
PHYSICAL REVIE%' A VOLUME 34, NUhfSER 6

Free-electron-laser gain degradation and electron-beam quality
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The free-electron laser can be described by solving the Lorentz-Maxwell equations self-

consistently in weak optical fields. The field evolution is determined by an integral equation that al-

lows the inclusion of an arbitrary electron distribution function in a simple way. Contour maps are
used to show the gain degradation due to an electron-beam energy spread and an electron-beam an-

gular spread. In the limit of low gain, the gain spectrum is related to the spontaneous emission line

shape through successively higher derivatives. In the limit of high gain, it is shown that the growth
rate becomes less susceptible to degradation from the electron-beam quality.

I. INTRODUCTION

In a free-electron laser (FEL), a relativistic electron
beam amplifies a copropagating, coherent optical wave
traveling through a periodic undulator magnetic field. ' In
the oscillator configuration, coherent electron bunching
develops on each pass while resonator mirrors allow the
stored optical power to grow over many passes. In the
amplifier configuration, coherent electron bunches
develop rapidly in the first part of the undulator followed
by rapid growth of the optical field. Maintaining the
coherence of the electron bunches over a significant in-
teraction length imposes important restrictions on the
electron-beam quality. An energy or angular spread (due
to emittance) contributes a random component to the elec-
tron motion that decreases the coherent bunching in time.

Some of the earliest &EL experiments used electron
beams that were essentially monoenergetic, but practi-
cally all subsequent experiments have made use of higher
current sources with significant energy spread or emit-
tance. Many accelerators present a design trade off be-
tween high-current and high-beam quality. This makes it
essential to accurately evaluate the effects of beam quality
in present and future experiments. It is particularly im-
portant for PEL's designed to operate at extreme uv or x-
ray wavelengths. Several theoretical models involving
simulations and plasma dispersion relations have dis-
cussed the detrimental effects of electron-beam quality in
the FEL interaction. The theory presented here uses a
convenient, yet powerful, method of including an arbi-
trary electron distribution function in a self-consistent in-
tegral equation for the complex optical field. I'EL gain
and the effects of beam quality can then be calculated
analytically or integrated on a small computer.

Since the basic equations solved here are the same as in
computer simulations or the plasma dispersion methods,
specific physical results have been shown to agree with
those methods when a direct comparison is possible. The
computer simulations have proved to be a useful method
of understanding many aspects of the FEL interaction,

but one of the most difficult effects to accurately charac-
terize is that of electron-beam quality. Even a prohibi-
tively large number of sample particles is far short of the
number in a real experiment, and yet introduces a large
amount of numerical noise when distributed over a large
volume of phase space. To reproduce some of the results
shown later in this paper, we found the simulation
method to be several hundred to a thousand times less ef-
ficient. While many other FEL topics are most efficiently
studied through simulations, the detrimental effects of
beam quahty are probably better handled through a com-
bination of analytic and numerical techniques. The stabil-
ity analysis used to obtain plasma dispersion relations
usually calculates the reduced FEL growth rates due to
poor beam quality. This method can lead to analytical ex-
pressions, but depends upon specific models for the
electron-beam distribution, and does not easily describe
more complicated transient behavior where the FEL
growth rate is not constant; the e'EL is often designed to
operate in this regime. In addition, the exact formulation
presented here works smoothly between different regimes
of operation like high and low gain. The only require-
ment is weak optical fields.

II. BASIC THEORY

We solve the electron Lorentz and optical wave equa-
tions self-consistently with the assumption of weak optical
fields. The effects of beam quality are typically less im-
portant when the optical field strength is large near
saturation, and the issue of beam quality is most impor-
tant in weak fields where the accurate evaluation of gain
can determine whether the FEL is above or below thresh-
old.

The electrons travel through a periodic undulator
with the field on the z axis described by
8=8 [cos(kcz), sin(kcz), 0] where B is the peak magnetic
field amplitude. The undulator field extends over a length
L =NQ with a number of periods N, and wavelength
+=2m lkc. The electron velocity in a perfect helical or-
bit ls
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cP=c [ —(E/y)cos(koz), —(IC/y)sin(koz), PO],

where I[' =eBQ/2m mc, e is the electron's charge magni-
tude, m is the electron's mass, c is the speed of light,
po ——[1—(1+1[i' )/y ]', and ymc is the electron's ener-

gy. Imperfect injection due to poor beam quality is more
meaningfully introduced after some further theoretical
development. A. typical undulator uses 8=2 kG and
+=5 cm, so that K= l. Since the electrons are relativis-
tic (y »1), the transverse excursions are small compared
to Q.

The optical vo:tor potential with the polarization that
best couples to the above trajectory is
A=k 'lE

l
[sinqI, cos%', 0] where q[=kz —tot+/, and

A, =2m/k =2mc/ai is the optical carrier wavelength. The
complex electric field envelope, E(z,t)=

l
E{z,t)

l

e'~'"",
is taken to vary slowly in z and t, so that terms containing
two derivatives in the wave equation are small compared
to terms with single derivatives. No transverse (x,y)
dependence is included so that diffraction is taken to be
small over the interaction length L, and the electron beam
remains aligned near the center of the optical mode. The
transverse motion above, proportional to (EC/y), defines
the transverse current for each electron in the beam. If
the current density is uniform over a sufficient length,
each point z+ct in the optical field envelop evolves ac-
cording to the slowly varying wave equation s

= —j(e

where a =4NneELE/yzmc2 is the dimensionless optical
field strength, r= ct /L is the dimensionless time
(0&r&1), j=8M(neEL) p/y .mc is the dimensionless
current density, p is the actual electron particle density,
g=(k +ko)z ait is the—electron phase in the combined
optical and undulator fields, and ( . ) represents a nor-
malized average over all electrons in the beam driving
a(r). The electrons are labeled by their initial phase-
space coordinates; the initial phase is g; =/{0), and the ini-
tial phase velocity is

v; =dg(0)/dr =L [{k+ko)po —k] .

There are a large number of electrons spread randomly
over each optical wavelength ( —10'), so that the g; can be
accurately taken to be uniformly spread along each sec-
tion of the electron beam one wavelength of light long. It
can be easily seen in (1) that bunching the electrons near
the relative phase g+([{)=m drives the optical wave ampli-
tude producing gain, while bunching near /+/=A/2
drives the optical phase (I) without gain. Bunching elec-
trons near g+P =0 results in negative gain, or absorption.
The dimensionless electron phase velocity v; has an initial
spread associated with the harn quality.

The electron motion in the presence of the optical wave
is described by the Lorentz force equation: dy/dt
= —(e/mc)p E. In the l'EL, it is important to distin-
guish between collective Coulomb forces and collective
high-gain effects. Most FEL's do not use current densi-
ties large enough for Coulomb forces to be a significant
effect for the relativistic electrons; yet, high gain is possi-
ble and will be included. Using the definitions and as-

sumptions above, the Lorentz force takes on the form of
the pendulum equation,

a (r)=ao+ij J ds(exp[ —i(g;+vs)]Q "(s)),
0"(s)=—,

' f dq f du fa(u)exp[i(g;+vu)[

+a'(u)exp[ —i(g;+ v[u)] l,

(3)

where the initial optical field is a(0)= la(0) l
=ao and

(I)(0)=0. We have made use of
2s'

( exp{ i g; ) ) =—I d g; exp( i g; )/2m =—0,
since the initial electrons are spread uniformly in phase.
The reference to the individual electron phases g"' can be
explicitly removed by combining the equations in (3).
Then, we have an integral equation governing the evolu-
tion of the optical field a (r):

'F S

a(r)=ao++ J ds I dq J du(exp[ —iv;(s —u)])a(u),
0 0 0

(4)

where ( . ) is now an average over the initial electron
velocity distribution, and all reference to the electron

d dv
dr dr

=
l
a

l cos(g+(I) ) .

The combined equations (1) and (2) are valid in weak or
strong optical fields, for large or small gain, and for an ar-
bitrary electron distribution. Strong fields near saturation
mean that

l
a

l
» ir, and weak fields occur when

l
a

l
«n.. High gain is achieved when j»1 and low

gain occurs when j&1. Useful I'EL configurations
display a wide range of current densities. The electron-
be[un area is typically between 1 and 5 mm, but the
current ranges from 1 A up to 10 kA. Undulator lengths
L now range from 1 to 5 m, but will soon be made to
L =20 m and beyond. With electron energies in the range
10 MeV to I GeV, the corresponding values ofj are from
unity to more than 5)(10 .' Both the high-gain, single-
pass and the low-gain, oscillator configurations have im-
portant apphcations.

Equations (1) and (2) were originally derived s for the
more general case where the electron energy can change
significantly during a single pass; in this case, an addition-
al factor ri=(1 —v/2m%) alters the wave and electron
equations so that a = j(V—re '&) and,

g=v=
I a I ri cos(g+())) with (')=d( )/dr .

The following work, however, will be confined to weak
optical fields where ri= 1. An extension to higher har-
monics and linearly polarized undulators is also possible
without any change in form of (1) and (2), so that the gen-
eral conclusions and methods of this paper are immediate-
ly applicable to a wide range of PEL designs.

We now proceed to solve (1) and (2) in weak fields,

l
a

l «m, to obtain an integral equation for a(r) incor-
porating an arbitrary electron distribution function. The
electron phase can be expressed as g=g; +v; r+ g'" where
g"' is the first-order perturbation in a. Expanding (1) and
(2) we have
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X(s —q)a(q) .

A normalized electron distribution function f(v;) can
be used to evaluate the remaining average:
( . )= f dv f(v;)( . . ) with f dv f(v;)=1.

III. SIMPLE ELECTRON DISTRIBUTIONS

We begin by considering two simple examples with per-
fect beam quality. In the first, we start the FEL on reso-
nance where the electron-optical wave coupling is largest,
f(v;)=5(v;). The optical wave is most simply deter-
mined from (4):

a (r) =ao+ + f ds f dq f du a (u) . (6)

phases has been removed. Since (4) is an iterated triple in-

tegral, it may be rewritten as a double integral,

S

a(r)=ao++ f ds f dq(exp[ i—v (s —q)])0 0

a (r) = exp[(j/2)'/ v 3r/2],

~ ~

( a( a+a=a+ f da f dq f dua '' a(u). (10)

For low current, j&1, the optical field evolution away
from ao is small so that a (u) =ao can be extracted from
the integrand in (10}. The resulting integrals are easily
solved to obtain the usual low-current gain and phase-
shift formulas:27

2 —2 cos( vor ) —vorsin( vor)G(r)=j
V0

G(r) =-,'exp[(j/2)'"v 3r] .

A second simple example is a high-quality electron
beam starting off-resonance at vo. This is characterized
by f(v; ) =5(v; —vo). The optical field is then determined

The integral equation (6) can also be written in a differen-
tial form by taking successive derivatives, a'f r) =ija (r)/2.
The complete solution uses the form
a (r) = gs, a„exp(a„r)where the „(zratehe three com-
plex roots of the cubic equation as ij/2—=0, and the
coefficients a„aredetermined by the initial conditions
a(0)=ao and a(0)=a'(0)=0. ' The solution for a(r) is

a(r)= Iexp[(j/2)'~ (i+v 3)r/2]
3

+exp[(j/2}'~ (i —v 3)r/2]

+exp[ —i(j/2)'~3r]] .

If the current density is small j~O, or r &&1, we have the
trivial result a(r)=ao(1+ijr /12+ . ) for an tdEL
starting on resonance. There is no change in the optical
amplitude

~

a
~

=ao+ to lowest order, and therefore
no gain. The optical phase (I}(r} increases slowly in
proportion to r . The FEL gain is defined as
G(r)=[

~
a(r)

~

'—ao']/ao' and

G(r)= —,
' I2cosh[(j/2)'~ V 3r]

+4 cos[(j/2) '~'3r/2]

Xcosh[(j/2)'~ v 3r/2] —6I .

In the high-current limit, j p&l on-resonance, the ex-
pressions simplify because one fastest growing root dom-
inates and describes exponential growth in v; As seen
from (7) there is little change in the field during the
bunching time, r & rs =(2/j)', that precedes exponential
growth. During this time. the electrons move from their
initially uniform phase distribution to bunch near the
phase /+/=A/2 As soon as b. unching forms, the high
current immediately causes exponential field growth and
high gain. Then,

2 sin(vor} —vor[1+cos(vor)]
(A}(r)=j

2V0

The maximum final gain is G =0.135j at vo ——2.6 and
r= 1, while the range of modes with significant gain is
5vo- I about the peak.

In order to obtain the general solution, use the substitu-

tion b =ae in (10). Successive derivatives then lead to
the differential form of (10), b ivob —ijb/2=—0. Solu-
tions of the form b =g„,b„exp(a„r)have roots a„
that satisfy the cubic equation a„ives„——ij/2=0. In
the limit of high current j p~ 1, the exponential gain coef-
ficien is reduced by the factor —vo/3v 3(j/2)'~ so that
the gain spectrum is centered about vo ——0 with a charac-
teristic range 5vo-4. 22j'~s. In the high-current case, the
range of modes with significant gain increases slowly as j
increases. We go on now to look at more interesting FEL
distributions describing less than perfect electron beams.

IV. MORE GENERAL ELECTRON DISTRIBUTIONS

New cases of interest involve more complicated distri-
butions f(v;} describing the initial electron beam in the
integral equation (5}. Two electrons starting at the same
phase g; at the beginning of the undulator (r=O), but
with different s velocities„cpo and c (po+ hpo}, will drift
apart as they travel through the undulator. The amount
of drift is not easily predicted without solving the full
problem, because electrons can influence each other
through the self-consistently evolving optical wave. In
this sense, the effect of FEL beam quality is collective.
However, the times for the two electrons to traverse the
undulator are nearly identical since they are relativistic,
L /poc =L /(po+ hpo)c =L/c. An estimate of their
separation at the end of the undulator (r= 1) is
M=A, PoL, and their aPProximate Phase difference is
kg=(k+ko)M=kdz=kLEPo. If the velocity differ-
ence b po is due to an initial energy difference hymc, we
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have Qpo-(1++ i)b,y/yi, and an approximate final
phase separation rg= 4(rNhy/y.

Any random-phase difference i2(g-~, or larger, be-

tween electrons in the beam is important to the I EL
operation, because bunching on the optical wavelength
scale is diminished significantly. At the end of the undu-
lator, the final phase difference is roughly estimated by
hg=bv; for each electron. From the definition of the
electron phase velocity v;, we see that a small change in
the initial electron energy hyme corresponds to a change
in the initial phase velocity, hv; =4nNby/y for y » l.
A distribution of initial electron energies from an ac-
celerator or storage ring is often accurately represented by
the normal distribution function so that we can take

exp[ —(v; —vo) /2o z]
f(v;)=

27FO'
(12)

where o is the standard deviation of v; away from the
peak phase velocity vo. If hymen is taken to be the stan-
dard deviation of the electron energy away from ymc,
then cr =4@Nay/y. Two electrons starting at the same
phase g;, but with an energy difference 8y =y/4N will
drift apart by roughly half of one optical wavelength at
the end of the undulator. A random spread of width
cr=n causes a random-phase spread of approximately
hg=n at the end of the undulator and impairs bunching.
Inserting (12) into (5) gives

a(~) =ao+-L ds dq e -( q) -l2-g T S 2 2

0 0

Xe ' (s —q)a(q) . (15)

The transverse motion of electrons injected at an angle
is soitietimes confined by either the natural off-axis undu-
lator fields or external focusing elements. The focusing
forces result in transverse betatron oscillations about the
undulator axis. When the electron beam is injected to
match the natural focusing properties of an undulator, the
number of betatron oscillations along the undulator is
Nii=NE/'(/2y. In the limit of large y and/or small I(:,
the angular spread of electrons can be important, os& 1,
while the transverse focusing can be made negligible,
Nii ~ l. In this limit, the integral equation (15) applies.

The complex optical field a (r) now depends on an in-
put energy spread characterized by o, and an input angu-
lar spread characterized by (Ts. Other types of distribu-
tion functions can be added in a similar way. If (5) is
solved numerically, even experimental distribution func-
tions peculiar to a given accelerator or transport system
can be added. The general result (5) and the specific ex-
ample {15)are important results of this paper. They pro-
vide analytic expressions describing FEI. performance
with an arbitrary electron distribution function.

angular spread according to (14), then the resulting in-
tegral equation for the optical field becomes

~ 1 —u (S —q) /22 2

g(~)=a, +& I ds I dq
'

.
2 0 0 1 i c—rs(s —q)

Xe "' (s —q)a(q) .

The Gaussian factor in the integrand deer(msei the cou-
pling current j as r increases, and describes the degrada-
tion of bunching due to the spread in electron phase veloc-
ities. The complicated self-consistent evolution of the
electron-beam distribution and the optical field are
described exactly in (13), but before evaluation, we can
generalize its form further.

An angular spread is also possible due to the finite
emittance of an electron beam. An electron of energy
ymc entering the undulator with a small injection angle
8; has a reduced z velocity, Po~P((cos8;=Pa(1 —8;l2).
The resulting z velocity change is EPO- —8; /2, reducing
the initial phase velocity by d.v;= 2n.Ny 8;/(1+1—( ).
A Gaussian distribution of angles about the z axis with
standard deviation b,8; gives the exponential distribution
function

exp[ —(vo—v;)/(rs]
(v;) = for v; &vo,

0'g
(14)

f{v;)=0 for v; &vo,

where (Te=4(rNy'&8, '/(1+&'), and vo is the phase ve-
locity f«electrons entering on-axis. The distribution
fun«ion (14) is sharply peaked at v; =@0 where electrons
enter on-axis, and decays exponentially for v; ~ vo be(~use
the injection at any angle 8, can only
electron's longitudinal velocity -and its phase velocity v;.
If each element of the energy distribution (12) is given an

V. LOW-CURRENT FEL'8

(z (~)—ao 2 2/2

I ds Jdq . e . (16)
2 Bvo o o 1 icreq—

Direct integration of (16) is possible, but the result is a
complicated expression containing many error functions. '

We can alter the form of (16), however, to obtain some
important physical interpretations. The factors e
and (1—icrsq) ' can be interpreted as power-series expan-
sions in q multiplying the factor e; then

( —iq)"e ~B"„e'"+. Now, write

Q0

exp{(T ()„,/2) B„ds dq e
2 1+cr vo

One of the cases of general interest is the low-current
FEI. oscillator. Radiation energy is stored in an optical
resonator, and repeatedly driven by successive electron
pulses from an accelerator like a linac or storage ring. An
important issue for the oscillator is the detrimental effect
of the electron energy and angular distributions when the
oscillator is starting from weak optical fields. In the low-
current case, we can simplify (15) by taking a(q) =co in
the integrand of the integral equation, and neglecting
higher-order terms in j. Without a(q) in the integrand,
the integral can be further simplified by noticing that
iqe '"+=—()„e '"+. Then,
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—2 —I VOX
The double integral is simply vo (1 —ivo~ —e ), so
that the complex integrations in (16) have been replaced
mth a power-series expansion to all orders in e and o~.
To first order in cr and o@ an explicit expression for a (~)
is easily obtained from (17). This is a useful limiting case
since a low-current FEL system would not typically use a
low-quality electron heim (large a or os) and remain
above threshold. From (17), the low-current I'hL gain at
the end of the undulator is

+III (1~7

exP('r ~,/2) sini(vo/2)

1+asB„, "' (vo/2)'
(18)

We recognize the factor in square brackets [ ] as the
PEL spontaneous emission line shape for an electron in a
perfect trajectory through the undulator. It has been
known for same time that the gain is fundamentally relat-
ed to the derivative of the spontaneous emission line
shape. ' The new feature presented in (18) is to express
how the electron-beatn energy and angular spreads affect
that relationship through successively higher derivatives.

With the physical interpretation of the line-shape factor
[ ], we can substitute alternate forms. One convenient
choice is f ]~exp( vo/4n—)which. approximately
reproduces the correct features of the simple I'aL gain
sPectrum, 6= (jvo/4m )exP( vq/4r—r) The . successive
derivatives evaluating the effects of beam quality lead to
more compact expressions, and illustrate how (18) can be
used in practical situations. Even an experimental line
shape could be used in (18).

While the analytic results presented have their merit,
the complete integral (15) is easy to integrate on a small
computer. The values needed for the contour plots of this
paper were evaluated in this way. Figure 1 shows a com-
bined intensity and contour plot of in[1+6 (a,vo)] where
the final gain at the end of the FEL undulator is
6=[a'(1)a(1)—ao]/ao. In Fig. 1 os——0, so that gain
degradation is only due to an energy spread with no angu-
lar spread. The current density is j=1, and gives low gain

FIG. 2. Intensity and contour plat of in[1+ G(oa, vo)] with
j=1 and cr=0. The weak-field gain degradation in this low-
current FEL is due to an electron-beam angular spread with a
normal distribution; the resultant phase-velocity distribution is
the exponential distribution function.

so that ln(l + 6)=G. The brightest paints (white) on the
(o,vo) surface indicate peak gain G=0. 13j, while the
darkest points (black) indicate maximum absorption
6= —0. 13j. Zero gain is indicated by the intermediate
grey shown in the scale at the top. Specific contours of
constant gain, ln(1 + 6)= +0.06, +0.08, +0.1, and
+0.12, are superimposed on the intensity plot. The gain
surface is approximately antisymmetric about vo ——0, and
in the limit j-+0, the gain G(o, vo) becomes exactly an-
tisymmetric. The characteristic amount of spread re-
quired to decrease the gain is seen from Fig. 1 and (18) to
be o'=1. Note also that as the spread a increases, the
phase velocity for peak gain vo-2.6 increases slightly.
Peak absorption occurs at —vo and slightly decreases
with increasing cr.

Figure 2 shows a combined intensity and contour plot
of in[1+ 6(era, vo)] evaluated by (15) with j= 1 and cr=0.
The gain degradation here is due to a monoenergetic elec-
tron beam entering the undulator with an angular spread
described by mrs The gre.y scale and contours of gain are
the same as in Fig. 1. Unhke Fig. 1, the absarption con-
tours (white) have a much different shape than the gain
contours (black). Since the distribution function f(v;)
due to an angular spread is skewed, there is no reason to
expect the antisymmetric properties of 6(mrs ——O, vo) to be
maintained at o's&0. As seen in Fig. 1 and (18), the
characteristic value for the degradation of gain is os =1.
The phase velocity far peak gain, and peak absorption,
both increase with increasing era roughly as vo =os. Note
that the general features of Figs. 1 and 2 are quite dif-
ferent owing to the different forms of the electron distri-
butions. This emphasizes the importance of the shape of
the electron distribution in evaluating gaia degradation in
FEL's, and the need for an accurate, flexible theory as
presented here.

FIG. l. Intensity and contour plot of in[1+ G(o, vo)] with
j=1 and o@——0. The weak-field gain degradation in this low-
current FEL is due to an electron-beam energy spread with a
normal distribution function.

VI. HIGH-CURRENT FEL'S

The integral representation of the optical field in (15) is
also valid for high-current &EL's where j~~l. In this
case, a (r) acquires a nonlinear dependence on j [recall ex-
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PIG. 3. Intensity and contour plot of in[1+ G(o,vo)] with
j=100and og ——0. The weak-field gain degradation in this FEL
is due to an electron beam with a normal distribution in energy.

pression (7)] and cannot be removed from the integral of
(15). To proceed analytically, it is convenient to remove
one integral from (15) by taking the ~ derivative of both
sides, and use the form a =ace~' for the optical field.
Since jgal, assume that a has some large real part, even
though the exponential growth may be somewhat diamn-
ished by the presence of rr and rr() The. magnitude ao
cancels on both sides, and a change of variables gives the
ofIQ

z e ivyla—

0 1 irrss a—

The upper integration limit in (19) has been extended to
infinity because the integrand containing the factor e
becomes negligible for large s.

Equation (19}describes several properties of high-gain
FEL's without integration. If o, vo, and oe all go to 0,
then a has the same roots found in (7). If the current den-
sity j~no so that a real part of a~De, then we obtain
the same limit, since o, vo,and oe all appear divided by a
in (19}. Unlike the low-current FEL, the importance of
beam quality in a high-current FEL depends on the

o

PIG. 5. Intensity and contour plot of in[1+ G(a, vo)] with

j =10 and og ——0. The weak-field gain degradation in this
high-gain FEL is due to an electron beam with a normal distri-
bution in energy.

current density j. This feature has been seen in FEL ex-
periments and simulations, but is now expressed analyti-
cally. The importance of beam quality can be made more
quantitative by iterating (19). Estimating the real part of
the fast-growing root as a*=(j/2)'~ v 3/2, the integrand
of (19} is only significantly modified when
o'=(j/2)'/ &3/2 or when oe-(j/2)'~ v 3/2. In the
high-current FEL, the characteristic values of beam quali-
ty, rr and os, are not equal, and increase with the current
density j. These expressions should be helpful in design-
ing high-gain experiments where there is a trade-off be-
tween beam quality and beam current.

Figure 3 shows a combined intensity and contour plot
of In[I+6(cr, vo)] for moderately high current j=100
and rr() 0 T——he .points at the peak gain ln(1+ G) =4.3
are indicated by white on the (cr,vo) surface; black indi-
cates zero gain. Contours of constant gain, ln(1+ 6)
=2.0, 2.5, 3.0, 3.5, and 4.0 are superimposed on the inten-
sity plot. For the high-quality electron-beam, small o,
gain is confined to a region near resonance, but extends to
a broader range in vo than in the low-current cases of
Figs. 1 or 2. This agrees with the discussion below (11),
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PIG. 4. Intensity and contour plot of in[1 + G(os, vo)] with
j=100 and o =0. The weak-field gain degradation in this FEL
is due to an electron beam with an angular spread producing an
exponential distribution in phase velocities.

PIG. 6. Intensity and contour plot of in[1 + G(ns, vo)] with

j=10 and o=0. The weak-field gain degradation in this
high-gain FEL is due to an electron beam with an angular
spread producing an exponential distribution in phase velocities.
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and gives the range of optical wavelengths over which
there is significant gain 5vo=4j' =7. To find the range
of wavelengths, use hA, /A, =cavo/2m' about the resonant
wavelength A, =Q(1+X )/2y . The maximum available
gain decreases significantly as o ~tr =4.5 as predicted in
the previous paragraph, and the phase velocity for peak
gain roughly follows vo =o.

Figure 4 shows the plot of in[1 + G (cttbvo)] with o =0
so that the gain degradation is caused by an angular
spread in the electron beam. The contours of constant
gain differ from Fig. 3 because of the new shape of the
electron distribution function. As oo increases, there is a
slower decrease in gain because oe ~cr' as found above.
When expressed in dimensionless form, an angular spread
is better tolerated in an FEL than is an energy spread.
The points of peak gain increase with increasing ere simi-
lar to Fig. 3.

Figure 5 shows the combined intensity and contour plot
of in[1+ G(o, vo)] for high current j=10 with oz ——0.
There are no negative gain regions, and the available peak
gain is much larger than for the lower current. For et=0,
the position of peak gain is essentially at resonance vo ——0,
but again increases roughly as vo -tr while beam quahty
diminishes. The width of the gain spectrum at et=0 is

wider than the lower current case, and agrees mell with
5vo-4j'~ =12. The contours of constant gain,
ln(1+ G)=14, . . . , 24, show that the range of wave-
lengths for gain becomes narrower as o increases, and the
maximum available gain decreases significantly as
o.~o' =20.

Figure 6 shows the plot of in[1+ G(tro, vo)] for high
current j=10 with o =0. Again, the contours of con-
stant gain, ln(1+ G) =14, . . . , 24, are distinct from Fig.
5 showing the importance of the electron-beam distribu-
tion function even at high gain. As oe~cre, the gain de-
creases significantly, but again the angular spread is seen
to be less harmful than an energy spread. Unlike Fig. 5,
the position of peak gain stays closer to resonance as ae
mcreases.
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