity
resonant frequency of the paramp. The parameter f is a
measure of the squeezing, and is given by

(P refers to the Cauchy principal value), while hei,' '

represents the level shift due to the squeezed vacuum and
is given by

7 OUt

yT
(32)

ha),' '= g ~dg ( f dcoa) [v(a)) (

6 Aeoc

(2&)

This frequency shift is similar to that causing blackbody
radiation induced level shifts. This is to be expected in
view of the role of ( v(ai}

~

i in determining the intensity
spectrum for a squeezed vacuum. Changing the variable
of intergration to a=a —Q we have

3
QaiP'= Pg ~d& [ f de

N(e)
c00+Q+6

We now consider the special case of a two-level atom.

IV. T%'0-LEVEL ATOM

where y,„, is the loss constant for the output port of the
device and yz is the total loss constant for the cavity.
Clearly 0&f&1. Perfect squeezing at e=O is obtained
when f=1. The parameter p is a small constant. When

f=1 we expect p, =O, which ensures Si (0)~ce when

S2 (0)~——„'. The width of the squeezing spectrum is yr,
that is, the same as the width of the paramp cavity reso-
nance. Using Eqs. (17}and (18) we see that the form of
the squeezing spectrum assumed here requires
M(e)=M( —e}, that is, the squeezing spectrum is sym-
metric about the carrier frequency. In this case

I(6)=p J de[S((E)+Sj(e)]
&

+
&

The assuinption of small squeezing bandwidth with
respect to the carrier frequency is equivalent to
Q/yr yp l. With this assumption we find that the non-
resonant second term in the integrands of Eqs. (34) and
(35) makes a negligible contribution. Evaluating the in-
tegrals we find

(si Ff
p(p'+ &')

In the case of a two-level atom we may write

0 '
2' QPg

where

3m'Repe 3

is the spontaneous emrnission rate and

(27)

(28)

where 5=6/yr.
It is interesting that when the carrier frequency is

resonant with the atomic transition no frequency shift is
observed. Away from this resonance point we see the two
quadratures shift the level in opposite directions. As the
squeezing becomes large the fiuctuations in the
unsqueezed quadrature dominate and significant level
shifts may result. However, it should be noted that we
have implicitly assumed the intensity of the squeezed light
is not too large in order that the perturbation used here to
be valid. This means the analysis is restricted to the small
squeezing regime.

P f d N(6) N(e)+

mth A=a)g —Q.
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