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Quantum chaos and a periodically perturbed Eberly-Chirikov pendulum
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A two-level system contained in a single-mode resonant cavity tuned to the energy-level separation
of the two-level system is studied. A purely quantum-level description is converted into five coupled
ordinary differential equations for certain relevant expectation values. These equations are identical
with a system of equations proposed by Belobrov, Zaslavskii, and Tartakovskii on semiclassical

grounds, and very closely related to a similar system proposed by Milonni, Ackerhalt, and Galbraith
on semiclassical grounds. The level-population expectation value for the two-level system shows a
transition to chaos as the coupling strength is increased. This transition is suggested by power spec-
tra and confirmed by calculation of corresponding Liapunov exponents. It is shown that the equa-
tions can be transformed so that they exhibit the presence of a periodically perturbed Eberly-
Chirikov pendulum as the key dynamical element responsible for the observed behavior. Numerical
simulation of this periodically perturbed pendulum is sho~n to reproduce the peculiar features of
the observed spectra obtained for the full, five-variable model. %e discuss the relationship of these
studies to the issue of bona fide chaos in a purely quantum-mechanical-level description of the sys-

tem.

I. INTRODUCTION

In 1968, Eberly' showed that the dynamics of a two-
level quantum system in a coherent radiation field is
closely related to the dynamics of a classical spherical
pendulum. At about the same time, Chirikovis and
Zaslavskii showed that the deterministic dynamics near
the separatrix of a classical, planar pendulum is stochastic
in character. These facts suggested that a two-level quan-
tum system interacting with its own radiation field in a
resonant cavity might provide an example of a simple
quantum system which can exhibit chaos.

Soon after we began our investigation of this possibihty,
we learned of the closely related study by Milonni, Ack-
erhalt, and Galbraith" (MAG) which in essence confirmed
our expectation. They considered the semiclassical
Jaynes-Cummings model' which has been greatly studied
in the rotating-wave approximation (RWA). They
showed that the terms neglected in the RWA lead to
chaos when they are kept. The chaos was diagnosed from
power spectra and confirmed by computation of I.iapunov
exponents.

An erratum brought to our attention the earlier work
of Belobrov, Zaslavskii, and Tartakovskii (BZT) in which
essentially the same system was studied and chaos was ex-
hibited by phase-space trajectory plots and the exponential
separation of initially close trajectories. They too showed
that the chaos was a consequence of inclusion of terms
normally neglected in the R%A.

In spite of these achievements, a number of important
questions remained unanswered. The models studied by
MAO and by BZT are not identical. Can this be ex-
plained starting from the fuHy quantum-mechanical
description and deriving the semiclassical description&
The spectra obtained by MAG for both the chaotic regime
and the nonchaotic regime are quite peculiar looking (see

Figs. 1 and 2). Can the major features of these spectra be
explained? Can Eberly's spherical pendulum or
Chirikov's planar pendulum be found explicitly in this
system? In this paper, we answer each of these questions.
We begin with the full quantum theory and show how to
obtain the semiclassical theory as a consequence of factor-
ization of nonlinear expectation values. We make an error
estimate for the validity of this factorization. The result
is identical to the BZT model. This is seen to be a conse-
quence of the feedback effect of the two-level system on
its own resonant radiation field. The feedback shows it-
self in the semiclassical theory as an effective current-
density source rather than as an effective polarization
density. This type of subtle distinction has been observed
before, in a different context, by Mandel. It is the basis
for the subtle difference between the MAG model and the
BZT model. By change of variables, we are able to show
that Eberly's spherical pendulum is contained in the BZT
model in the R%A. Moreover, the initial conditions used
in the study of the BZT model imply that the constant
corresponding to the azimuthal angular momentum of a
spherical pendulum is precisely zero in the RWA. This
reduces Eberly's pendulum to Chirikov's planar pendu-
lum. In addition, the initial conditions imply that, at res-
onance, Chirikov s pendulum is operating very close to its
separatrix in the RWA. However, because it is the non-
R%A terms which cause chaos, we calculate the perturba-
tion to the Chirikov pendulum which they cause in lowest
order. %e obtain a periodically perturbed Chirikov pen-
dulum. This perturbed pendulum is used as a model for
the BZT model, and we show that it reproduces the quali-
tative peculiarities of the power spectra obtained by
MA@.

Nonlinear dynamics presents the theorist with a new
situation. In the past a theorist would attempt to explain
a peculiar spectrum in terms of an analytic expression. In
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FIG. 2. (a) Plot of Z(v. ). A (0)= —10 ', A. =0.5, ht =0.05,
5000 iterations, 1250 points plotted. (b) fft for Z(~). 5000-
point fft, 1000 points plotted.
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FIG. 1. (a) Numerical results for each figure were obtained
from a SUN 2/120 computer in double-precision {14 decimal
places). IMSL library routines for solving differential equations
and for computing fast Fourier transforms (ftt) were employed.
The fft's were computed using a cosine bell window (sine2). The
scaled time v is used, and the scaling with N =1 is also used.
This is a plot of Z(v ) for the MAG model. A, =0.05,
A(0)= —10, Z(0)=1, and x{0)=y(0)=0. 100000 itera-
tions with step size (bt)=0.05. 1000 points are plotted. {b) fft
for Z(~). Log power spectrum is plotted against frequency in
hertz (Hz). 10 iterations were run but a 4000-point fft was
computed from only the first 4000 points, as in Milenni et ai.
(Ref. 4). 1250 points are plotted. (c) fft for Z(v. ). 20000-point
fft from 10 iterations with 1250 points plotted. This sho~s
more detailed structure.

the present situation, all we can do is provide an analytic
dynamical model, the periodically perturbed pendulum.
This model cannot be solved analytically. Nevertheless,
we can solve it numerically and thereby show that it does
explain the results obtained from our study of the original
system. Thus, we find ourselves using a numerical
analysis of a simplified model to explain the numerical re-
sults of a more complicated model. The gain achieved by
this approach is that the simplified model, the periodical-
ly perturbed Chirikov pendulum, has been identified as a
"universal" basis for chaotic dynamics in diverse physical
and mathematical systems. '

II. TWO-LEVEL QUANTUM SYSTEM
IN A RESONANT CAVITY

%e consider a two-level quantum system in a resonant
cavity. The cavity radiation is dominated by just one
mode of the radiation field, which can be tuned to match
the level spacing of the two-level system. The presence of
the two-level system creates a feedback effect on the radi-
ation field. The Hamiitonian for this system is (see Ap-
pendix}

H = ,
' fico~, +fico(a 'a+ —,

' )+A'A, o„(a+a—),
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in which Pauli matrices, cr, and o.„, have been used to
represent the two-level system, and creation-annihilation
operators, a and a, have been used to represent the radia-
tion field's single mode. The energy separation of the two
levels is ficoo and the frequency of the radiation mode is co.

Resonant tuning means coo=co. The strength of the cou-
pling is determined by X. For a cavity of volume V and a
two-level system with electric dipole moment p, A, is given
by5

(2)

A single two-level system (spin or molecule) in the cavi-
ty will not produce the chaos to be described. Instead, N
such systems must be present. %e restrict E so that it is
not so large that these systems interact. For a resonant
cavity, such as in a laser, V= 1 m X 1 mm X 1mm=1 cm,
and X & 10 is acceptable. The frequencies may be any-
where from 10' Hz down to 10 Hz. In the former case,
we are safe in neglecting dissipative relaxation effects in
the two-level systems. In the latter case, such effects may
prove important, but we defer consideration of dissipation
to a later study. Dissipation in the radiation field (i.e.,
cavity losses) are negligible in the present context.

o'y=cooc7 —2A,cr (a+a ),
o, =2Aoy(a+a t),

~ ~ f ~a+a = ic—o(a —a ),
0 ~ f ~

a —a = i—co(a+a ) —2iA,o„,

(4b)

(4c)

(4e)

in which a dot denotes a time derivative. These are first-
order coupled nonlinear operator equations for an
infinite-dimensional Hilbert space. A reduction to cou-
pled ordinary differential equations is achieved by taking
expectation values of these operator equations. Define the
"classical" variables

x =Ex(o„),

y =Ex(o„),
z =Ex{a,),
A =Ex(a +a ),
8=Ex[i(a —a )] .

(5a)

(5b)

(Sc)

(5d)

(5e)

If we assume that expectation values for products factor-
ize, then we get the semiclassical model equations

(6a)

III. THE JAYNES-CUMMINGS MODEL
AND THE R%A

p =co(pc —2kc4z,

i =2k.Ay,

(6b)

{6c)

IV. REDUCTION TO CLASSICAL
EQUATIONS AND ERROR ESTIMATES

We return to the Hamiltonian (1). The Heisenberg
operator equations are

ox= —~ooy ~ (4a)

In the analysis of the dynamics implied by (1), two
types of time dependence arise: exp[i(coo —co)t] and
exp[i(coo+co)t]. The latter term oscillates about zero so
rapidly that it is usually acceptable to neglect such terms.
This amounts to the RWA. This neglect can be effectuat-
ed at the outset by modifying the interaction Hamiltonian
in (1)

H, =ca(~ a'+~+a),
in which o+ ———,(o„+icr~). With this interaction Hamil-

tonian in (1), we have the Jaynes-Cummings model" at
the fully quantum-mechanical level of description. This
model is exactly solvable. ' We will see below how in-
clusion of the neglected terms converts this integrable
model into one exhibiting chaos. A very subtle change in
the model results in dramatic dynamical consequences.

The present situation is the reverse of a comparable cir-
cumstance in classical physics. ' The three-particle Toda
lattice is integrable and without chaos. However, its low-
energy approximation yields the two-particle Henon-
Heiles system which does exhibit chaos. In this case, the
approximation destroys an extra, conserved quantity;
whereas in the Jaynes-Cummings model, an extra, con-
served quantity is created by the approximation, as we
shall see.

A = —coB, (6d)

9=mA+2EM,

in which we have included the consequence of having N
noninteracting two-level systems. There are two natural
second-order equations implicit in (6a)—(6e):

x+coox =2cooA,Az,

A+a) A = —2%a)M .

(7a)

(7b)

A comparison with the 8ZT model shows that the identi-
fications x~m, z~n, A~ —(p/hA, )E, along with (2)
and N/V~p, make our equations identical with the BZT
model which was invoked on purely semiclassical
grounds. The MAG model, however, corresponds to
these equations with (7b) replaced by

3+m A =2%—x'.
62

At resonance, co=coo, and using (7a), this yields

3+m A = —2N~Lx+4XA, Az,

which clearly differs from (7b). The MAG model was
also invoked on purely semiclassical grounds, and the
source term in (8) may be interpreted as polarization den-
sity created by the presence of the two-level system.
Equation (7b), however, corresponds with a source term
which is an effective current density. As mentioned in the
Introduction, this important distinction was emphasized
earlier by Mandel. It arises whenever a reduction of a
fully quantum-mechanical treatment is made in the
manner described here.
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x +g +z =C) (13a}

—(A +8 )+—eooz+NAAx=C2 .
4 2

(13b)

Therefore, we have five coupled first-order equations with
two conserved quantities. This is equivalent to three cou-
pled first-order equations, which is just enough for the
possibility of chaos. "

How good is the factorization assumption'? Given two
operators, P and Q, we have assumed that
Ex(PQ)=Ex(P)Ex(Q). Generally, this equality is only
approximate and Ex(PQ)+Ex(P)Ex(Q). In fact, the
Schwartz inequahty implies

~

Ex(PQ}—Ex(P)Ex(Q)
~

=
~
Ex[[P—Ex(P)][Q —Ex(Q)]J

~

& [I IP —Ex(P)
I I I IQ —Ex(Q}11]'", (10)

in which )/R//=—Ex(RtR) for arbitrary operators P, Q,
and R. In getting Eqs. (6) from Eqs. (4), we need esti-
mates for P= re„and re„and Q =a+a . For these
choices of P, we have, say for P =o„,

~ ~
[er~ —Ex(o~ )] [ [

=Ex[00—
(
Ex(er )

~ ]
& Ex(oo)=1, (11)

in which oo is the 2)&2 identity matrix. Thus, for either
choice of P, we get

Ex[P(a +at)] —Ex(P)Ex(u +u )

& I//[(a+a ) —Ex(a+a )]//I'~

=
I Ex[(a +a t}z]—[Ex(a +a )]z t

'~2

=O(1/2i/n ) . (12)

Since the size of Ex(PQ) here is O(~n ), the relative er-
ror is O(1/n) For a .continuous laser, a single cavity
mode will have roughly 10'0 photons present, ' i.e.,
n = 10' . In our studies, this means we make an error in z
of less than 10 . In pulsed mode, ' n —10' can be
achieved for steady-state times of nanoseconds, yielding
errors less than 10

The system of Eqs. (6a)—(6e) also admits two conserved
quantities. These are

I

o
O
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FIG. 3. 20000-point fft for Z(~) in MAG model. 750 points
are plotted. This is an enlargement of the initial shoulder by
about eight fold. The fundamental at 0.0018 Hz, and many har-
monics are apparent.

for z(r) is shown as well as its log power spectrum. In
Fig. 1, /=0. 05, aiid the period of oscillation is approxi-
mately 55~. This yields a fundamental frequency of
Q.QQlg. The scale of the power spectrum abscissa is only
1 Hz in the scaled time. The fundamental frequency is in
the extreme left in the peak next to the zero ordinate.
Figure 3 shows the fundamental frequency clearly on an
enlargement of the initial portion of the spectrum. The
other two large peaks in Fig. 1 occur at approximately
17g and 356 tiines this fundamental. There is also a
structure at about 533 times the fundamentaL These ap-
pear to be simple harmonics of the frequency 0.32 Hz.
There is also a curious depression at the tops of these
peaks. Figures 4 and 5 show enlargements of these secon-
dary peaks. It is clear that they are quite regular on a fine
scale. In Fig. 2, A, =0.5, and there is a fundamental
period of about 11 5r, with a .frequency of 0.087. This
frequency appears in the spectrum as a sharp spike near
the zero ordinate on an almost linear decay of over eight
decades. Figure 6 shows an enlargement of the initial
portion of this spectrum, and clearly exhibits its irregular

-2. 0

V. THE RESULTS OF NUMERICAL SIMUI.ANIONS

The numerical simulations are run for the resonant
case, u=uo, with uo ——10' Hz. To accommodate this
large frequency, we work in a scaled dimensionless time,
~=coot For initial . conditions, x (0)=y (0)=0, z (0)= 1,
8(0)=0, and A (0) is chosen so that —2A,A (0)=10, in
order to agree with the MAG-model calculations. Let
P=4k, N. The MAG model was originally run for
p=0.01 and p= 1.0. Because we have to preset the prod-
uct A,A (0), we are free to scale things so that N =1 and
A, =0.05 and A, =0.5 for p=0.01 and p=1.0, respectively.
Thus, each simulation is run for the scaled time ~ with
scaled values N =1 and A, =0.05 or 0.5. Figures 1 and 2
exhibit the results for the MAG model. The time course
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FIG. 4. 20000-point fft over 105 iterations. Enlargement of
the peak around 0.64 Hz in Fig. 1(c).
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FIG. 5. 4000-point fft over 4000 iterations. Enlargement of
the peak around 0.64 Hz in Fig. 1(b).
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nature on a fine scale, as well as the peak at frequency
0.087.

In Figs. 7 and 8 we exhibit comparable results for the
BZT model which we have derived. There is a close simi-
larity between the results for A, =0.05 and the correspond-

1 f th MAG model. This is a result of the
smallsmall difference between Eqs. (7b) and (9) for sma

values. However, the A, =O.S results show the di erence
between these two models. The BZT chaotic spectrum
cuts off earlier than does the MAG spectrum, and has a
larger negative slope.

Liapunov exponents have been computed or each case
as well. The results for A, =0.05 are that the maximum
Liapunov exponent is 0.03 for both models. Indeed, t e
computation procedure indicates that the value is con-
verging on zero as A, ~O. For A, =0.5, the maximum

0.196 for the BZT model; a clear confirmation of the ex-
ponential separation of initially close trajectories as o-
served for the BZT model, and of the apparently noisy,
continuous spectrum observed for the MAG mode. n
F' 9 e show one spike from the z (~) profile seen in1g. we s

0 ~ ~ ~

n en"Fig. 1, or equivalently in Fig. 7. This spike has been
larged so that a small scale modulation can be seen. It is
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FIG. 7. (a) Z(~} for BZT model. A. =0.05, A(0}=—10-',
and all other conditions identical with Fig. 1(a). (b) fft for Z(~)
in BZT model. 20000-point fft over 10' iterations. 1250 points
are plotted.

precisely this modulation which shows up in the power
spectrum at frequency 0.32 Hz.

VI. THE EBERLY-CHIRIKOV PENDULUM

The analysis performed by Belobrov et al. 7 did not in-

effect of positive Liapunov exponents in the exponentia
se aration of initially close trajectories. Their phase-spacesepara ro
description involved a change of variables, w ic w

- n leEquations (7) strongly suggest effective action-ang e
variables:

1/2

cosP, A = &Ice sin«(«( = —~B), —
' 1/2

cosa, x = —(Jcoo) sin8( = —cozy),1/2 14b)

-1.0

FREQUENCY

0. 40 I =u(A +B ), J =coo(x +y ), (14c)

FIG. 6. Same as Fig. 2(b) enlarged eightfold. The peak at
0.087 is clear.

8
~& =arctan —,8=arctan

x
(14d)
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1.0

J= —4'~ IJ cog sin8,
NNp

(15c)

-0.5

cosP cos8,

cos((}sin8 .

INp
8=Np —2'

NJ
1/2IJ

NNp

(15d)

(15e)

-1.0

The conserved quantities, C& and C2 of Eqs. (13},can be
rewritten after multiplication by cop and 4', respectively:

1.0—

100.0 150.0 ROO. 0 RSO. 0 6 =JNp+N(jE'
' 1/2

H =Ico+2¹ocopz +4coNA, cog cos8 .
NNp

(16a)

(16b)

Clearly, 6 =H =0. The RWA suggests the further
change of variables,

h

h4

-R. 0

O

0

- (b)
-I.0

O. 1.00
I

3.00

g=P —8,
r) =((}+8,
sing cos8= —,

' (sing+sing) „

cog cos8= —,
' (cosP+ costi },

cosP sin8= —,
'

( —sing+sing) .

(17b)

(17c)

(17d)

(17e)

FRFQLJQNCY

FIG. 8. (a) Z(~) for BZT model. A, =0.5, 3{0)=—10
and all other conditions identical mth Fig. 2(b). The cutoff is
earlier than in Fig. 2(b), and the details differ. (b) fft for Z(~)
in (a). Compare with Figs. 2(a) and 2(b).

This variable change converts (15a)—(15e) into
' 1/2

I=2coN A, (sing+ sinri ),
NNp

1/2
NJ

Q=ciP —cop+ NA,
INp

I~ J

With these changes, Eqs. (6) become
' 1/2

I=4rpNA, cos8 sin((},
NNp

INp
+Az (cos1(+cosri ), (18b)

1.0

' 1/2

coy~8,
INp

1/2

J=2cdpAz (sin1( —sing ),
NNp

J

' 1/2

rI = cia +cop+ M,
INp

(18c)

0.5
—Az

INp

NJ
(cos1(+cosy), (18d)

N O.

N NNp

' 1/2

(sln1'P —sinri) . (18e)

-1.0
ROC. 0 300.0

FIG. 9. Z(~) spike for BZT model with conditions identical
with Fig. 1(a). Note high-frequency modulations in this enlarge-
ment.

The two conserved quantities could now be used to elim-
inate J and g in favor of z, P, and I. This is precisely the
approach of Belobrov et al. Moreover, the RWA
amounts to omitting all g terms, which decouples rl from
the remaining variables. Thus, in the R%'A, elimination
of J by (16a) produces three coupled equations in z, P,
and I plus one conserved quantity. This means that in the
R%'A we really have a two-variable problem, and no
chaos is possible. '
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We can go even further with the RWA. Define the

quantity P by

Together with (25), this implies Eberly s spherical pendu-
lum equation

P =v IJcosg .

Consequently,

p'=XX sinp+ cosp .A, P
u slnp

(27)

P= (coo co—)v IJ sing+NA,

' 1/2

J sin[2(r} —f)]
Note that p is measured from the vertical, spherical polar
axis. This equation follows from an effective Hamiltoni-
an

I sin[2(/+i})] .
A, P

Hz ,'P——z+—NA, cosp~
2Q) sin p

(28}

I=2NA, ~IJ sing, (21a)

In the RWA, and at resonance (co=coo), we have P=O,
i.e., an extra conserved quantity. %'e may now write

in which P~ =p.
The constant P is not arbitrary. J(0)=0 imphes P =0

for all t The. refore, the spherical pendulum reduces to
Chirikov's planar-pendulum equation

J=2hz@ IJ sing,
' 1/2JM, I

1/2I
+Az J

i= — V IJ sin—Q,
N

G =Ap+N z

H =Ico+2Nco z +2NAP,

P=vIJ cosf,

cosg,

(21b)

(21d)

(21e)

(21fl

(21g)

p'=Xi, 2 sinp . (29)

z= —M, (1+3z)(1—z) —A, 3 (0)z (30)

The right-hand side has its origin in the feedback effect of
the two-level system on the radiation, as given by (7b).
The initial condition z (0)=1 implies p(0) =0, but it is not
so simple in this representation to deduce j(0). Let us re-
turn to Eq. (24) and use equations (21e} and (21f). In
equation (21f), set P =0 and note that z (0)= 1 and
I(0)=coA (0) which imply H =co A (0)+2¹o. There-
fore, we get

G=H=P=O.
with the effective Hamiltonian

(21h)

At t =0, J(0)=0, and z(0)=1 implies 6 =co . There-
fore we have for all r

J =co(1 —z ) .

Hg ——,
'

Pg +M, {z—+z—z )+ —,
'

A, A (0)z (31)

where P, =i We k.now from (21d) that z(0)=0 because
J(0)=0. Therefore, H, =NA, + —,

'
A, A (0), and we have

Z =COSP, (23a)

Eberly's analysis' suggests one final change of variables.
Set

i =v 2t(1 z)[NA, + —,
'—

A, A (0)—NA, z]I'~2 .

Equations (23a)—(23b) together with (32) imply

p= —v 2[M, + —,'A, A (0)—NA, cosp]'i

(32)

(33)

~ ~z=—Nk J A, zI

»%'P

z = —cospp —smpp .

It is easy to verify from (21a)—(21g) that

(23b)

(23c)

(24)

from which we deduce p(0) = —A.
~

A (0)
~

. Therefore, the
Chirikov pendulum of Eq. (29) has initial conditions:
p(0)=0 and p(0)= —I,

~

A(0) ~. For sufficiently small
A, A (0},this corresponds with near-separatrix motion. It is
perturbed near-separatrix motion which can be chaotic. '

Using (21fl, (22), (23c), and (24) yields

—COSP P —Slnp p

= —NA, sin p

H 2NA.P—
cosp —2%~ cos p

Using {21d),{21g),(21h), and (23b) yields
r

0—EXP—cospp = — cosp —2Nmcos p

VII. NON-RWA PERTURBATIONS

——V IJ (cosg g —costi g) . (34)

'The unperturbed Chirikov pendulum cannot be chaot-
ic. ' Let us look for the corrections to Eq. (29) resulting
from inclusion of ri terms neglected in the RWA. From
equation (18e) we have

' 1/2 ' I/2
1 J . II+ — J sing

co 2 I

A, I'
+ 2 2 COSP .

CO Sln p
{26} Since we seek corrections to the RWA, keep Eqs.

(2 la)—(21c) and also use
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' 1/2 ' 1/2

ri =2'+ M, — —Az — cosg .I I
I J (35)

A,
2

i'= N— J(1—cosf cosy)—
CO

zI ( 1+cos1(t cosy )

+2k,U IJ costi . (36)

Using Eqs. (23a)—(23c) and (21d) gives

Substituting these equations into (34) yields

2

Now, the I term on the right-hand side corresponds with

the azimuthal angular momentum of a spherical pendu-

lum, so that a restriction to the planar pendulum of the
RWA amounts to the substitution: cos1(- —cosy. While
this eliminates the I term, it creates a coefficient of
1+cos q for the first term on the right-hand side of (38).
Its time average over the short times associated with the
fast frequency of the ri term yields the periodically per-
turbed Chirikov pendulum equation

p'= -', NA~sinp —2M[A (0)+2%(1—cosp)]' cos'tI,

(39)
p = v'Iu—sing,

A,
2

—(cosp)p = —(cosp) Itosin g .
CO

Therefore, Eq. (36) can be rewritten as

—p'sinp= —M, (sin p}(1—cosg cosy)

(cosp)I (1+costi( cosy —sin P)
N

+2iLV IJ cosr) .

(37a)

(37b)

(38)

in which rt=2cot is taken and I-coA (0)+2&~(1—&)

has been used in accord with equation (21f) and the RWA.
value for I. The initial conditions remain p(0}=0 and
p(0) = —A,

~

A (0)
~

. Thus, Eq. (39) describes a periodically
perturbed, pendulum motion.

Equation (39) does not possess an analytic solution.
However, numerical simulation can be used to show that
it does provide a good quantitative model for the spectral
behavior of the original BZT (or MAG} model. For
A, =0.05, we obtain the results in Fig. 10 which clearly
show the important, previously unexplained features of
the spectrum obtained by MAG (Ref. 4). Recall that for
X=0.05 the MAG and BZT models are in close agree-
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FIG. 10. (a) Perturbed Chirikov pendulum for A, =0.05 and conditions appropriate to Fig. 1(a). (b) fft for Z(~) =cosp(~). Corn-

pare with Figs. l(c) and 7(b). (c) Initial peak of fft enlargement. Compare with Fig. 3. (d) Enlargement of first spike in (a). Compare

with Fig. 9.
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4. 0

l. 0

x(0)=y(0)=0 so that J(0)&0 and P&0 in the RWA.
In this case, we will get a periodically perturbed Eberly
pendulum for small A, . We have not yet explored this case
in sufficient detail to report on it here.
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FIG. 11. Same as in Fig. 10 except A, =0.5, fft for Z(~).

ment. It is now clear that the modulation seen in Fig. 9,
which is responsible for the secondary peaks in the spec-
trum in Figs. 1(b) and 7(b), is a result of the non-RWA
term 2cot This. corresponds with a frequency of
2'/2m =1/n =0.318 Hz, precisely as is observed in the
figures. The other peaks are merely harmonics of this
fundamental perturbing frequency.

For A, =0.5, we do not believe that Eq. (39) properly in-
cludes all of the rl dependence. Nevertheless, Fig. 11
shows that it does produce a spectrum in qualitative
agreement with the BZT model. If we instead run Eq.
(29) with initial conditions p(0) =0 and j(0)=0, so that
we are precisely on the separatrix, then round-off error
provides a source of noise, and Fig. 12 shows the resulting
spectrum. This figure was determined by using only sin-
gle precision, which is of order 10, in the computations,
as compared with using double precision in all the other
figures. Right away this generates an effective p of about
10, so that when Fig. 12 is compared with Fig. 2(b) for
the MAG model, there is close correspondence. Thus, the
shape of the spectrum in the chaotic regime is explained
as that due to noisy separatrix motion of a Chirikov pen-
dulum.

It is possible to change the initial conditions

-2. 0

O

O

siI&19~~
-8. 0
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FIG. 12. Noisy separatrix motion of pendulum. fft of
cosp(v).

VIII. DISCUSSION OF RESULTS

Starting with the purely quantum-mechanical problem
posed by the Hamiltonian in (1) we have shown how to
derive the BZT model for the interaction of a two-level
system with a cavity-mode radiation field. The derivation
required on expectation-value factorization, for which an
error estimate was made. The RWA treatment of this
model was shown to contain an Eberly spherical pendu-
lum, which reduced to a Chirikov planar pendulum when
the special initial conditions used in this study were im-
posed. The effects on this pendulum resulting from in-
clusion of non-RWA terms present in the full model were
shown to be given by a periodically perturbed Chirikov
pendulum. This model of a model explained the peculiar
nature of the power spectra observed for the MAG and
SZT models.

The indication of chaos suggested by the power spec-
trum for A, =0.5 was confirmed by computing a positive
Liapunov exponent for the MAG and BZT models. A
positive Liapunov exponent is also obtained for A, =0.05,
and for any A, , for that matter. This is consistent with the
near-separatrix motion of a periodically perturbed Chiri-
kov pendulum. We conclude that the BZT model
possesses genuine chaos, and our model of the model by a
periodically perturbed pendulum explains the origin of
chaos in this system. It remains to determine whether or
not this chaos refiects bona fide chaos in the quantum
system with which we began our study.

The first difficulty we meet is with the definition of
"quantum chaos. " Several definitions exist and their in-
terconnections have not yet been fully elucidated. Three
main views follow.

(1) Quantum chaos refers to the appearance of chaos in
the time evolution of a dynamical variable, i.e., expecta-
tion value of a Heisenberg observable. The chaos referred
to in the preceding sentence is that observed and well
studied in classical chaos or ordinary coupled first-order
differential equations. It's tools are power spectra and
Liapunov exponents. This definition is directly connected
to classical chaos by Ehrenfest's theorem and the classical
limit.

(2) Quantum chaos refers to a property of the eigen-
spectrum. Specifically, a transition in spectral type occurs
which is the analogue to classical chaos {as used above).
Our model is in clear opposition to this; our model's spec-
trum is set once and for all at the outset. Special initial
conditions (P =0) lead to the possibility of near separa-
trix motion in a Chirikov pendulum. For all other initial
conditions (P&0), there is a centrifugal barrier to near
separatrix motion, and thus to chaos in the motion. Con-
sequently, with the same eigenspmtrum but with differing
initial conditions we do or do not get chaos.

(3) Quantum chaos refers to a property of the
Schrodinger wave function, that it is somehow chaotic in
the classical sense. %e have adopted this view inadver-
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tently in so far as one accepts that expectation values for
Heisenberg observables are directly connected with
Schrodinger wave functions.

It is known that a finite bounded quantum system can-
not exhibit chaos; it is at worst quasiperiodic. Even a
c-number periodically driven finite quantum system does
not appear to exhibit chaos even though it develops a con-
tinuous spectrum. We believe that neither of these cases
applies to our example. Our problem involves an
infinite-dimensional Hilbert space (because of the pho-
tons) and we are looking at the projected behavior of this
system given by Ex(o, }. We recognize that our treatment
is effectively semiclassical (a result of expectation factori-
zation), and we realize that even subtle changes can create
dramatic artifacts.

Return to Eqs. (6). There are two conservation laws,
(13a} and (13b). This leaves three independent variables.
This is the minimum number of variables which can ex-
hibit classical chaos. whether they do or not depends on
subtle changes. For example, if coo ——0 is used in (6a)—(6e)
along with x(0)=0, then (y,z) become a parametrically
perturbed harmonic oscillator, perturbed by A, an au-
tonomous harmonic oscillator. This case exhibits no
chaos and can be expressed analytically in closed form in
terms of functions such as cos[2(A, /co)A (0) cos(cot)].
Now suppose r00&0 and X =0, so that there is no x feed-
back to A. This is still a variety of parametrically per-
turbed harmonic oscillator. The coupling of the simple
(x,y} harmonic oscillator through the common variable y
makes this problem mathematically complicated. Techni-
cally, we say that analytic expressions for the solutions re-
quire the use of "time-ordered exponentials. " In this case
it is the noncommutativity of 3&3 matrices needed to ex-
press the solutions as ordered exponentials which causes
difficulty. We do not believe that this case shows chaos
and are concluding a parallel numerical analysis to show
this. If this proves to be so, then a chance at chaos occurs
only after %+0 is chosen, and a simple linear x feedback
to A is allowed. It is clear from the unique appearance of
N in Eq. (6e) that this is the term giving rise to the sin(p)
term in Eqs. (29) and (39). Without it, there is no pendu-
lum, and consequently, no opportunity for chaotic,
periodically perturbed, near-separatrix motion. (The
reader is cautioned not to confuse this pendulum in a
Bloch-Maxwell system with another pendulum in a
Bloch-Maxwell system, the famous hyperbolic secant
pulse of McCall and Hahn. '

)

The relationship between the three-particle Toda lattice
and the two-particle Henon-Heiles system is an example
of this subtlety for a classical system. The relationship
between our quantum system in (1) and the Jaynes-
Cummings model which uses the interaction Hamiltonian
in (3) is an example of this subtlety for a quantum system
(the Jaynes-Cummings model is exactly integrable). It
could be said that we introduced chaos through the fac-
torization step. However, we prefer to believe, until it is
clearly shown to be wrong, that our observations reflect a
genuine quantum chaos present in the purely quantum-
level description, ' and that this chaos is in part a conse-
quence of a finite-dimensional projection of an infinite-
dimensional dynamics. In this system this projection ex-

hibits chaos because the system effectively contains a per-
turbed, planar, near-separatrix-motion pendulum. As was
observed below Eq. (29) above, this pendulum has its ori-
gin in the modification of the cavity-radiation field caused

by feedback from the state of the two-level system.
The question of the existence of quantum chaos needs

to be embedded into the following sequence: classical,
semiclassical, and fully quantal. It is clear that the semi-
classical treatment of quantum phenomena, such as given

by Eqs. (6), can exhibit chaos. They are equivalent to a
kind of classical dynamical system in five variables with

two conservation laws. This was clearly demonstrated in
complementary ways by BZT (Ref. 7) and MAG (Ref. 4),
although not until now has the mechanism for these ob-
servations been proposed. The investigation of a purely
quantal treatment is mathematically demanding, and we
are still looking at this aspect of the problem. We repeat
that the eigenspectrum per se is not enough because of the
essential dependence on initial conditions instead.

We believe that bona fide chaos in a quantum system
arises from the intrinsically nonlinear coupling of particle
states and radiation fields, which is absent in both
Schrodinger equations for particle states in externally
prescribed electromagnetic fields, and field equations for
radiation fields produced by externally prescribed sources.
Within the framework of second-quantized-field theories,
the simplest setting for this potentiality is the Dirac-
Maxwell coupled-field theory. In essence, we have
presented a nonrelativistic, non-second-quantized version
of such coupling in the present paper. The presence of the
resonant cavity is essential for the manifestation of chaos
resulting from the nonhnear coupling. The chaos we have
seen here is a property of the coinbined quantum system
made up of two-level system, radiation field, and resonant
cavity.

APPENDIX

If we include all of the electromagnetic terms appropri-
ate in a nonrelativistic treatment, then we get for the elec-
tric dipole approximation the Hamiltonian

H = ,'ficooa, +Ac@(a a+——,' )+irido.„(a+a )

+A'P[a +(a ) +aa +a a] .

This can be rewritten suggestively in the form

(Al)

H = —,
' ficooa;+iii(co+2P)(a a + —,

' )+hler„( + a), a

+irip[a +(a ) ] . (A2)
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The Heisenberg equations (4a)—(4c) remain unchanged
when (A2) is used. However, Eqs. (4d) and (4e) are modi-
fied and yield the equation

a+a = —co(co+2p)(a +a ) —2cok, tT, . (A3)

a, =2 1+ 4p
' 1/2

A,'(a+a )oz, (ASc)

Introduce the parameters
a+a = —(co ) (a +a ) —2co Acr~, . (ASd)

Ox NOQy

oy =cooox 2 &+
CO

' j/2

A, '(a+a )tr, ,

co'=v'to(to+4p) and A, '=
N

Instead of (4a)—(4e) we get

(ASa)

(ASb)

Under the conditions for our studies, n =10' protons
with co=10' sec ' and k=2X10 sec ' with p=10
sec '. Consequently, &1+4plto= 1+2X10 ' . There-
fore, to within an error less than one part in 10",we may
neglect the v'1+4p/co in Eqs. (ASa)—(ASd) which leaves
the system equivalent to Eqs. (4a)—(4e) when the primes
are dropped.
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