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%e represent two groups of excited atoms which radiate at slightly different frequencies by means

of a pair of inverted harmonic oscillators coupled to the radiation field. The radiation emitted spon-

taneous1y by these oscillators is amplified exponentia11y and the field generated by each exerts a

strong dynamical influence on the other. For the regime in which the amplification rate is large

compared to the frequency difference of the uncoupled oscillators, the indirect coupling via the field

tends to 1ock the two systems in phase so that they radiate in unison. When the amplification rate is

small compared to the frequency difference, however, each oscillator undergoes, in addition to its

own spontaneous oscillation, a partially coherent oscillation forced at the frequency of the other os-

cillator. These mutually induced oscillations give rise to intensity beats in the radiated field. Such

beats have predetermined phases which are independent of the random initial phases of the oscilla-

tor amplitudes. The beats can be present and detectable in statistical terms even before a single pho-

ton has been emitted on the average.

I. INTRODUCTION

Beating is one of the most familiar of oscillatory phe-

nomena. Whenever two sources of monochromatic radia-

tion have slightly different frequencies there is a possibili-

ty of observing in their superposed fields a periodic modu-

lation of intensity with frequency given by the difference
of the two source frequencies. While the condition stated
is a necessary one for the observability of beats, it is not in

general a sufficient one, since there is also a rather subtle

condition of coherence to be satisfied. Beats, when they
are observable, often have an arbitrary phase of oscilla-
tion, a phase that depends on the precise initial conditions
of both source oscillators. If the preparation of those sys-
tems is described by an ensemble that averages over those
initial conditions, then the beats will typically be averaged
out in phase and disappear from the mean output field.
That is the reason, expressed in classical terms, why no
beats are observed as a rule in the field generated by two
atoms radiating at slightly different frequencies. Beats
can ordinarily be observed in such a field only by exciting
the atoms in a way which preserves some special phase re-
lation between their excitation amplitudes.

In view of the foregoing properties of beats, consider-
able interest is attached to the observation that they can
occur in fact with fixed phases, that is to say coherently,
even when the initial atomic excitations have no special
phase relations. That is the case, for example, in the
quantum-beating phenomena discovered in superfluores-
cent pulses by Vrehen, Hikspoors, and Gibbs, ' and it is
our purpose to explain the mechanism by which it takes
place. In their experiment the two systems of atoms radi-

ating at slightly different frequencies are quite unrelated

in the initial phases of their oscillations. Still, a periodic
modulation of the field intensity develops spontaneously
and oscillates with a predetermined phase. That happens
because the photons emitted spontaneously by each group
of atoms induce in the other group of atoms an oscillation
at a frequency slightly foreign to it. The oscillations in-

duced in each group are partially coherent with their own

spontaneous oscillations and can thus lead to beats with
well-defined phases.

The interactions we are describing are part of the natur-

al process by which such a compound system radiates
spontaneously. Their mathematical treatment can be
made quite transparent by introducing a simplified model
of the compound system which nonetheless retains its
essential physical features.

Let us consider a large collection of identical two-level

atoms each of which radiates at a frequency co. If, as in

the superfluorescence experiments, the atoms are all or
nearly all excited, the energy levels of the system extend
downward from a certain maximum value in integer mul-

tiples of fico. In this sense the system of atoms is rather
like a harmonic oscillator of frequency co with the sign of
its energy inverted. %hen the atoms are all coupled
symmetrically to another system such as a radiation field,
the analogy is further enhanced. ' If the number of
atoms is sufficiently large the dynamical behavior of the
total atomic dipole moment can be shown to be identical
(in permutation-symmetrical states) to the behavior of a
suitably defined coordinate for the inverted harmonic os-

cillator. All that one loses then, by using an inverted os-
cillator to describe the system of radiating atoms, is a
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description of the eventual depletion of excited atoms due
to the finiteness of their number. In practice that means
that only the initial stages of a radiation process can be
described by the inverted-oscillator model, but these
stages, in fact, allow sufficient time for the field strengths
to grow to classical magnitudes and to become easily
detectable. To deal with the later stages of the process by
taking depletion into account, for example, would require
dealing with systems of nonlinear equations for fields that
are no longer of quantum-mechanical magnitude. The
harmonic-oscillator model, while it is limited to describ-
ing the initial phases of superfluorescent radiation leads to
a system of linear equations on the other hand, which we
can easily solve accurately.

To describe the beats that can occur in spontaneous
emission we require two inverted harmonic oscillators of
slightly different frequencies; one to represent each homo-
geneous group of atoms. When these oscillators are cou-
pled to the field, they radiate spontaneously and their ra-
diation field amplifies exponentially. At the same time
they exert a strong dynamical influence on one another
through the medium of the radiated field. This influence
can be felt, as we shall show, either through relative phase
locking or through beating of their amplitudes. Which of
these takes place depends principally on the ratio of the
amplification constant for the field to the difference of
frequencies of the uncoupled oscillators. When the ampli-
ficatio rate is large relative to the frequency difference,
for example, the oscillators tend to lock together in phase
and behave as a single one. When the amplification rate
is slow, on the other hand, relative to the frequency differ-
ence, the two oscillators induce beating oscillations in one
another and these are rendered visible as beats in the radi-
ated field. We shall demonstrate these behaviors and dis-
cuss them in detail in the sections that follow.

II. THE MODEL: HEISENBERG-PICTURE
SOLUTION

shall see, may serve as a simple model for a linear amplif-
ier. '

We generalize this model to include two species of radi-
atively coupled inverted oscillators. The contribution of
the electromagnetic field energy is expressed as a sum
over normal Bose creation and annihilation operators, bk
and bi„respectively, one for each mode k of energy ficoi,.

The total Hamiltonian for our system is then

H =—g Acojaj aj.+g Aevi,bi,bi, +Hz,
j=l k

2

Ht ——A g g(Aj'gath, i,+H c }.. .
j~l k

In Eq. (1), co& is the transition frequency of the jth species
of the inverted oscillators (j =1,2} and Aji, is the dipole
matrix element which determines the strength of the cou-
pling of the jth inverted oscillator with the k mode of the
electromagnetic field. The field-atom coupling Ht retains
only the terms which play a dominant role in the
rotating-wave approximation. Antiresonant terms which
would make much smaller contributions have been omit-
ted.

At t =0 we assume the system to be in the state with
zero occupation numbers for all its modes:

iO), = lo)„, lo)~, IIOI)~

The subscripts A, and Az indicate the inverted-oscillator
species and the subscript E denotes the product state vec-
tor of all the electromagnetic field modes. Both oscillator
states in Eq. (3) represent states of maximum energy,
while the field state is the vacuum state.

It is not difficult to verify the conservation of the
operator:

N = g aj a —g bi,bi, .

We first briefly review the properties of a single invert-
ed harmonic oscillator without coupling to an elec-
tromagnetic field. The Hamiltonian for this case is sim-

ply

The operators a and a t satisfy the Hose commutation re-
lation

fa,at]=1 .

The Hamiltonian possesses the same eigenfunctions as
the familiar harmonic oscillator, but the spectrum is
bounded from above rather than below since both kinetic
and potential energy are reversed in sign. The vacuum
state

~
0) of the oscillators, defined by a

~
0) =0, corre-

sponds to the state of highest energy. The physical inter-
pretations of the operators a and a t are interchanged rela-
tive to those of the usual oscillator: Application of opera-
tor a excites the inverted oscillator to a higher energy lev-
el. The operator a ~a may be viewed as the number opera-
tor for deexcitations of the inverted oscillator. When cou-
pled appropriately to a field, the inverted oscillator, as we

Thus, if initially the system is in state ~0)r, then the

operator N has the constant eigenvalue zero We sh.all
discuss the subsequent time-dependent behavior of the
system in this section by making use of the Heisenberg
picture.

We identify the operators which appear in Eqs. (1}and
(4) with their values at t =0, i.e., aj =aJ(0}, etc. Their
values at other times are then given by, e.g.,

a;(t)=U (t}a,(0)U(t), (5)

where U(t) is the unitary time-evolution operator and
U (t) is its adjoint operator.

If the Heisenberg state of the system is
~
0)T, it follows

from the constancy of X that at all times the average
number of photons equals the average number of deexcita-
tions:

n(t)=— 0 gb„(t)bi, (t) 0
T T

0 g aj(t)aj.(t) 0
T j



b i,(t) =icoi,bi, (t)+i g A,jicaj(t)

along with the corresponding equations for the adjoint
operators. In its time-integrated form, Eq. (8) is

2

b&(t)=e b&(0)+i g Aji, J dt'aj(t'}e
j=l

and when this relation is substituted into Eq. (7), we find

aj(t)=icojaj(t)+g I dt'gA, 'g'jy ge ~aj(t t')—
j'

i Q A—,ji,e bi, (0) . (10)

It is convenient at this point to introduce the Laplace
transform of the operators:

aj(s)—:f dt e aj(t) . (11)

Expressed as an equation for the transform of aj, Eq. (10)
becomes

(s icoj—)aj(s)=g I'jj (s)cTj (s)+Aj (jj'= l, 2) (12)
j

in which we have introduced the abbreviations

(13a)

(13b)

The solution to the pair of linear equations in (12) may be
rewritten as

ai(s)

ag(s) (s —s+)(s —s )

The Heisenberg equations of motion for the operators
aj(t) and bi, are

aj(t) =icojaj(t) —i g Aji,bi, (t),
k

tive. This choice, of course, involves no loss of generality.
If each of the inverted oscillators were coupled to a subset
of field modes and these subsets had no modes in com-
mon, then from Eq. (13a) we would have I »'=0 for j&j'.
It is clear from Eq. (14) that in that case the system would
consist of two completely decoupled inverted-oscillator
modes and the properties of such systems have already
been described in detail.

Because it is precisely the effect of coupling between
the inverted oscillators that interests us most here, we
shall assume that both of the inverted oscillators are cou-
pled to all of the field modes. To secure some simplifica-
tion in notation, we shall assume additionally that the
coupling constants A ji, are independent of j, so that both
inverted oscillators are coupled equally to any field mode.
Thus, the matrix elements I'»' all become identical and we
drop their subscripts:

r(s)—=g (17)
S —l Q)g

as a consequence the roots s+ in Eq. (15) reduce to

s+ ——ico+ I (s)+ [I'(s)2—b,~]'~

To transform the solutions back to the time domain we
must invert the Laplace transforms aj(s). This is a prob-
lem of the type which has already been extensively dis-
cussed in connection with the radiative damping of a sin-
gle harmonic oscillator. That problem is characteristical-
ly simplified by assuming that the amplitude variations of
the operators a are slow compared to the fundamental
oscillations of requency coj, and by thus making an ap-
proximation analogous to the Weissko~f-Wigner approxi-
mation of radiation damping theory. ' We shall limit
ourselves then to considering cases in which the number
of field modes is so large as to be effectively infinite. We
shall assume further that the frequency difference b, is
quite small compared to the mean frequency co. We can
then make the corresponding approximation in the con-
text of our amplification process by neglecting the s
dependence of the function I (s) and replacing it by a suit-
ably chosen complex constant.

The choice that we make corresponds to the suinmation
of Eq. (17) at a point s =ic0+e and taking the limit as e
goes to positive zero:

s —i c02 —I"iz(s)

I i2(s)

I'2i(s) A i(s)
s —icoi —I ii(s) A2(s)

x+ i rj= hm I (t c—a+e),
e-+0

where

s = —,
' [I „(s)+1 (s)] (c0—coi )

(20)

+ico+ I"i2(s)I ii(s) Ic=B'g
)

A,i ~

5(co —
cubi ) .

k
(21)

' 2 1/2
1 ii(s) —I q2(s)5—i

2

co= z (cdi+co2), 5= 2 (cubi —cop) .1

In the following we have chosen coi ~ c02 so that b, is posi-

The latter summation for x may also be written as

a =m
i

A,„i
~g (co),

where g(co} is the spectral density of the field modes at
frequency co and A,„is the coupling strength at that fre-
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quency. It is clear from the structure of the roots s+ as
given by Eq. (18) that the constant I introduces both am-
plification and frequency shifts. Were

~
I

~
small com-

pared to 5, those would be the only changes it introduces,
and a would be the characteristic amphfication constant
and rj the frequency shift. We are interested in consider-
ing situations, however, in which the amplification con-
stant is comparable in magnitude to the frequency differ-
ence b, and cannot therefore completely neglect the role of
I in the last term of Eq. (18) for the roots s+. The differ-
ence of the imaginary parts of roots s+ will correspond,
as we shall see, to the beat frequency. It follows then that
I" plays a role in determining the beat frequency as well.

In experiments on damping and amplification there is
usually no way of determining the frequency shift which
accompanies the procA:ss, nor is there any need to deter-
mine it in order to apply existing theory. In such cases it
suffices either to work with a slightly shifted value of the
fundamental frequency, or to neglect the frequency shift
altogether. In the coupled-oscillator problem that we are
considering, the first and most obvious effect of having rl,
i.e., the imaginary part of I, different from zero, can be
seen from Eq. (18) to be a shift of the frequency to.
Higher-order effects of g include a shift of the frequency
difference 6, and slight attenuations of the amplification
rate. Since these effects are all difficult to observe or im-
perceptible, we shall simplify most of the calculations
which follow by assuming

~
rt

~

to be negligible in magni-
tude compared to d. This simplification retains all of the
essential features of the amplification and beating process;
we shall nonetheless reexamine it in Sec. III where we use
a different approach to consider exphcitly the limit d~0.

The general structure of the solutions given by Eq. (14)
suggests the introduction of functions u~~(s) and v~i,(s)
such that

aj(s) =g ujj (s)a& (0)+g u&i,(s)bi, (0) .

axis and lies to the right of all singularities of aj(s). By
introducing the functions ujj ('t), u (t), and Uji,(t) as inver-
sions of ujj'(s), u(s), and u&i, (s), respectively, we can write
the expression for aj(t) as

aj(t)=g uJJ (t)aj (0)+g U~i(t)bi, (0) . (27)

If we introduce as an abbreviation

(~2 g2)1/2

then from Eqs. {24)and (25) we find

(28)

u &{t)=e"a+"" cosh(Rt) i — sinh(Rt) (29)

u (t)=—e" +"sinh(Rt) .K
(30)

(g2 ~2)1/2 (31)

The temporal behavior of Eqs. (29) and (30) is then given

ujj(t) =e'"+" cos(rt) —i ( —1)t—sin(rt)
T

(32)

u (t)=—e"a+""sin(rt) .
r

If we introduce the abbreviations

(33)

We note that these solutions take the initial values re-
quired, u&& (0)=5JJ .

For the case b, ~~ in which R is purely imaginary, we
let

These functions, which play a major role in the formal-
ism, are defined by (j=1,2)

+u+(t)=e-'", c+ =——
2

1+—,d=
2ll'

(s —tcip ~)

ugj(s)= —u(s) (j'~j),
(s —s+)(s —s )

where

u (s)= =uJJ. (s) (j+j'),
(s —s+ )(s —s )

(24a)

+d [u+(t}—u (t)]a,(0) I

+g Uii, (t)bi, (Q),

ai(t)=e'"+""Id[u+(t) —u (t)]a&(0)

(34a)

then we can write the time-dependent solutions for a, and
Qg as

a, (t)= e'"+'"I [c+u+(t)+c u (t)]ai(0)

s+ ——ice+a+ (x —

Lit�

)
'/ (25)

To invert Eqs. (23) to the time domain we make use of the
Mellin inversion formula

aj(t) = e"aj(s)ds
2+7 C

in which the integration path is parallel to the imaginary

i Ai, (s i co~ ), — '
, (Ui)=s— . '

. (j'+j) . (24c)
(s —s+ )(s —s )(s —i~i, )

The roots s+ are

+[c u+(t)+c+u (t)]at{0)I

++uzi, (t)bi{0) .
k

The dependence of the Iaj(t)I on their initial values
thus factorizes into an amplified oscillation with frequen-
cy to and a slowly varying modulation with frequency r.
The dynamics of the inverted oscillators is strongly influ-
enced by the mixing term d(u+ —u ), which enters the
two solutions in a symmetrical may. These coupling
terms vanish periodically at times t„=nmlr The effect.
of this periodic decouphng will be evident in the statistical
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properties of the system.
The functions tijou(s} are linearly related to the ujj'(s), as

can be seen from Eqs. (24):
g (iii(t) ('=g )uj, (t) ~' —1&0. (43)

v.s($)=-
J

EAg, g tijou(s} .
$ —E Cdg 1=

k
ysg($)=l . g 1ljg~($) ~

S —IN'

1
xss~($) = . ~~+LA,s g Ujs~($)

(s —itoi, )
(38)

All the functions no:essary for the explicit calculation of
oscillator and field averages are thus provided by the
functions u~j (s) and u&s(s).

Our solutions must satisfy the fundamental commuta-
tion relations for the operators [a~] and [bs]; these rela-
tions provide us with some useful identities. By substitut-
ing Eq. I27) and its adjoint into the commutation relations

[ ja(t), ja(t)]=5&~, we find

2

g uJ;(t)uj &(t)—g uJs(t)uj s(t) =5&& . (39)
i=1

Similarly, by using the field commutation relation
[bq(t), bi, (t}]=5te, and Eq. (36), we find

y x si(t)xyi(t) —y y te(t)yyg(t) =5ss~ .
1 J

(40)

These identities are used in the following sections to
help evaluate the statistical properties of the system.

III. THE AVERAGE PHOTON NUMBER
AND RELATED QUANTITIES

We are interested in determining the average number of
photons in the electromagnetic field at a time t when the
system was initially in the vacuum state ~0)z given by
Eq. (3).

According to Eq. (6) we may calculate this average
from

n (t)= 0 g aj~(t)aJ(t) 0
T J T

(41)

By inserting Eq. {27)and its adjoint, we obtain

(nt)=g g ~
uzi(t) [

j k

By using Eq. (39), we have

To complete the solution of the system of coupled Eqs. (7)
and (8) we may introduce functions yq~(t) and x~ (t) to
describe the temporal evolution of the field amplitude
operators b ~..

b„(t)=gy„,(t)a, (0)+g x~ (t)b& (0) . (36)
j k'

The Laplace transforms of the functions xmas (t) and y~&(t)
may be found from the transformed version of Eq. (9).
They are

As can be seen from Eq. (24), g,.
~ gj, ~

i does not depend
on j. Thus, each inverted oscillator contributes ,' n—{t)to
the average photon number.

For the remainder of the paper we make use of a scaled
time variable

and the dimensionless quantity e, defined as

(45)

If we evaluate n (r} according to Eqs. (43) and
(29)—(33), we find the result

sinh (Y1—er) 6&1
1—e

n (~)=2(e2'—I)+4e2'X r, e= 1

Sill (V e —lr) &~1—1

(46)

for the different possible values of e. It is interesting to
note that ( d ldll)n {r)& 0 for all r

Had we considered only one inverted oscillator coupled
to the field, the average photon number in the field after
r would have been (e '—1). The first term on the right-
hand side of Eq. (46) corresponds, therefore, to the output
of two completely decoupled inverted oscillator-field sys-
tems. The second term on the right-hand side is thus due
solely to the radiative interaction between the two inverted
oscillators. It is clear from the three forms for that term,
or from s+ given by Eq. (25), that beating occurs only for
5 exceeding the threshold value x-, i.e., e & 1.

Let us first discuss in greater detail the case e»1, in
which 5 greatly exceais the amplification constant. In
that case, the indirect coupling between the inverted oscil-
lators which is provided by the electromagnetic field is ef-
fectively quite weak. The inverted oscillators radiate in-

dependently for all practical purposes. The field occupa-
tion number rises as the sum of the amplified noise out-
puts of the two separate oscillators. That behavior of the
field intensity which contains no beating effects is shown
in Figs. 1 and 2 by the full curves which correspond to
6~ 00.

As 5 is decreased, and allowed to become comparable
to ~, the radiation field emitted by each of the inverted os-
cillators begins significantly to influence the oscillation of
the other. The oscillation which is induced in each of
them is proportional to the initial amphtude of the other
and contains components of the frequencies centered on
both coi and aiz. It is this mutual forcing of the oscilla-
tions at both frequencies that leads to the presence of in-
tensity beats with nonrimdom phase. Because the time
dependence of the beats is fixed by the dynamics, field
strengths of classical magnitude are not required for their
detection. They may still be quite detectable in statistical
terms when the ensemble-average photon numbers are
smaller than unity. This structure is demonstrated in
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Figs. 1 and 2 by the short-dashed curves for @=10and
100. In Fig. 2 the beats, indicated by the departure from
the solid curve, are apparent even though the photon
number is still too small to apply the classical correspon-
dence principle.

At the particular times r„=nerve 1—, the average"2..photon number is n(r„)=2(e "—1), which is precisely
the average number of photons emitted by two completely
decoupled oscillators. We show in the next section that at
these times, r„, the radiatively induced correlation be-
tween the two oscillators disappears.

When e is decreased to the value unity, that is, when
the detuning is matched to the amplification constant,
5=It, the beats disappear. That is true as long as the sum

ri given by Eq. (20), which acts principally as a frequency
shift, is negligibly small in magnitude compared to b, .

To decrease e further corresponds then to letting 6 be-
come smaller than x. To go to the limit e=O, where the
frequencies become degenerate, b, =O, we can no longer
assume the absolute value of ri much less than b,. To con-
sider that limit we can return to the equations of motion
(12) and note that they are easily diagonalized by rewrit-
ing them as equations of motion for a+ ——a~+at and
Q =—Q (

—Qp'.

u+ icosa+——+2(z+iri)a+ —2i g Ai', e b(,(0), (47)
|I

2.5

2.0

0.0
0.0 0.2 0.4

FIG. 2. The time development of n (v ) for e= 100
(h, /x =10). Note that the beating structure is identifiable even
+hen there is on the average less than a single photon emitted.
The solid curve is the same as in Fig. 1.

The transition frequency of the sum mode has been
slightly shifted from r0 by an amount 2ri; the coupling of
the electromagnetic field to the inverted oscillators thus
lifts their degeneracy. Any resulting beats would be quite
difficult to observe since the mode a remains unampli-
fied and the mode a+ then completely dominates the time
development.

The roots s+ according to Eq. (18) take the general
orm

s+ i (ro+ri)+~+——[» (5 +ri2—)+2iari]'~2 (49)

for ri&0. Large values of the frequency shift ri could
thus alter the threshold value of b„which separates what
we have identified as the beat regime from the pure am-
plification regime.

Further insight is gained by considering the average
photon number in the kth mode of the field as a function
of the energy of the emitted photons ral, . This quantity is
defined as

nl, (r)=r &0 I
b~t(r)b~(r)

I 0&r

=X Iy~,«) I'=X
I U~;«) I'. (50)

FIG. 1. Time dependence of the average photon number,
n (r}; the time is scaled by the amphfication constant, Eq. (44).
The solid Hne represents n (r}for two uncoupled inverted oscil-
lators; the curve with @=10 [see Eq. (45)] shows the beating
structure as a periodic change of the slope. For a=0.5 the in-

crease of n(~) is considerably more rapid than it is for the
decoupled oscillators and has no periodic structure.

In the regime b, )z, the asymptotic form of this quantity

for large times is

f (r) +xf1(r)e
nl, (r)=2

K (&g e) +4&g—
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f+(r) = sin~(v'e —lr)
E—1

u)i, (t}=g ( (f I b„b„U(t)
I
0&z (

i

=z (0I bi, (t)bi, (t)b), (t)bi, (t)
~
0&T . (53)

2

+cos( v'e —1~)sin( v'e —1 r)
v'e —1

By inserting Eq. (36) and its adjoint into Eq. (53), we ob-
tain

xi, +(e/1+ v'1 —e)~
x

(x), —e) +4xi,
(52}

The shape of this spectral function continues the trend
noted earlier. It has a single maximum which decreases in
width as e decrease. An example of the spectral function
for e=0 lis shown. in Fig. 3. For e~0 the width of the
function n), (~) tends to 4», which is characteristic of two
identical inverted oscillators coupled to the same field,
described by Eqs. (47) and (48).

We close this section by evaluating a particular fourth-
order field correlation function. The total transition rate
of the field due to the simultaneous absorption of two
photons from the same mode by an ideal detector is given
by

For 5 &~» the denominator has its minima at co),——r0+b,

and each of the corresponding peaks in ni, (i.) has a half-

width 2». An example for the frequency-dependent part
of the function for e=100 has been plotted in Fig. 3 for
the particular values of ~ at which f+(r)=1 on the as-

sumption that A,i, is frequency independent over the range
shown. For b, ~ao the overlap between the modes be-

comes so weak that the inverted oscillators amplify in-

dependently. As the detuning is decreased, the overlap be-

tween the modes increases; this trend continues until

b, =», at which point the two peaks are no longer

resolved.
For the regime d &», the asymptotic expression, Eq.

(51), is no longer valid; the asymptotic result for large
times in that case is

I ~i I',(i+~, ,), 1+i 1 —e
tii, (w) = 2

e +
j. —e

=2,&0 I
b„'(t)b„(t)

I
0&', =2m„'(t) . (54)

This result illustrates the intrinsically Gaussian statistics
of the radiation generated by our linear model.

IV. THE DENSITY OPERATOR
FOR THE T%'0-OSCILLATOR SYSTEM

In this section we consider the reduced Schrodinger
density operator for the radiatively coupled inverted-
oscillator system. As before, we take

S"T(~=0}=IO&r x&0 (55)

X Iyi y2&&y), yiI, (56)

in which the integrations extend over the complex planes
of yi and y2. The states

I yi, yq & are products of coherent
states

~ yj &, belonging to the jth oscillator (j =1,2). The
task then is to dete—r ine the weight functi

which expresses the information about the quantum state
of the coupled oscillators in terms of coherent states. At
this stage our notation for Pz z does not yet explicitly

indicate the initial state of the system.
We employ the method of normally ordered charac-

teristic functions ' to obtain P by introducing the charac-
teristic function

to be the initial density operator for the entire system of
coupled oscillators.

Our interest will be centered principally on the statisti-
cal properties of the two oscillators and for that reason we
shall calculate only the part of the time-dependent density
operator which refers to them. The reduced density
operator for these oscillators is defined as the trace of
pi.(v) taken over the space of the b modes:

p"~, , ~,«}=TraP T«} . —

We shall solve for this reduced density operator in the P
representation by meriting it as

PA(, Ap J Fl 72 A), A2~Fl YR

Og I

-26

Xz, „,(p, A.;r) =Trz [pT(0)e ' e

a I {r) —A, *a&(7 )Xe e ]. (57)

FIG. 3. Spectral distribution of photon numbers nq{v) as a
function of xq ——{B—coq)/x. Sohd curve for @=100,and dashed
curve for e=0. 1 at times r„=nn/V e 1. —

Here p and A, are two complex parameters. %e may solve
for the time-dependent P function by observing that there
are two ways of evaluating the trace in Eq. (S7). On the
one hand we can use Eqs. (27) and (34) to evaluate the
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solutions aJ(r) to the Heisenberg equations of motion and
then evaluate the trace explicitly. On the other hand, Eq.
(57) is equivalent in the Schrodinger picture to

~, to~
&~, ,~,(p ~~r}=Tr~, ,~/~, ,~,(r)e

Aui(0) —p N&(0) —%+a&(0)
Xe e e

%%en the P representation of Eq. (56) is used to find the
expectation value of the normally ordered product in this
relation, we see that the characteristic function X is just
the four-dimensional Fourier traiisform of the weight
function P. Inversion of this relation then yields

ge e
" ~z

(62)

u 2(r)—:g Q)J(r)Qz (1)=r&0 ) ai(r)ai(r) ) 0&r ~

J

This shows that ui2 determines the correlation between
two inverted oscillators via virtual photon exchange,
whereas u gives the variance of the weight function P.
The notation introduced in Eq. {61),

uii(r)
p(r) —=

u(r
(63)

corresponds again to a quantity often used in conventional
statistics, where the modulus of p{r) represents the corre-
lation coefficient, which obeys

~
p(r)

~
& 1 at all times. By

substituting our result for the characteristic function, Eq.
(60), in Eq. (59) we obtain the joint weight function for
the coupled system of inverted oscillators:

1 I
P~, ,~,(yi.y2, r)= + d V

exp[ I"V '(r—)I"],

which is normalized to unity with respect to integrations
over the y i and yz planes.

The solution for the xz z as derived from (57) with

the help of Eq. (27} is

X„,„,(p, ,A,;r) =exp( —h'V(r)h'] .

Here h' is the traiisposed form of h=(g). The matrix
V(r) is positive defmite and Heimiitian for co»ruz. Fol-
lowing the usage of the probability theory it may be called
the (complex) variance-covariance matrix:

u(r) uii(1 } 1 p (r)()= „() „() =— () () 1, (6)

where

u(r)=—g (uJi{r)
~

in which we have used the vector notation I'—=(„,'). The

determinant of g is det V=u (1—
~ p ~

) and the weight
function is real, positive, and normalized. It corresponds
to a two-dimensional Gaussian quasiprobabihty density
for the complex variables yi and yz.

Integrating over one of the y variables corresponds to
taking the partial trace over the appropriate oscillator
coordinate. When we do that we find for the reduced
weight function

1
Pz (y;r)=P& (y;r)=—P(y;r)= expm(r} u(r)

(65)

The way in which the variance u(r) = —,
'

n (r) increases

with time is given by Eq. (46).
A useful way of illustrating the effect of correlation be-

tween the two inverted oscillators is to define an appropri-
ate conditioned quasiprobability density. To do that it is
convenient to split the right-hand side of Eq. (64) into two
factors:

1 1
P~, ,~,(yi yz'r)=

Iyi —pyzI'
u(1 —l pl'} . .

=P~,
( ~,(yi I yz'r)P(yz r) . ' (66)

The large square brackets in Eq. (66) contain a normal-
ized weight function, which we have denoted by
Pz

~ z, (yi ~ y2,'r). For p=0, this expression is just

P(yi,'r}. More generally P~,
~ q, is the weight we have to

give to coherent states of inverted oscillator A i with am-
plitudes near y i at time r, if at the same time inverted os-
cillator At is characterized by a given amplitude yz.

In the case d & ~ (e & 1), as we shall see, the two oscilla-
tors become closely correlated,

~ p ~

~1 as r~ oo. In that
limit Pq,

~
A then becomes a 5 function:

&"'(y i -yz»

1+ sinh (&1—er) —1
1 —6

1 —e + sinh (v'1 er)—
1 —e

(67)

In the case 6f strong correlation, which is characteristic
of the nonbeating regime e & 1, the inverted oscillators are
frequency locked to one another and assume the same
quantum state. No beating structure can thus be seen in
the emitted field. That is consistent with our conclusions
in Sec. ID, where we discussed the interaction from the
standpoint of the field.

The explicit expressions for j p(r)
~

are
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FIG. 4. The correlation coefficient ) p(r)
~

' of Eq. (67) for
three values of e. After an initial decrease

~
p{~)

~

' approaches
unity as v~ ce.

FIG. 5. The correlation coefficient
~
p(r}

~

' of Eq. (68) for
three values ef e in the beat regime. The function vanishes

periodically in time and has maxima which decrease in magni-
tude as e increases.

p {o}=Io), I», ,(OI, (OI IIpi

1+ sin (&e—lr) —1
2 2

e—1

1 —e '+ sin ( v'e —lr)
'2

in which the field modes are described initially by the
chaotic states

(68)

These expressions follow from Eqs. (63) and (62) and the
functions t(&~'(~), given by Eqs. (32) and (33). The expres-
sions are plotted in Figs. 4 and 5 for three values of e less
than 1 and three values greater than 1.

For v=0 the system is completely correlated due to our
choice of initial state for the oscillators. Immediately
afterwards, the correlation begins to decrease because of
the spontaneous emission of photons. As soon as there
are a few photons in the field the radiative coupling be-
tween the inverted oscillators overtakes the spontaneous
emission process and the system thereafter behaves more
deterministically. For the case e & 1 (Fig. 4} the inverted
oscillators eventually return to a completely correlated
state, whereas for e&1 {Fig. 5} the inverted oscillators
become uncorrelated periodically at the times
r„=nil@'e 1(n =1,2, .—. . ). At these times, the photon
number, Eq. (46), is given by the ampHfied contribution of
pure spontaneous emission noise. The periodic maxima of

~
p(~)

~

are reduced in magnitude as e increases. Finally,
for e~oo the two inverted oscillators become in effigy:t

uncorrelated. This completes our discussion of the densi-
ty operator p„„,of the oscillator system, bawd on the

initial condition Pr(0) =
~
0) z z (0

~

.
Other initial states can be treated by similar techniques.

Thus we can easily find all of the foregoing quantities
when the field modes are initially in coherent states. Then
by mixing such initial states we can investigate for exam-
ple the case

(70)

with mean occupation numbers (n~). The result for
P(y, r) in that case is simply

1 1
I'(y, r) = ——

ir g((ng)+1)
~ uji,(r) ~

—
I y I'

g ((n„)+1)[ uji,(r) [

t
k

(71)

which when compared with Eq. {65)shows the increase in
the uncertainty of the quantum state of either of the oscil-
lators due to the initial presence of photons in the field.
The factors (ns ) + 1 in Eq. (71) reflect the addition of the
effects of induced emission to those of spontaneous emis-
sion already present in Eq. (65).
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