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Even-harmonic generation in free-electron lasers
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A harmonic-generation mechanism that relies on the coupling modulation between an electron or-
bit and an electromagnetic mode is proposed. Applications of this mechanism to harmonic genera-
tion in linearly polarized free-electron lasers predicts the emission of even-harmonic radiation in the
forward direction primarily in the TEMol mode.

I. INTRODUCTION II. ELECTRON ENERGY-LOSS MECHANISM

Second and higher harmonics of electromagnetic waves
are generated in oscillators and amplifiers as a conse-
quence of the nonlinear properties of the gain mechanism.
Harmonic production can be viewed as a parasitic effect
or as a useful mechanism by which higher frequencies can
be generated directly. In high-power experiments har-
monics have caused mirror damage' while the possible
uses for harmonics include the precision measurement of
frequency and/or time and as diagnostic indicators on
fundamental frequency experiments. Regardless of their
usefulness, the ubiquity of harmonics necessitates a
thorough understanding of their origins so that their ap-
pearance can be predicted or manipulated as desired.

A mechanism involving transverse electromagnetic-
field inhomogeneities is proposed for the generation of
second (even) harmonics in free-electron lasers (FEL's). It
uses an even-harmonic transverse current whose space and
time modulations are not resonant with vacuum-
propagating electromagnetic waves. Although this trans-
verse current cannot couple to a plane wave, when a trans-
verse spatial mode exists that is traversed by the electrons
(which produce the radiation), the beating of the mode-
orbit field with the transverse current produces a resonant
excitation of the vacuum-propagating mode. The efficien-
cy of coupling into the mode varies with the position of
the electrons, the wiggle-orbit amplitude, and the trans-
verse mode shape. The transverse modes must be selected
by the boundary conditions. This interaction process is
hereafter referred to as the mode-orbit differential effi-
ciency mechanism (MODEM). In a FEL one manifesta-
tion of MODEM is even-harmonic radiation into modes
with odd transverse symmetry.

This paper describes a detailed application of MODEM
to a FEL. In Sec. II a Gedankenexperiment is presented
to show how the MODEM for a linearly polarized FEL
can be understood through examination of an electron's
resonance condition. Section III describes the mode am-
plitude equations for a linearly polarized FEL, including
the MODEM terms. A physical interpretation of the
analytical MODEM results, including a comparison of
the MODEM coupling coefficients with those of the odd
harmonics and with those due to misalignments„ is con-
ducted in Sec. IV. The conclusions are given in Sec. V.

%'hen a wave and electron are near resonance, the elec-
tron will exchange energy with the electromagnetic wave.
Energy conservation requires the energy lost by the elec-
tron to be equal to that gained by the wave (or vice versa).
In the classical FEL model, resonance is established when
one wavelength of electromagnetic radiation passes over
an electron as it executes one wiggle oscillation. Figures
1(a)—1(d) demonstrate the relationship between a test
electron's position, velocity, and observed electric-field ra-
diation at resonance. Here the amplitude of the transverse
velocity of the electron caused by the wiggler always has
the same sign as the electric-field radiation it samples.
Therefore, the change in the electron energy with time,
given by

is always negative so that the electron continually loses
energy to the radiation field.

This simple model can now be extended to explain
second (even) -harmonic emission. The mechanism is
most easily understood if one assumes the electron wiggles
in and out of an infinitely sharp-edged second-harmonic
radiation field as depicted in Fig. 2. Here the cross-
hatched area represents the region of space where no opti-
cal field is present. Since the electron samples the 2co,
field only when outside the cross-hatched area, its v.E
product will always be greater than zero. The fourth plot
of Fig. 2 shows this. Thus, the spatial variation in the op-
tical field has modified the temporal characteristics of
v E such that its time average is no longer zero.

Extension of this concept to a system where the elec-
trons sample a finite gradient in the transverse radiation
field amplitude can now be explained as follows. The en-
ergy lost by an electron as it passes through the high-
radiation-field region of its trajectory will be greater than
the energy gained during its passage through the low-field
region. As a result, the electron will lose a net amount of
energy to the radiation field.

Radiation due to MODEM is essentially unavoidable
(where to, =k,c) due to the transverse field gradients
present in most FEL devices. To understand how the
transverse field profile affects the MODEM interaction
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FIG. 1. Parameters for a test electron near fundamental reso-
nance over one wiggle period: (a) transverse position, (b) trans-
verse velocity, (c) observed fundamental electromagnetic field,
and (d) product of the transverse velocity and observed electric
field which is proportional to the electron's rate of change of en-

ergy.

FIG. 2. Parameters for a test electron wiggling in and out of
a second-harmonic field: (a) transverse position showing
electromagnetic-field boundary, (b) transverse velocity, (c) ob-
served second-harmonic electromagnetic field, and (d) product
of the transverse velocity and observed second-harmonic electric
field which is proportional to the electron's rate of change of en-

ergy.

we shall examine how electrons on either side of the opti-
cal axis interact with a perfectly aligned optical beam. If
the optical mode has even transverse symmetry, the elec-
trons wHl sample equal but opposite field gradients on ei-
ther side of the optical axis. Considering the resonance
model above, an electron on one side of the optical axis
will radiate (at the second harmonic) exactly out of phase
from the corresponding electron on the opposite side of
the optical axis. This can be seen schematically in Fig. 3.
The electrons' trajectories caused by the wiggler magnetic

field are identical except for a transverse displacement.
Therefore, while the electron on one side of the optical
axis traverses the high-field region, the other electron is in
the low-field region. It follows that the resonant electric-
field phases for the two electrons differ by 180', as depict-
ed in Fig. 3(b), so that their contributions will not rein-
force the imposed even transverse field profile. Alterna-
tively, if one assumes an odd transverse mode profile, as
shown in Fig. 4(a), the resonant electric fields for the two
electrons, given in Fig. 4(b), are again 180' out of phase,
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FIG. 3. (a) Symmetrically displaced test electrons wiggling in

and out of either side of a cylindrical TEMoo-type mode; (b)
resonant second-harmonic fields for each electron for optimum
deceleration.

FIG. 4. (a) Symmetrically displaced test electrons wiggling in
and out of either side of a cylindrical TEMp&-type mode; (b)
resonant second-harmonic fields for each electron for optimum
deceleration.
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but in this case they reinforce the assumed transverse field
profile. Therefore, these intuitive arguments suggest that
the MODEM radiation will appear in odd transverse
modes of the system.

III. ANALYTICAL TREATMENT

To express the even-harmonic interaction analytically
we begin with the vector potential form of Ampere's law
given by

8 z 1 3+p2 Ag ——— (2)
Bz c 8t

where we have assumed a transverse electromagnetic wave
and current density. %e expand the electromagnetic vec-
tor potential in the form

af(r z t) lf(k 2 ,t')—Ai ——y e ' * +c.c. ,
f i 2

where a/(r, z, t) is slowly varying and f is the harmonic
number. Assuming the gain is small over an optical
wavelength (B,A& &~k, Ai) we can make the paraxial ap-
proximation, yielding

if)k z —a) t), c) 1 8
e * ' 2ifk, +——+V'i +C.C. =—

Bz c dt 2

where we assumed c0,=k,c. Factoring the transverse dependences of af (r,z, t) into Gauss-Hermite modes we define

af(r, z, t) =g a f(z~, t)A„(x,z)A (y,z),

r

1 (2/m )'~ w
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w =w()(l+z /z„),

~2x
I w(z)

8
-(1-iZ/Z )X2/m~

and Ht(a) are the Hermite polynomials. By definition, each of the modes satisfy the free-space paraxial wave equation
and are orthonormal

f dx A„(x,z)A~(x, z) =5„ (9)

where 5;J represents the Kronecker 5 function. Substituting the new expression for a (r,z, t) into the paraxial wave equa-—ig ( k~ Z —Nz f )tion and projecting out the gth harmonic by multiplying through by e ' ' and averaging over one optical period,
gives

1 +2%/AP

A„(x,z)A (y,z)5+ +——af —A„'(x,z)A~(y, z)5 ~ +——a„"~f=

where we assumed a„relatively constant over the integration interval.
Now, since we are only interested in waves with k vectors in the direction of the electron-beam propagation, both f

and g must be positive integers, thereby eliminating the complex-conjugate term. Multiplying through by A„'A', in-
tegrating over transverse space, and invoking the above orthonormal relation yields
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t +2m/a) —if (k,z —c),t)at (z, t)= f dt f dx f dy A„*(x,z)A~(y, z)Jie
Bz c Bt " ' f

To evaluate the integrals on the right-hand side we ex-

press Jz explintly as

Jj = —en (x,y, z, t)Uy(z, t) (12)

where n (x,y, z, t), U~(z, t), and e are the electron density,
transverse velocity, and charge, respectively. Assuming a
linearly polarized wiggler field, B = —xB sin(k z), the
electrons wiggle in the y direction as they travel down the
z axis. Conservation of canonical angular momentum
dictates

terms in an exact expansion of y —yp give rise to odd-
harmonic terms in k which are small (0[[X/w, ] "+'I )

for the conditions considered here. The parameter X has
physical significance since it is the maximum transverse
deviation of the electron from its wiggle axis.

Since the electrons wiggle in the y direction, the elec-
tron density along the y axis is also a function of z. As-
suming normalized Gaussian dependences in the trans-
verse directions and a parametric displacement m& in the

y direction, we write

ed'
Uy =

me/
8 cos(k z),

Plgk~ f
n, (z, t)

2 2 2
n (x,yp, z, t) =

2 exp[ —[x +(yp —wi) ]/w, I,
KW~

(15)

where +7,Ey~ A, &&A has been implied. This ex-

pression can be integrated to give an explicit expression
for y in terms of z, given by

y —yp ———&sin(kwz), (14)

where yo is the electron's transverse position at z=o,
lt/(yk~ ), and x =e8 /(tnc k~ ). The higher-order

where n, (z, t) is the axial electron density defined

n(z, t) =+5(z;(t) z) . —

Inserting the explicit expression for yp into the density
and expressing Ji in terms of Uz and n in the wave equa-
tion gives

~ r
c) 1 3 / i2eac.a„(z,t) = '

&
F„(z)G (z)cos(k~z) f y

where we have expressed the transverse averages as

F„(z)= f dx e 'A„'(x,z),

and

g 5(z (t) z)dt . — (17)

G (z)= f dyexpI —[y+Xsin(k z) —w&] /w, ]A*(y,z),

both having the dimensions of cm'~ . Converting the 5 function electron distribution into an explicit time form

5(z, (t) —z)= 5(t;(z) —t),1
(20)

where P is the normalized axial velocity averaged over a wiggler period, given by

K
P=Pp 1—

4yo
(21)

the integral in Eq. (17) becomes trivial, yielding

8 1 8 / i 2ea e"PI if [k.z —tp. t (z)]I+——a/ (z, t) = F„(z)G (z)cos(k z) gBz c dt p~w f i=1 Vl

where X is the number of electrons that pass through z
during one optical period.

It can be shown that for X/w, «1, G (z) can be split
into two integrals so that

G (z)=G'"(z)+G "(z)

=G'"(z)——sin(k z)I (z) .
LU

where

G'"(z)= f dye "(y,z)e

I~(z)=w G' '(z) .
l8]

(24)

(25)
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Evaluation of the wave equation for the Gm"(z) term
yields fundamental and odd-harmonic mode amplitudes
while the sin(k z) component in 6' '(z) gives rise to
even-harmonic mode amplitudes. Concentrating on the
even-harmonic portion of the wave equation and defining
the total derivative

These quantities are defined in the high-y limit as '

sin(2k z) (29)

Z —Zo
tj

pc
sin(2k zo;),

COg

(30)

gives

daam
ef

dz
—sin(2k z)F„(z)I (z)

nw, fp ~

expI if [—k,z to, t—;(z)]j
X

K

4(1+v j2)
(31)

and zo; labels the initial position of the ith electron. Sub-
stituting the expression for t; into the wave equation and
expanding the bt portion of the exponential along with
the sin(2k„z) term in an exponential series of the form

where the ef superscript signifies that these are the even-
harmonic mode coefficients.

The time it takes an electron to reach a particular z po-
sition can be divided into a component proportional to the
average axial velocity, denoted t; (which is dependent on
the electron's final and initial positions), and a component
that describes the variation from this average time, ht,
dependent only on axial position, or

IfCilia
af y + ( 2lk~g

7

where

Dt =
2

t&t+i(fC) —Jt-i(fC))

(32)

(33)

t;(z)=t;+bt . (28) yields

da'f
(34)

the wave equation can be written

da„ef

dz

—if/;
2-~n(»1 (» g i~i+i(fk) Ji i(fk)l&—

Defining the slowly varying phase for the ith electron in the optical and wiggler fields as

P;=(k +k, )z a), t;, —

(37)

Specializing to interactions over many wiggler periods, we select out the nonoscillating term in the I summation so that

, -F.«)lm(»( —1) "&jf2(fk)g

where f must be an even integer.
If we assume the axial electron density at the entrance

to the wiggler varies negligibly over a ponderomotive
wavelength, the electron density inside the wiggler will be
quasiperiodic —with period k&. The average density in-
side each ponderomotive wavelength wi11 be invariant as it
travels with velocity pc through the wiggler. Denoting
this average density n, we have

g X+A ttt

n = J dz g 5(zf(t) z)=niN Ikp, — (38)
Ip i=)

where ni =(mu), ) ' from the definition of the normahzed
density. Therefore

X N~ a),

7l'Wg fLt) 1Tl8g 2'Irpc

near resonance, so that

da~~ef

dZ
—+„(z)1 (z)

k~ N

x( —()f"Jf,z(ft)( )

(39)

(40)

where the brackets denote an average over the X elec-
trons. Defining the couphng coefficient for each even
harmonic for each mode as
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( —1) "Jj/2(f4}+«(»Im{Z»

and the normalized electric-field mode coefficient as
=ifk, af, the wave equation becomes

d @of /f—4,
=2irp~A „f (g,z}

ck

where the odd coupling coefficients are given by

d @of &ft;—

=2mPI(A '„f (g,z) (42)

~«m(g, Z) =(—1)' [J(f ) )/2(f g) —J(f+])/2(fg)]

x+.(z)G"'(z) . (44)

for the even harmonics, where p= en—is the average
charge density. The analogous derivation for the odd har-
monics yields

Following a similar line of reasoning, the energy equa-
tion for the electrons including both even and odd har-
monic contributions becomes

-0fg+p~) —i t.fg+g&)
Re g g~ (g )S'" '

«,y 2'IrWo mC
+ g g~'„f(g,z)N'„'f' (45)

y f=evens, m

where the angular braces denote an average over transverse space. Evaluation5 of the defmitions for the transverse spa-
tial averages yields

(2~)'" n!
' I/2

E„(z)=even(n)w, (46)

where even( n) is zero for n odd and one for n even,

(2'�}'"w,G'"( )= ' n~ A ""'"a
m(m!2mW)l 2 m m

W
(47)

(2n }(/4W, PIII2y2 N
&

W W) O, 2

i (m!2 w)/ w,

Q2 . i 0—i~2m H, I~2 (48)

where

w2 jw,
1+w /w, +iz jz„

1+izjz„
1+wi jw, +iz/z„

' 1/2

(49)

' I+1/2

(1+z2jz2)l/2
(51)

aIld
1]'2

1 —w /w, —iz/z„

1+w /w, +iz/z,
(52)

It can easily be shown that the FEE model governed by
Eqs. (42), (43), and (45) conserves energy.

IV. INTERPRETATION OF THE
PHASE-AVERAGED EQUATIONS

A. Complex coupling coef6cient

To compare the couphng of the even and odd harmon-
ics into the various TEM modes we first note that both
the complex coupling coefficients, given by Eqs. {41)and

Jz ———en@

Using Eq. (14) in (15) we have

(53)

n(x,y,z}= 2exp( —x /w, }
'VXU~

Xexp I
—[y —w ) +X sin(k~z)]2/w, I,

and with the X/m, ~~ 1 assumption

(44), depend linearly on E„(z). We can therefore omit this
term from the comparison. The average over the wiggle
direction yields the G'"(z) factor in the odd-harmonic
coupling coefficients and the Im(z) term in the even-
harmonic coefficients. For perfect alignment, w I

——0, and
Gm'(z) ==Em{z) which is zero for odd m Thus, . only
modes with even transverse symmetry can be driven at the
fundamental and odd harmonics when the optical and
electron beams are perfectly aligned. Setting wi ——0 in
I (z) gives nonzero results only for m odd. Thus, only
modes with odd transverse symmetry (in the wiggle direc-
tion) can be driven at the even harmonics when the optical
and electron beams are perfectly aligned.

To see why only odd transverse modes are driven by the
even harmonics, and vice versa, we look at the expression
for the transverse driving current given by
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n (x,y,z)=
—x /m —(y —u&) /m2 2 2 2

X [1—2(y —wi )X sin(k z)] . (55)

and assuming ur& ——0, w, =m, and z ggz„we have

~o'i' X [Jo(24}—J2(24}] =0.25,
2w [Ji(3(}—J2(3$)]

(58}

The second term in brackets is the MODEM term. Sub-
stituting this term along with Eq. (13) into Eq. (53) gives

T

e~c
Ji. I MoDEM=— 2 sin(2k~z)

STD~

XexpI —[x +(y —wi) ]/w, ] . (56)

This expression is obviously odd in y (for wi ——0) and
therefore only modes with odd symmetry along this axis
are driven. Analogously, the transverse current for the
fundamental and odd harmonics, obtained using the first
term of Eq. (55},yields an expression that has even trans-
verse symmetry. Thus, only modes with even transverse
symmetry are driven at these frequencies. From Eq. (56),
the extrema of Ji depend only on the electron-beam spot
size and are located at y =+w, /v 2. Since the spot size
of the source of the harmonic radiation is determined
solely by the electron beam r-adius, the excited harmonic
radiation must also have a spot size determined by the
electron beam. For cavities where the harmonic reflectivi-
ties prevent the formation of harmonic modes, the single-
pass harmonic radiation will be observed with a spot size
given by the electron-beam spot size.

For wi&0, all modes can be generated for both even
and odd harmonics. A nonzero value of wi implies a
transverse displacement of the electron beam in the wiggle
plane. Coupling of the second harmonic into the TEMoo
mode can then occur and will be optimized when m

&

——m, .
The magnitude of the coupling coefficient for the op-
timally displaced electron beam into the TEMoo mode is
approximately half that of the perfectly aligned system
into the TEMp& mode.

8. Coherent spontaneous emission

The harmonics generated in FEL oscillator experiments
are produced primarily by coherent spontaneous radiation
of the fundamentally bunched electron beam. This mech-
anism dominates over the much weaker harmonic linear-
gain mechanism which cannot overcome cavity mirror
losses. The change in the amplitude of each harmonic is
determined by its transverse-current Fourier component,
scaled by the harmonic coupling coefficient.

An intuitive feel for the amplitudes of the even har-
monics, relative to those of the odd harmonics, can be ob-
tained by taking the ratio of the complex coupling coeffi-
cients for the second and third harmonics. Considering
the form of Ji in Eq. (56), we assume all the second-
harmonic radiation to appear in the TEMO& mode, while
the third harmonic is assumed to radiate completely into
the TEMOO mode. Then

Ii(z) [Jo(2$)—J2(2$)]
2w G,"'(z) [Ji(30}—J2(34}1

where we have assumed parameters consistent with those
of the Los Alamos FEL oscillator (a =0.76, A, =2.73 cm,
y=42, w, =l mm). Thus, the coupling into the second
harmonic is one fourth that of the third harmonic.

One-dimensional computer simulations of the Los
Alamos FEL oscillator performed with the code oNED
predict that the Fourier component at the second harmon-
ic, due to bunching by the fundamental, is three or more
times larger than the third-harmonic component (where
saturated electric-field amplitudes have been assumed).
Thus, one would expect equal second- and third-harmonic
radiation. Prehminary measurements taken for the Los
Alamos FEL bear out this result, although the modal con-
tent of the two harmonics was not ascertained.

~a= g Jn(f(}[J2n'+f+1(f»+J2n'+f I(f»]—
(59)

where

2vy8
1+@ /2+y 8

(60)

and 8 is the angle of misalignment. To determine if this
mechanism can compete with the MODEM in the Los
Alamos FEL oscillator, we assume a maximum electron-
beam misalignment of y =+w, at one end of the wiggler
and y = —w, at the other end of the 1-m wiggler. For
these conditions, W&-0. 1 which is less than half that cal-
culated for the MODEM. The coupling to even harmon-
ics caused by misalignments is actually smaller than 0.1,
since the transverse fall off of the optical electric field is
not included in the plane-wave model. Also, since the
even-harmonic radiation is produced primarily through
coherent spontaneous emission, and the optical cavity and
electron beam are aligned experimentally by maximizing
fundamental power output, any misalignment will be min-
imized. Therefore, for the Los Alamos FEL oscillator,
the MODEM will be the dominant source of even-
harmonic radiation (where dispersion of the optical fields
and even harmonics of the wiggler magnetic field can be
neglected}.

V. CONCLUSIONS

We have found a mechanism by which even harmonics
are generated in plane-polarized FEL oscillators. Cou-
pling to the even harmonics is produced by the optical-
field variation sampled by each electron as it wiggles

C. Comparison arith misalignment effects

Even-harmonic radiation can also be excited by
misalignment of the optical and electron beams. Colson
et al. have calculated a coupling coefficient for such a
system assuming an imposed plane-wave electric field,
with the result
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through the optical cavity. The radiation is confined to
modes with odd symmetry in the wiggle direction (null on
axis) resembling the angular spontaneous emission, but
much narrower in angular divergence. To analyze this
mechanism we have chosen to decompose the optical field
into Gauss-Hermite modes of the optical cavity. We have
obtained a set of one-dimensional equations with complex
coupling coefficients that conserve energy and are suitable
for numerical analysis. The strength of the coupling for
this mechanism dominates that due to angular misalign-

ment of the electron and optical beams. Preliminary cal-
culations predict even-harmonic amplitudes on the order
of the odd-harmonic amplitudes for the Los Alamos F'EL.
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