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Propagation of a Gaussian wave packet in an absorbing medium
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Propagation of a Gaussian wave packet in an absorbing medium is examined in order to shed

light on the physical basis of group velocity which exhibits a singular behavior. It is found that the

velocity of the wave packet, defined as the traveling distance of the peak amplitude divided by its

flight time, decreases in the absorption range of frequency, although the group velocity becomes in-

finite in the same range. Fast pulse propagation, which was observed by Chu and %ong and is

characterized by a packet velocity faster than the light velocity, turns out to be a characteristic in

the early stage of the flight and is understood in terms of packet distortion due to damping of
Fourier-component waves in an anomalous dispersion region. It also turns out that slow pulse prop-

agation characterized by a packet velocity less than the light velocity appears for long traveling dis-

tance. The results provided a unified picture of wave-packet propagation in an absorbing medium.

I. INTRODUCTION

A common understanding of wave-packet propagation
in a dielectric medium is that the wave energy propagates
with the group velocity as long as absorption is negligibly
small. ' In an absorbing medium, however, as was studied

by Sommerfeld and Brillouin, ~ group velocity can exceed
the light velocity and become infinite in the absorption
range of frequency. Similar results have been reported for
a plasma with an elcetron cyclotron absorption. ' The
singular behavior of group velocity demands a new physi-
cal insight into wave phenomena in an absorbing medium.
In fact many studies have been reported on this sub-

ject.5 9

Recent experiments on semiconductors with absorption
have provided two seemingly contradictory results. Ul-
brich and Fehrenbach' studied propagation of a light
pulse in a spatially dispersive medium and observed that
the pulse velocity decreases in the absorption range of fre-
quency (referred to as slow pulse propagation). On the
other hand, Chu and Wong" observed that the maximum
amplitude of the light pulse propagates with a velocity
faster than the light velocity in a frequency-dispersive
medium (fast pulse propagation), which seems to give ex-
perimental verification of Garrett and McCumber's con-
clusion that under certain conditions the peak amplitude
does propagate with the group velocity even when it
exctmh the light velocity. Crisp proposed the pulse dis-
tortion due to asymmetric energy absorption as a mecha-
nism of the fast pulse propagation.

Problems of interest are to reveal whether spatial
dispersion is responsible for the slow pulse propagation of
a wave packet and whether group velocity is appropriate
to describe propagation of a wave packet in an absorbing
IDedluHl.

%'e consider a Gaussian wave packet in a dissipative
Lorentz medium to examine the propagation of wave
packet in an absorbing medium. To describe the wave
packet, one has to obtain the asymptotic form of the

Fourier integral, in which the integrand is a highly oscil-
lating function. An expansion approximation commonly
used assumes a narrow frequency spread of the spectrum.
However, the integrand is a highly oscillating function
and the contribution is not localized in the neighborhood
of the central region of the spectrum because of resultant
cancellations of the integrand. The basic assumption that
the contribution is localized does not always hold and
therefore this approximation is inappropriate for the
present problem.

To make a breakthrou h in such circumstances, we use
the saddle-point method, in which the oscillation of the
integrand is suppressed by deforming the contour and one
can evaluate the integral with desired accuracy. More-
over, this method has a great advantage that further as-
sumption on the spectrum such as a narrow frequency
spread is not needed for evaluations. Using this method,
we can examine the propagation of a wave packet in an
absorbing medium from a short range to a long range of
traveling distance.

In this paper, we present the fundamental characteris-
tics of wave-packet propagation in an absorbing medium.
One of the major results is coexistence of the fast pulse
propagation and the slow pulse propagation. The fast one
is found to be a characteristic in a short traveling distance
and the slow one in a long traveling distance. The transi-
tion from the fast stage to the slow stage is presented for
the first time.

It also turns out that the group velocity does not
describe the wave-packet propagation in a long traveling
distance. The propagation velocity for an absorbing medi-
um is derived within the framework of the saddle-point
method and it is confirmed that there is good agreement
with numerical results. The quantitative discussion for
the validity of group velocity is presented and it is found
that the group velocity is valid only in a short traveling
distance.

We propose another mechanisin for the fast pulse prop-
agation based on spreading and damping of Fourier-
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component waves. The transition from the fast stage to
the slow stage is explained by the damping of those com-
ponents in the absorption range of frequency.

The present work provides a unified picture of wave-

packet propagation in an absorbing medium from a short
range to a long range of traveling distance.

In Sec. II an asymptotic form of a wave packet propa-
gating in an absorbing medium is described with the aid
of the saddle-point method. Numerical results are given
in Sec. III, where the mechanism behind the fast pulse
propagation is also presented. In Sec. IV, we discuss the
results in comparison with other works.
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Quantities A {h})and 8(h}) are related to the shape of the
wave packet imposed at the origin and its derivative with
respect to spatial coordinates;
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where hiP and p are an electron plasma frequency and a
collision frequency, respectively. The quantity h}0 is a fre-
quency of resonance at which an absorption takes place.
Figure 1 shows the refractive index as a function of fre-
quency. The medium exhibits anomalous dispersion,
Bn/Bio~0, and is highly dispersive in the absorption
range of frequency.

The profile of the wave packet at an arbitrary time and
position is expressed by the inverse Fourier integral'

One-dimensional propagation of a Gaussian wave pack-
et is studied in a uniform electron I.orentz gas. The re-
fractive index, which characterizes the wave-packet prop-
agation, is related to the dielectric coefficient of the medi-
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where A (co) is given by
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Noting that n ( —hi) =[n (ra)]', we find the second term
of Eq. (6) to be the complex conjugate of the first. Then,
U(x, t) is finally given by

6/4 m (m mc }—ihi/-2

We will consider a Gaussian modulated wave packet given

by

U(O, t)=e ' / co(sh}tc),

where b, is the pulse width and roc is the frequency of the
carrier wave.

Taking a right-going wave (positive x direction) in Eq.
(3) and assuming BU(O, t)/Bx =0 for simplicity, we have

Xer (n(cu)cele]x &ulcc C

We restrict our attention to the asymptotic behavior of
the wave packet, which is obtained with the aid of the
saddle-point method. This method is relevant to describe
a wave packet propagating in a highly dispersive medium.
To make use of this method n (co) is analytically contin-
ued to a complex h} plane. Equation (7) is then rewritten

6/4 m (x/xo}p(m}
U(x, t)= da) e ' +c.c. ,

2 ii

where co=co/coo, xo= /ceo aond the P(h}) is given by
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FIG. I. Refractive index as a function of frequency.

N& /&0=0. 25, p/600=0. 02.

where e},=h},/coo, b, =hem(}. Since xlxo is the propaga-
tion distance normalized by the wavelength in the vacuum
(except for the factor 2n. ) and is a large quantity, the
asymptotic behavior of Eq. (8) is determined by the saddle
points of P (co), denoted ra„which are defined by
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The saddle points co, are usually complex quantities and
the path of integration is deformed so as to pass through
the saddle points. After an integration, we obtain the
asymptotic form of the wave packet:

x. ct
Xexp i tl (cog )cog —egg +i ctg

xo x

+C.C.

where a, is the angle between the path of integration and
the real axis at the saddle points ro, . When more than one
saddle point is present, Eq. (11) is considered as a summa-
tion with respect to the saddle points, which depends on
the path of integration.

The saddle points are numerically determined by using
Eqs. (1), (2), and (10). For the present case there are five
saddle points in the complex co plane. Three of them are
in the right half of the plane and the other two are in the
left half of the plane. The latter make no contribution to
U(x, t) and therefore can be omitted from consideration.
Figure 2 shows the contour map of Re[P(co)] and the loci
of the saddle points as a function of time. Figure 2(a) is
for an absorption-free case, in which the carrier frequency
ru, is far from the characteristic frequency of absorption,
and Fig. 2(b) is for an absorption dominant case. There is
a branch cut just below the real axis, which comes from
the dielectric property of the medium. The path of in-

tegration is so chosen that it passes through the appropri-
ate saddle points from valley to valley on the contour
map, which is indicated by a solid line. Fortunately, only
one saddle point is enough to calculate U(x, t) in the
present cases. Contribution from the other saddle points
is less than several percent, at most, in all the cases.

III. RESULTS

-0.2

0.8 1.2

UJ/U)o

PIG. 2. (a) Contour map of Re[P(co)] for an absorption-free
case. Dashed lines indicate contours of negative region (valley)
and solid lines indicate contours of positive region (hill). S&, S2,
and S3 are saddle points. The hatched line indicates the branch
cut. =, path of integration; —.—- —-, locus of saddle point
as a function of time. (b) Contour map of Ref P(co)] for an ab-
sorption dominant case. =, path of integration; —.—- —.,
locus of saddle point as a function of time.

Figures 3 and 4 show the time development of the wave
packet (envelope) observed at a fixed position for different
carrier frequencies co, . The abscissa is normalized time
t/to where to is 1/aio, and the observation position is
x/xo ——120. The maximum amplitudes are normalized to
unity. The pulse width is b,coo=50 for both figures. Fig-
ure 3 is for a moderate anomalous-dispersion case
[(Bn/88)/n ——10'], and Fig. 0 is for a strong
anomalous-dispersion case [(Bn/Bra)/n ——10 ]. When
the carrier frequency is far from the frequency of absorp-
tion, the wave packet propagates without any deforma-
tion. On the other hand, when the carrier frequency is
near the frequency of absorption, the wave packet takes a
longer time to reach the observation point and exhibits the
deformation from its initial waveform. The degree of
profile deformation is stronger for the strong anomalous-
dispersion case.

Our primary interest on wave-packet propagation in an
absorbing medium is to know whether the group velocity
properly describes the propagation of the wave packet or
not. The packet velocity determined by the traveling dis-
tance divided by the flight time of the peak amplitude is
plotted in Fig. 5. The group velocity calculated from the
dispersion equation is also shown by a dashed line for
comparison. As seen in the figure, the packet velocity in
the absorption-free region coincides with the group veloci-
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FIG. 7. Time development of wave packets (fast pulse propa-
gation). The observation position is x/xo ——30. The arrow indi-
cates the traveling time of a light pulse in the vacuum.
d coo——50, p/coo ——0.05, co~ /~0 ——0.25.

FIG. 6. Amplitude variation (maximum amplitude) as a
function of propagation distance. The parameters are the same
as in Fig. 3.

served at the position x/xo ——120, where the slow pulse
propagation is clearly seen. This type of propagation was
observed by Ulbrich and Fehrenbach' in a spatially
dispersive inedium. The important result of Figs. 7 and 8
is that both types of propagation are observed in one wave
packet traveling in a long distance. This means that the
two types of propagation are characteristics of the wave
phenomena depending on the traveling distance. It should
be also emphasized that the slow pulse propagation is ob-
served in a medium without spatial dispersion, which
shows that the spatial dispersion is not essential for the
slow pulse propagation. The transition from the fast
pulse propagation to the slow one is shown in Fig. 9 as a
function of traveling distance. The packet velocity in the
slow propagation region remains unchanged.

To make clear the mechanism of the fast pulse propa-
gation, we will consider a wave packet with carrier fre-
quency co, /coo=1. 0. Figures 10 and 11 show the profile
of the wave packet at different observation points and its
spectrum obtained by fast Fourier transform (VVI'). For

both figures, the maximum amplitudes are normalized to
unity. As seen in Fig. 10, the wave packet suffers a con-
siderable distortion in the early stage of propagation, in
which the peak amplitude shifts relative to the front end
of the wave packet. After the observation point
x/xo ——30, the packet is restored to a Gaussian-like pro-
file. According to the distortion of the profile in a real
space, the spectral distribution also changes with the trav-
eling distance. In the early stage of propagation, the spec-
trum is asymmetric. After a certain traveling distance in
which Fourier components in the absorption range fully
die out, the spectral distribution becomes a Gaussian-like
profile again (this means that the profile in a real space is
also Gaussian-like profile}. From these results the mecha-
nism of the fast pulse propagation is considered to be as
follows. Fourier components of the wave packet propa-
gate with each phase velocity and tend to spread out dur-
ing the propagation. In this process, the components in
the absorption range of frequency suffer stronger damp-
ing than those in the normal dispersion region, resulting
in an asymmetric profile of the spectrum. This causes the
peak to shift towards the front end of the wave packet
and therefore the peak amplitude seems to propagate fas-
ter than the light vdocity.

The transition point froin the fast stage to the slow
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FIG. 8. Time development of wave packets (slow pulse prop-
agation). The observation position is x /xo ——120. The arrow in-

dicates the traveling time of a light pulse in the vacuum. The
parameters are the same as in Fig. 7.
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stage may be estimated as a decay length of those com-
ponents in the absorption region:

(12)

where Uz stands for Fourier-component waves in an
anomalous dispersion region (absorption region) and Uz

FIG. 10. Distortion of a wave packet. The carrier frequency
is co, /coo ——1. The parameters are the same as in Fig. 7.

for those in the normal dispersion region (see Fig. 12).
Taking Uq at the center of the spectrum (co=coo) and U~
at the edge of the normal dispersion region (co=coo+p),
~e obtain

—f n "(eo)coo/c]x

&10
a~@2/2 [5 (olp+p)olo/cia

e e
(13)

in which the datnping of U~ components is also taken
into account. Since the quantity p is the half width at
half maximum of the absorption band, i.e.,
n "(coo+p)=n "(coo)l2, this condition is finally written by

t&,tUPo = 1.0 n (ciJO)coo
F2+2 + x &4.6. (14)

$0 IOO

I

l50 200

In the present case, the parameters are pleo& ——0.05,
hcoo ——50, and n "(coo)=0 3, which giv. es the transition
point:

x/X. x/xo & 36 . (15)

FIG. 9. Variation of packet velocity as a function of propa-
gation distance. The carrier frequency is co, /uo ——1. The pa-
rameters are the same as in Fig. 7.

This agrees vrell with the result presented in Fig. 9 in
vvhich the packet velocity drastically changes to a low
value, less than the light velocity, around x /'xo ——30—40.
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IV. DISCUSSION

We first discuss the propagation velocity of the wave
packet within the framework of the saddle-point method.
The saddle point corresponding to the peak amplitude is
determined by the minimum of the exponent of Eq. (11):

a 'aP aP ~~.
Re P—(ra, ) =Re +

Bt Bt /to Bt

=0.

20
Noting that c}P/Boo, =0, we obtain Im(to, )=0 from Eq.
(16), i.e., the peak amplitude corresponds to the saddle
point on the real axis. Then the definition of the saddle
point gives

25
t)tie ct

Bto 8
(17)

30
Xo

/to Q x
(18)

for the peak amplitude, where a prime and a double prime
stand for the real and imaginary parts, respectively.

When the absorption is negligibly small,
(Bttto/Bto)@ -0, Eq. (18) gives t0, =to, . In this case, Eq.
(17) gives the group velocity:

O.S

X C

Gnarl

(19)

FIG. 11. Fourier spectra of a a&ave packet at different travel-
ing distance. The maximum amplitudes are normalized to uni-

ty. The carrier frequency is ~, /uo ——1. The parameters are the
same as in Fig. 7.

In the absorption dominant case, however,
(Bttto/Bto)„" +0 and the saddle point is not equal to the

carrier wave frequency t0, . Then, the pulse velocity is
generally given by

X

I
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I

I

I

l 2p
I

I

I

I

I

4J/ LARGO

FIG. 12. Schematic of refractive index of an absorbing medi-
um and a Fourier spectrum of wave packet with a carrier fre-
quency co /ci)0= 1.

This quantity usually differs from the group velocity and
is a function of propagation distance through the saddle-
point frequency t0, which is a function of traveling dis-
tance. The solid Hne in Fig. 5 indicates Eq. (20) and there
is a good agreement with the numerical results (open cir-
cles).

In a short-range limit such that (xo/x)b, »1, Eq. (18)
gives t0, =t0, and Eq. (20) may become the group velocity.
However, the above condition is necessarily violated as the
packet travels in a long distance (xo/x)E &1, in which
the pulse velocity is again given by Eq. (20). The group
velocity is valid only in a short traveling distance. Chu
and %'ong" observed that the pulse propagates with the
group velocity in a frequency-dispersive medium. Since
the paimmeter (xo/x)Z of the experiment is estimated to
be of the order of 10 (10' in our case), their experiment
corresponds to this short-range limit. The result is quite
consistent with our theoretical result.

Crisp proposed the pulse distortion as the mechanism
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of the fast pulse propagation: more energy is absorbed
from the rear half of the pulse than from the front half
because of finite response time of the medium. The essen-
tial feature of this mechanism is that it is independent of
the travehng distance. So, this effect always acts on the
wave packet during the propagation. As seen in Fig. 9,
however, the pulse velocity changes with the propagation
distance and the slow pulse propagation appears in a long
traveling distance. This implies that there is another dis-
tortion mechanism which dies out beyond the certain dis-
tance. We propose the spreading of Fourier component
waves as a mechanism of the fast pulse propagation. The
transition from the fast stage to the slow stage is ex-
plained by the damping of component waves.

It might be worth pointing out the validity of group
velocity for a nonabsorbing medium. The group velocity
is usually derived by expanding the exponent of the
Fourier integral around the carrier-wave frequency (ex-
pansion approximation). As discussed above, the saddle-
point frequency is equal to the camer-wave frequency in
the absorption-free case. In this condition, there is no
difference between the saddle-point method and the ex-
pansion approximation as far as peak amplitude is con-

cerned. The validity of group velocity for a nonabsorbing
medium is again assured by the saddle-point method.

The slow pulse propagation' ' ' has ben observed
only in a spatially dispersive medium. In this paper we
present the coexistence of the fast and the slow pulse
propagation in a frequency-dispersive medium. The fast
one is a characteristic of short traveling distance and the
slow one in a long traveling distance. This result strongly
suggests that both types of propagation are fundamental
characteristics of wave-packet propagation in an absorb-
ing medium and therefore could be found at the same
time in a frequency-dispersive medium.
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